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ABSTRACT

Objective: We aim to deliver a framework with 2 main objectives: 1) facilitating the design of theory-driven,

adaptive, digital interventions addressing chronic illnesses or health problems and 2) producing personalized

intervention delivery strategies to support self-management by optimizing various intervention components tai-

lored to people’s individual needs, momentary contexts, and psychosocial variables.

Materials and Methods: We propose a template-based digital intervention design mechanism enabling the con-

figuration of evidence-based, just-in-time, adaptive intervention components. The design mechanism incorpo-

rates a rule definition language enabling experts to specify triggering conditions for interventions based on mo-

mentary and historical contextual/personal data. The framework continuously monitors and processes personal

data space and evaluates intervention-triggering conditions. We benefit from reinforcement learning methods

to develop personalized intervention delivery strategies with respect to timing, frequency, and type (content) of

interventions. To validate the personalization algorithm, we lay out a simulation testbed with 2 personas, differ-

ing in their various simulated real-life conditions.

Results: We evaluate the design mechanism by presenting example intervention definitions based on behavior

change taxonomies and clinical guidelines. Furthermore, we provide intervention definitions for a real-world

care program targeting diabetes patients. Finally, we validate the personalized delivery mechanism through a

set of hypotheses, asserting certain ways of adaptation in the delivery strategy, according to the differences in

simulation related to personal preferences, traits, and lifestyle patterns.

Conclusion: While the design mechanism is sufficiently expandable to meet the theoretical and clinical

intervention design requirements, the personalization algorithm is capable of adapting intervention delivery

strategies for simulated real-life conditions.

Key words: just-in-time adaptive interventions, personalized intervention delivery, reinforcement learning, digital intervention

design, m-health

OBJECTIVE

Adaptive interventions have emerged to deal with persons’ varying

responses in terms of adherence to and adoption of health behaviors that

pertain to the treatment and self-management of chronic diseases and

health problems.1 The technological progress in the past few years has en-

abled the delivery of adaptive interventions wherever and whenever they

are needed via mobile devices. Interventions delivered in such a spontane-

ous way are known as just-in-time adaptive interventions (JITAIs).2
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Our objective is to deliver an expandable software framework

for design and personalization of digital interventions in confor-

mance with the JITAI framework.3 Offering constructs matching

with the JITAI components, namely, tailoring variables, decision

points, decision rules, and intervention options, the proposed design

mechanism facilitates JITAI design activities, as described in.4 The

mechanism is highly customizable and expandable with add-on con-

structs, enabling designers to customize the core capabilities to de-

velop JITAIs tailored to a particular health problem/population. The

design constructs are bound to accompanying software modules,

which can also be customized and expanded, for processing of het-

erogeneous data as desired.

The personalization module targets care receivers by monitoring

their self-management and health-related behaviors and delivering

mobile phone notifications in response to their continuously chang-

ing context during daily activities. Closely linked with the aforemen-

tioned JITAI components, we propose a novel learning method that

tailors intervention delivery strategies dynamically in terms of inter-

vention type, timing, and frequency using machine learning techni-

ques, in compliance with people’s action plans, changing physical/

psychological contexts, as well as their changing preferences over

time. We should note that these interventions do not aim to replace

the care and support of healthcare professionals but aim to facilitate

self-management following shared decision making, where care

receivers and care providers agree on behavioral treatment goals and

daily actions to pursue and follow-up until the next clinical visit of

the care receiver.5 We use the term “action plan” to refer to these

behavioral goals and daily actions in the rest of the manuscript.

Concerning the validation, our objective is to show that the pro-

posed design mechanism is sufficiently flexible and capable of

addressing the requirements for JITAI design as specified in the liter-

ature. We also aim to show that the proposed personalization algo-

rithm is able to adapt the intervention delivery according to

individual needs. Specific to the personalization part, the goal is to

validate the proposed approach in simulated settings before deploy-

ing it in a real-world case study.

BACKGROUND AND SIGNIFICANCE

Approximately 70% of the deaths globally, corresponding to 40

million people, are due to chronic diseases.6 Treatment of chronic

conditions relies on people’s self-management, which requires their

ability to perform health-related behaviors, such as proper use of

medication, physical activity, and following dietary recommenda-

tions, by themselves in the context of their daily lives.7 Chronic dis-

eases are a great burden on primary healthcare systems,8 as average

clinic visit times is only 10.3 minutes, leaving insufficient time for

professional guidance to affected people for optimal self-

management of their care.9

Emerging self-management programs have tried to fill the gap

between self-management support in clinical visits and everyday

life.10 However, recent systematic reviews pointed out the lack of

theoretical foundation of contemporary self-management support

applications.11,12 Furthermore, to be effective, self-management

support programs must be tailored to suit people’s priorities, resour-

ces, and lifestyles while taking multiple physiological and personal

psychosocial factors into account.13

There are numerous recent studies of systems that provide per-

sonalized self-management support to people with chronic dis-

eases14,15 or health-related problems such as obesity16 or sedentary

behavior.17 Waki et al.18 present a system providing lifestyle

recommendations, matched to patients’ inputs about food and exer-

cise. The system gathers measurements twice a day. An intervention

is determined and delivered right after data gathering. Gustafson

et al.19 present self-management modules, 1 of which tracks GPS

data and warns people with (prior) alcohol addiction when they ap-

proach a previously identified high-risk location.

Such systems are usually static, rule-based systems evaluating in-

tervention delivery conditions using the same rule set in every evalu-

ation. Static systems are limited in terms of personalization of the

intervention delivery strategies, as they do not adapt themselves in a

systematic way to maintain engagement of people with interventions

and extending adherence to a care program. Prolonged adherence is

inversely proportional with the burden created by the interven-

tions.20 Due to their feedback loop-based learning mechanisms, dy-

namic systems can adapt intervention delivery according to personal

values, conditions, or patterns, thus reducing the burden of interven-

tions. In addition to the momentary contexts, some parameters might

evolve throughout a long period of time. For example, a person’s pref-

erences and perceptions about the interventions might change over

time. The receiver might get used to the interventions and form a kind

of habituation towards similar interventions,21 or might start feeling

burdened as the number of interventions is too high and require too

much cognitive resources.22 Dynamic systems are able to recognize

such changes without introducing additional rules.

There are research studies on computational approaches dealing

with adaptivity and just-in-timeness of interventions, which are the

2 optimization dimensions that we also target.

Computational approaches deal with the adaptivity of interven-

tions by recognizing longer-term changes in individuals. Some stud-

ies develop tailor-made models targeted at specific health behaviors

and problems. For example, Chih et al.23 present an agent-based

model for uncovering the predictors of food choice and obesity in

the presence of cue–reward conditioning. Similarly, Goldstein

et al.24 use supervised machine learning techniques to predict dietary

lapses based on contextual tailoring variables and deliver personal-

ized interventions according to the strong predictors of the lapse. In

contrast, some dynamic system models lay out a more generic archi-

tecture capturing general, mathematic models of behavior change

theories. Such systems are able to adapt JITAI parameters according

to behavioral, model-based changes over time.25 Navarro-Barrientos

et al.26 developed weight-loss interventions proposing a dynamic sys-

tem model based on the Theory of Planned Behavior;27 Martin et al.28

propose a simulation of a model based on Social Cognitive Theory29

to support physical activity of individuals over time.

Other studies combine mobile/sensing technologies with machine

learning techniques to optimize intervention delivery with respect to

timing of interventions. For example, Pejovic and Musolesi30 utilize

and compare a set of classifiers to predict opportune moments to de-

liver interventions based on specific variables including time, daily

steps, location, and emotions. Boyer et al.31 use Bayesian networks

to predict drug cravings based on physiological parameters including

skin conductance, skin temperature, motion, and pulse.

In32 and,33 authors utilize reinforcement learning for optimization

of intervention delivery in real time by modeling it as a contextual ban-

dit problem.34 These studies are similar to ours in terms of representa-

tion of the real-time intervention delivery optimization problem with

reinforcement learning constructs and validation of the proposed opti-

mization algorithms in a simulated setting. Similar to our approach,

the authors model the environment state with elements representing

various momentary context parameters such as location, calendar

data, or physical activity status. The authors present a simplified and
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simulated real-life scenario on reducing smoking for heavy smokers as

an instantiation of their conceptual model. The study considers a single

generic intervention type and simulates decision points of JITAIs and

people’s smoking urge. This approach differs from ours with respect to

the learning algorithm. While we utilize Q-Learning35 supported by

transfer learning for cross-individual knowledge transfer,36 the re-

ferred study utilizes an actor-critic algorithm.

van de Ven et al.37 provide an expandable intervention design

mechanism, with capabilities to define intervention decision rules

bound to contextual parameters as well as time. The authors claim

that, so far, their platform is the only one providing a flexible and

versatile solution for definition and triggering interventions via mo-

bile phones based on user behavior and context, which is consistent

with our literature survey. However, that study does not provide

any dynamic optimization on its intervention triggering mechanism.

MATERIALS AND METHODS

Template-based JITAI design
As summarized in Table 1, we introduce a template-based design

mechanism that enables configuration of interventions targeting

specific health problems in compliance with the JITAI framework

presented in.3 The template enables users to instantiate 4 JITAI com-

ponents, namely, decision points, intervention options, tailoring var-

iables, and decision rules.

The decision point element allows the definition of event-based

and time-bound points. Time-bound points could be specified as

specific points (eg, at 8:00 am and 9:00 pm) or periodic times (eg, at

each 30 minutes between 10:00 am and 6:00 pm). Event-based

points capture participant-initiated points, which could be manual

(eg, when the person asks for care provider support) or bound to a

change in a certain tailoring variable (eg, when the daily step count

exceeds 10 000). Event-based points are also linked to the self-

management goals and action plans of care receivers. Each planned

activity in the action plan is supposed to be performed within a time

frame (eg, “first blood glucose monitoring activity should be per-

formed between 9:00 am and 11:00 am”). (See Section 2 of the Sup-

plementary Material for a more detailed action plan). In this respect,

the proposed framework proposes built-in event-based decision

point implementations, namely, “upcoming_action” and

“post-action.” These concepts restrict the set of eligible interven-

tions, such that only reminder interventions are triggered if there is

Table 1. Elements of JITAI design template

JITAI Component Template Element Description Examples

- Targeted behavior The type of activity that the person is sup-

posed to perform according to personal

self-management goals and planned

actions (ie, the action plan)

Blood glucose monitoring

- Description States the objective and reasoning of the

JITAI along with the conditions suitable

for delivering the intervention in a hu-

man-readable manner

One achieves a daily, weekly, or monthly blood glu-

cose monitoring goal consecutively, and the sys-

tem motivates her/him to maintain the behavior

Decision points Decision points Decision points for evaluating the decision

rules of the associated JITAI. It can either

be event based or time bound.

event ¼ {upcoming_action, post_action} [Interpreta-

tion: Intervention options will be considered

when a planned action has occurred (only moti-

vations) or if there is an upcoming planned action

(only reminders)].

Intervention options Behavior change

technique (BCT)

A reference to the behavior change tech-

nique introduced in the literature

Providing rewards contingent on successful behav-

ior (derived from CALO-RE taxonomy38)

Content The message to be delivered to the person. It

can include placeholders for injecting dy-

namically calculated information at the

intervention delivery time. Placeholders

may differ according to the BCT. Multi-

linguality is also supported.

“en”: “ Well done you are doing a great job! You

successively achieved your BG monitoring goal

for last ${streak_value} ${streak_temporal}s.”,

“es”: “ Bien hecho, est�a haciendo un gran trabajo!

Su objetivo de monitorizaci�on de la glucosa ha

sido alcanzado exitosamente durante los �ultimos

${streak_value} ${streak_temporal}.”,

The example has two placeholders that are streak_-

value and streak_temporal. While the former

placeholder represents the number of sequential

temporal periods in which the person reached the

blood glucose monitoring goal, the latter specifies

the temporal period eg days, weeks or months.

Decision rules / tailoring

variables

Rule Decision rules that must be satisfied for de-

livering the intervention. This variable

takes values conforming to the rule defini-

tion language described below.

[goal.monthly ¼ ACHIEVED and goal.-

monthly[1]¼ACHIEVED”, “goal.weekly ¼
ACHIEVED and goal.weekly[1]¼ACHIEVED”,

“goal.daily ¼ ACHIEVED and goal.-

daily[1]¼ACHIEVED”]

Distal / proximal outcomes Associated goal Goals specify the targets to be achieved to-

wards the ultimate clinical outcome. They

are defined in action plans. Via this ele-

ment the intervention instance is linked to

1 or more goals.

• Monitoring blood glucose levels three times a

day
• Minimum 8000 steps per day
• 7% HbA1c at the end of three months
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an upcoming planned action; and only motivation interventions are

triggered once a planned action has occurred. Figure 1 includes a

more comprehensive example showing the relation between the ac-

tion-plan-based decision points and the rest of the design constructs.

The figure, overall, shows how the rule definition language elements

can be used to define several alternatives of motivation JITAIs.

The behavior change technique and content elements enable speci-

fication of the intervention options. The rule element corresponds to

the decision rule component. The rule element also incorporates the

tailoring variables as operands in the decision rules. We elaborate on

the rule construct in the next section, Rule definition language.

Nahum-Shani et al.3 have introduced 2 additional concepts,

namely, distal outcome and proximal outcome to represent goals to

be achieved by care receivers with the support of JITAIs. Distal out-

comes usually represent the ultimate goals as primary clinical out-

comes such as losing weight or having lower levels of HbA1c.

Proximal outcomes represent relatively short-term goals through

which the effectiveness of interventions can be measured. These 2

concepts are not direct properties of a JITAI. Rather, they are cap-

tured by the goals defined in action plans (an example action plan is

provided in Section 2 of the Supplementary Material). Each inter-

vention instantiated via the proposed template is associated via the

associated goal element. In this way, an intervention can be linked

with one or more goals and, therefore, proximal and distal out-

comes. As described in the Rule definition language section, we pro-

vide built-in functionalities for measuring the effectiveness of

interventions considering the targeted outcomes.

Rule definition language

A multidisciplinary discussion between computer scientists and cog-

nitive behavioral psychologists concluded that the interventions

must meet the following requirements to be effective. They should

1) ensure clinical safety, capturing the specifications from clinical

guidelines, 2) be in line with personal self-management goals and

actions as planned in clinical visits, 3) be in line with health behavior

change theories, and 4) conform to people’s preferences in order not

to create burden with irrelevant notifications sent at inappropriate

times.51 Aiming to be sufficiently expandable towards meeting these

requirements, we propose a rule definition language with the follow-

ing Backus–Naur form notation:39

<tailoring_variable>::¼<tailoring_variable> j
<tailoring_variable><temporal>

<temporal>::¼<temporal>j<temporal>“[”<index>“]”
<rule>::¼<tailoring_variable><operator><number> j
<tailoring_variable><operator><tailoring_variable>

<rule_list>::¼<rule>j<rule><boolean_op><rule_list>
<rule_list_list>::¼<rule_list>j<rule_list>“,”
<rule_list_list>

<decision_rule>::¼“[”<rule_list_list>“]”

Listing 1 grammar of the rule definition language

Contexts, representing tailoring variables, are data integrating

and processing constructs, with corresponding software modules.

They transform data aggregated from external sources to the re-

quired format. Contexts also perform information extraction

operations to produce the actionable information as a scalar and

actionable value by the rule. For example, we introduce a context

named adherence for quantification of how close the person is to

achievement of the self-management goal associated with the be-

havior. Goal-related contexts allow gauging the effectiveness of

interventions. However, each goal type has its own internal logic

for such an evaluation, which requires specialized methods. Con-

texts can be specialized by suffixing sub-contexts. For example,

adherence: bgm outputs the adherence for the blood glucose

Figure 1. Example instantiation of the JITAI design constructs (ie, rule definition language elements). Overall, the figure shows the instantiation of rule definition

language elements leading to several alternatives of motivation interventions. Decision points are the links connecting each intervention type to action plans.

Considering the examples, all the intervention types are linked to the action plan slots classified as motivation.
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monitoring goal, as long as the corresponding software module is

in place.

The temporal construct is used to evaluate a context considering

a specific time interval. It can be set to daily, weekly, or monthly to

get the average values during the specified interval. It can also be set

to best, weekly-worst kind of specifiers to get peak values for the de-

sired context. The temporal construct can also be assigned with an

index that allows data retrieval for a specific period in the past. As

an example, regarding the design constructs introduced, the design

language supports the following expression: stress.monthly <

stress.monthly [-1]. The expression is interpreted as follows: The av-

erage stress value in the current month should be less than the aver-

age stress value during the last month.

The proposed approach is expandable in terms of integration of

additional data sources, either static or streaming, eg, demographic

information, self-reported information via questionnaires, measure-

ments obtained from medical devices, or contextual information

sensed from wearables. It is also expandable with additional con-

texts, which could be used to implement even more specific data

processing or calculation operations. These data management mod-

ules can then be reused to design new JITAIs.

Section 1 of the Supplementary Material contains the complete

list of built-in constructs included in the rule definition language, as

specifically used in the POWER2DM study/real word care program,

for which we present the details later.

Personalization of JITAIs
The goal of the JITAI personalization mechanism is to increase the ef-

fectiveness of the interventions with respect to their timing (just-in-time-

ness) and frequency and type (adaptivity). Benefiting from machine

learning techniques, the proposed personalization method puts the pro-

posed approach beyond rule-based systems, as it is able to adapt itself

according to continuously changing contexts and personal variables in-

cluding both long-term (eg, past performance, habit strength, preferen-

ces, etc.) and short-term parameters (eg, location, time, etc.).

Analogy between reinforcement learning and personalization of

JITAIs

We use reinforcement learning40 for personalization of the interven-

tion delivery, as the conceptual elements of RL and the problem of

interest match perfectly as depicted with an analogy in Figure 2. A

person and associated context data correspond to the environment

entity. The context information at a certain time represents the state

of the environment. The changing context of a person in daily life is

modeled as a series of state transitions of the environment. Interven-

tions delivered to the person correspond to the actions performed by

the learning agent. The engagement of the person with interventions

is emitted as a reward signal reflecting the acceptance of the deliv-

ered intervention by the person.

Advancing the analogy with the JITAI components

Besides the design mechanism, the reinforcement learning models

can also be aligned with the JITAI components, letting them work in

harmony with the literature-driven, conceptual foundations of

JITAIs. We claim that the reinforcement learning approach can cap-

ture the dynamics of these elements only if 2 dedicated reinforce-

ment learning models are employed simultaneously. In this respect,

we propose 2 models named intervention-selection and opportune-

moment-identification aiming at optimization of type (and fre-

quency) and timing of JITAIs respectively.

Both the intervention-selection and the opportune-moment-

identification steps have their own decision points. Considering a

person’s daily action plan, each scheduled activity is a decision point

for intervention-selection. For the opportune-moment-identification

case, we treat each moment when there occurs a change in the per-

son’s momentary context as a decision point.

Intervention options such as type, content, or timing are

characteristics of a JITAI. These characteristics are distributed over

the 2 learning models. The intervention-selection model optimizes

the type and frequency of JITAIs via the selected action at each state

change, whereas the opportune-moment-identification model cap-

tures the timing of JITAIs.

Similarly, tailoring variables are distributed over the learning

models. Tailoring variables form the state element of the reinforce-

ment learning models. While the states of the intervention-selection

model are composed mostly of the long-term parameters (eg, inter-

vention engagement history or intervention preferences), the states

of the opportune-moment-identification model include mostly the

short-term parameters (eg, step count or location).

Decision rules are constructed with conditional expressions with

tailoring variables as operands, as seen in the example in Table 1.

On the reinforcement learning side, the states contain all the tailor-

ing variables. Therefore, state-action mappings accumulated inside

the learning agent’s policy are a collection of decision rules. Each

mapping in the policy includes the action to be taken in a state. This

means that each distinct state leads to a decision based on the condi-

tions represented with the instantiations of tailoring variables. The

agent optimizes its policy over time by learning from people’s expe-

riences. As it visits different states, it learns how to behave in differ-

ent conditions and finds the (near-)optimal strategy that suits the

Figure 2. Analogy between a traditional RL setup and intervention delivery optimization problem. While the left part shows the elements of an RL setup along with the

information flow between them, the right part includes the corresponding elements and information flow concerning the optimization of intervention delivery.
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user best. With this base approach, though, the learning algorithm

needs to consider all tailoring variables inside the person state

against the complete set of actions (ie, intervention types), which

would require a long learning time. Instead, decision rules associ-

ated with individual intervention instances are used to limit the

complete action set by keeping only the interventions of which

rules are satisfied considering the momentary contextual values.

For example, The JITAI defined in Table 1 is eligible only if the

person reached his/her goal 3 times consecutively in 1 of the speci-

fied time frames.

The amount of rewards collected by the learning agent during

the learning process is an indicator for achieving the goals set for

the behavior targeted by the interventions. As we presented earlier,

the goals are representatives of the proximal/distal outcomes de-

sired. An indirect relation between rewards and proximal/distal

outcomes can be established, such that the more rewards that the

learning agent collects, the more the targeted outcomes are

achieved.

Overall JITAI personalization algorithm

The JITAI personalization algorithm implements the conceptual ap-

proach described throughout the analogy above. It first identifies the

eligible interventions by evaluating their decision rules. At the sec-

ond step, it selects the best-matching intervention (or selects none of

the eligible interventions) based on the current context and historical

experiences of the person. After the intervention is selected, its con-

tent is finalized by calculating dynamic variables included in the

content. The algorithm then discovers an opportune moment to de-

liver the intervention. The process goes on with the update of the

learning models. Figure 3 elaborates on the algorithm in detail.

Simulation testbed
To validate the personalization of intervention delivery strategies,

we lay out a simulation testbed for simulating the treatment and

self-management process of people with diabetes. The testbed is

composed of 3 main concepts to be simulated, namely, an action

plan, JITAIs, and personas. We perform care process simulations

for2 personas with differentiating conditions related to the simu-

lated concepts. Our aim is to show that the JITAI personalization al-

gorithm captures the persona-specific conditions and adapts the

intervention delivery accordingly. We present the details about the

simulated concepts below.

Action plan

The simulated action plan is similar for both personas. It includes

blood glucose monitoring activity 3 times a day, before meals,

within pre-set timeframes. The link between action plans and inter-

vention types, as described below, is established via their targeted

behavior. That is, only the interventions targeting the same behavior

with the action plan, among all available interventions, are consid-

ered for delivery to support the activity included in the action plan.

See Section 2 of the Supplementary Material for more details about

the simulated action plan.

JITAIs

Targeting the blood glucose monitoring behavior, we have 3 JITAI

instances, each of which implements a specific behavioral change

technique (BCT) as described in the CALO-RE taxonomy. Below,

we present distinguishing characteristics of their components. Fur-

thermore, Section 3 of the Supplementary Material shows their in-

stantiation via the proposed design mechanism.

• Intervention-1: Prompting self-monitoring of behavior: The first

intervention is a standard reminder. Having the reminder cate-

gory, the intervention is supposed to be sent within the period

during which the activity is supposed to be performed.
• Intervention-2: Reminding with comparing with others: This is

also a reminder intervention. While reminding of the activity, it

also motivates the person by presenting a comparison with others

in terms of performance of the targeted behavior. This interven-

tion has the same decision rules as the previous one. So, both will

be considered as eligible interventions at the same decision

points.
• Intervention-3: Praising the performed behavior: This one is a

motivational intervention complimenting the person on success-

ful performance of the planned behavior. It is associated with 3

decision rules representing the achievement of the monitored

goal in daily, weekly, and monthly timescales, respectively.

Meeting only 1 of them is sufficient for making this intervention

eligible for delivery.

Personas

Personas themselves differ further in 3 dimensions: 1) commitment

intensity, as the motivation felt by a person to perform a behavior,

2) preferences on intervention types, and 3) daily activities. Each di-

mension is elaborated below:

Social-Psychological Model of Prospective Memory and Habit: To

test the JITAI personalization algorithm with respect to the adaptive

frequency of interventions throughout the care process, we utilize the

concept of habit formation.40 Though many self-monitoring behaviors

cannot be seen as habitual behaviors strictly, we made use of the em-

pirically validated, mathematical model of habit formation41 to con-

struct a mathematical expression of the correlation between

commitment and actual behavior. It is assumed that, during the care

and evolving self-management process, people become less dependent

of extrinsic reminders and motivators. When people respond to the

delivered interventions and the behavioral goal is obtained consis-

tently, they will need fewer reminding notifications, so interventions

need to become more intermittent. To calculate and simulate parame-

ters concerning the performance of a new behavior, we apply the

mathematical model of habit formation to simulate care processes and

calculate individual habit strength scores, which express the likelihood

of performing the new behavior, without being dependent on extrinsic

reminders and motivators. The model requires an initial commitment

intensity value for each person for its internal calculations. Therefore,

we use commitment intensity as 1 of the differentiating factors of the

simulated personas. Table 2 presents the commitment intensities for

each persona along with possible interpretations.

Preferences on intervention types

We associate personas with preferences on the 3 intervention types,

as presented in Table 3, as a reflection of personal acceptance on

them. Each value represents the probability of engaging with the

specified intervention by the person when one is encountered.

Simulation of daily activities

Characteristics of daily activities also affect people’s reactions to

interventions. We simulate daily activities by selecting type, occur-

rence, and duration of activities randomly from pre-defined daily ac-
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tivity timeline templates. A template includes a set of activities

placed on a timeline. For each simulated day, a new set of activities

is generated, such that each activity is represented with a set of

parameters as exemplified in Table 4. Intervention engagement rules

in the simulation are established, such that engagement occurs only

if the person is physically sedentary, mentally neutral, and the phone

screen is on. Simulating the performance of the targeted behavior

differs from simulation of engagement with the intervention. We

Figure 3. Overall JITAI personalization algorithm. The flow at the top of the figure shows the main steps of the algorithm executed sequentially. First, the set of el-

igible interventions is identified; then the algorithm selects 1 of the eligible interventions considering current context and past experiences. The placeholders are

populated, if there are any. Next is the identification of the best moment to deliver the intervention. Finally, the learning models are updated based on persons’

engagement with interventions.

204 Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 3

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/26/3/198/5260831 by guest on 15 O
ctober 2020



simply mark certain activities in the timeline as suitable for behavior

performance by setting the “behavior_performance_suitability” as

also seen in the table. Please see Section 7 of the Supplementary Ma-

terial to see an example sequence of simulated daily activities.

Driven by the benchmarked parameters of simulated personas,

we introduce the following hypotheses as conditions for which the

JITAI personalization algorithm is expected to adapt intervention

delivery accordingly. For each hypothesis, we present corresponding

simulation parameter leading to the hypothesis:

• Varying parameter: According to the habit formation model

used, people with higher commitment intensities perform the

behavior more frequently and reach maximum habit strength

faster.

Hypothesis 1: Person-2 should receive interventions for a longer

time than Person-1, as performing the new behavior habitually

will take longer for Person-2.

• Varying parameter: A well-formed habit (ie, automatic perfor-

mance of the new behavior) indicates that the person performs

the behavior with less dependence on extrinsic reminders and

motivators.

Hypothesis 2: Intervention delivery frequency should decrease

throughout the simulated care process.

• Varying parameter: As a reflection of their individual differences

and preferences, the simulated people favor different intervention

types.

Hypothesis 3: The number of delivered intervention for each in-

tervention type should be proportional to people’s preferences

for them.

• Varying parameter: Daily activities of each person are generated

semi-randomly based on personal activity timeline templates.

Therefore, in addition to the distinct activities of each person,

the activities for the same person vary among the simulated days

because of the randomness included in the activity generation

mechanism. Varying daily activities determine both when the be-

havior could be performed and when the intervention (ie, the

mobile phone notification) can be engaged with.

Hypothesis 4-a: Interventions should be delivered in moments

that are suitable for intervention engagement as specified by the

simulation configurations.

Hypothesis 4-b: The intervention delivery should be temporally

close to the periods that are marked suitable for behavior perfor-

mance.

RESULTS

We first show how the expandable JITAI design mechanism meets

the JITAI design-related specifications derived from various resour-

ces such as BCT taxonomies, clinical guidelines, or algorithms for

automated self-management support. Then, we run the simulation

testbed, present the results, and discuss the results with respect to

the proposed hypotheses.

Validating the JITAI design mechanism
Clinical guidelines such as the American Diabetes Association

(ADA)44 guidelines for prevention or delay of Type 2 diabetes, the

Joslin Clinical Guideline for Adults with Diabetes,45 BCT taxono-

mies, eg, CALO-RE,38 and algorithms related to self-management

support, eg, Predictive 303,46 provide clear starting points for JITAI

components, even though the relation between the JITAI framework

and those resources is not stated explicitly. For example, ADA

guidelines recommend interrupting prolonged sitting every 30

minutes with short bouts of physical activity. In this example, the

tailoring variable is the physical activity status, the decision point is

every minute, and the decision rule would be to check whether the

person has been inactive for the last 30 minutes.

A JITAI-focused analysis of these resources revealed that auto-

mating evidence-based self-management support strategies first

requires integration of data for decision-making processes related

Table 3. Preference indicators for JITAIs

Intervention-1

(reminder 1)

Intervention-2

(reminder 2)

Intervention-3

(motivation)

Person-1 50% 70% 70%

Person-2 50% 0% 10%

Table 2. Persona’s commitment intensities and their interpreta-

tions

Commitment

Intensity [0, 1.0]

Possible Interpretation of the

Commitment Intensity

Person-1 0.7 An indicator of giving more importance

to the targeted behavior considering

the expected eventual benefits

Person-2 0.3 An indicator that s/he takes the behavior

change less seriously and giving less

importance to the behavior as s/he

does not expect eventual benefit from

performing the behavior; or s/he per-

ceives the behavior as a relatively

complex / challenging task. The same

task might be perceived in varying dif-

ficulties by different people42,43

Table 4. Parameters of a simulated daily activity

activity_description

Takes a break sitting on the couch

and watching TV

location HOME

physical_activity SEDENTARY

phone_usage ACTIVE

phone_check_suitability Yes

state_of_mind/emotional_status (One of the following values is cho-

sen randomly according to the

associated probability)

CALM/RELAXED¼30%

CALM/NEUTRAL¼20%

FOCUS/RELAXED¼25%

FOCUS/NEUTRAL¼20%

TENSE/NEUTRAL¼5%

start_time Relative to previous activity

start_time_variation 0

duration 45 minutes

duration_variation 15 minutes (ie, the duration might

change between 30 and 60

minutes)

behavior_performance_suitability Yes
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to the personalization of JITAIs. The data vary in nature

(structured/unstructured, static/streaming) and in source (devices,

sensors, mobile app, questionnaires). To enable the analysis of the

integrated data, they must be transformed into a format as required

by decision rules. Concerning the interrupting inactivity case above,

an example transformation would be reducing the last 30 minutes of

physical activity data to a binary result. Finally, the transformed in-

formation should be injected into the decision-making processes of

self-management strategies.

As validation of the design mechanism, we claim that the pro-

posed approach meets exactly such JITAI-design-related require-

ments, as the core design constructs can be expanded with

additional, reusable data integration and processing modules and

decision rules for JITAI design. We have also validated the JITAI de-

sign capabilities in the POWER2DM (Predictive Model-Based Deci-

sion Support for Diabetes Patient Empowerment) Project,1 aiming

to develop a personalized self-management support system for dia-

betes patients. In POWER2DM, computer scientists and cognitive

behavioral psychologists as the authors of this study have collabora-

tively developed interventions to support the self-management of di-

abetes patients regarding blood glucose monitoring, exercise,

medication adherence, and carbohydrate monitoring. The Supple-

mentary Material, from Section 4 to Section 6, presents JITAI com-

ponents from both theoretical and case-driven perspectives.

Simulation results
We simulate 100 trials for each persona in which each trial lasts 100

days. Below, we elaborate how the obtained results validate the hy-

potheses above.

Hypothesis-1 validation: Figure 4 is a compact figure validating

both Hypothesis-1 and Hypothesis-2 at the same time. The x-axis

represents the simulated days in chronological order. The shaped

lines show the simulated habit strength values as generated by the

habit formation model at each simulated day. The blue and red lines

show values for Person-1 and Person-2, respectively. On the other

hand, the plain blue and red lines show the average number of inter-

ventions for Person-1 and Person-2. Accordingly, the left and right

y-axes represent the value ranges for the average number of deliv-

ered interventions and simulated habit strength.

As configured with a relatively higher commitment intensity

than Person-2, Person-1 reaches to maximum habit strength earlier,

indicating that Person-1 forms a habit for the blood glucose moni-

toring behavior faster. The duration of intervention delivery is pro-

portional to the length of the period through which the persons

reach the maximum habit strength. These outcomes are also consis-

tent with the results obtained in,47 in which the authors develop a

habit formation model on empirical data that outputs the habit for-

mation duration for real-world behaviors with varying complexities.

That study reveals that habit formation takes approximately 20

days for relatively less complex behaviors, but it increases to a few

months for more complex behaviors. Person-2 can be seen as one

who perceives the task as relatively complex, as we assumed in the

simulation specifications above.

Hypothesis-2 validation: The average number of delivered inter-

ventions (shaped lines) is relatively high in the initial episodes. De-

spite the fluctuations, the number of interventions decreases as the

simulated habit strength increases throughout the trials. The algo-

rithm is also sensitive to the change in habit strength, such that the

faster the habit strength reaches its maximum value, the faster the

number of interventions delivered decreases.

Hypothesis-3 validation: Figure 5 shows the ratio of the number

of interventions for each intervention type to the total number of

interventions delivered for each intervention type for each persona.

As Person-1 is neutral for Intervention-1 and slightly favors the

other 2, the ratios presented in the figure are almost equal, but still

Figure 4. Episode vs. intervention count/habit strength plot. This plot shows the inversely proportional relation between the habit strength and number of inter-

ventions delivered.

1 http://www.power2dm.eu/
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reflect Person-1’s preferences. On the other hand, although Person-2

is neutral only for Intervention-1 and has little interest for

Intervention-3, Intervention-3 has the highest delivery ratio. The

results for Intervention-1 and Intervention-2 do reflect the preferen-

ces of the person on reminder interventions.

The ratio of Intervention-3 is relatively high for 2 reasons: First,

Intervention-3 instances are delivered in states in which it is pre-

dicted that the person would not remember to perform the behavior.

This is expected, as we encouraged intervention delivery as a re-

minder cue regardless of the intervention type, in cases when it is

likely the person would not remember to perform the behavior. (The

results for Person-1 do not present such a pattern, as there are al-

most no states in which Person-1 forgets performing the behavior.)

The second reason for the high ratio of Intervention-3 is that the al-

gorithm is not able to learn the person preferences at the beginning

of the learning phase and selects interventions randomly.

Hypothesis-4 validation: Figure 6 shows the difference between in-

tervention delivery and behavior performance times. Almost 60% of

the reminder interventions are delivered at most 30 minutes before per-

forming the behavior. In general, as the time difference gets higher ,the

ratio of delivered interventions decreases except the “61-120 minute”

bar. The bulge of this bar arises mainly from the high frequency of the

daily activities that are convenient for intervention delivery at the corre-

sponding time period during the day. For example, Person-1 has a

working session, lasting 90 minutes on average, during which s/he regu-

larly checks the phone. This actually means that the algorithm learns

and exploits such common patterns in people’s daily lives.

The results comply with the simulated intervention engagement

rules related to the contextual parameters, such that 83% of inter-

ventions were sent when persons had a convenient emotional status

including neutral, relaxed, or happy; 74% of interventions were sent

when persons were in sedentary mode, and 63% of interventions

were sent when the phone screen was on.

DISCUSSION

Legitimacy of the approach: The dynamic JITAI personalization

mechanism and multi-dimensional expandability of the JITAI design

mechanism are the 2 innovative characteristics of the proposed ap-

proach, advancing the state-of-the-art research. Both characteristics

bring opportunities for adoption of the system by various entities

such as mobile/web application vendors in the behavioral health

software market, public health organizations, or other healthcare

organizations working on clinical studies aiming large-scale digital

interventions at patient populations.

Capturing the rules associated with the simulated concepts: We

already discussed the simulation results in the previous section by

describing how they are aligned with the hypotheses and how they

deviate from the expected results along with the causes of devia-

tions. As a summary, we claim that the proposed algorithm is able

to capture the rules that are associated with the simulated concepts.

We also presented the core algorithm that is used to optimize the

intervention delivery policy in,48 where we aimed to break the sed-

entary behaviors of office workers during working hours. In that

study, we obtained better results for a machine-learning-based per-

sonalization mechanism compared to results obtained for interven-

tions delivered according to a fixed schedule. The results were

collected from both real-world and simulated test cases.

Further improvements: Despite the innovative character of the

current approach, there is room for potential improvements. For ex-

ample, as we mentioned earlier, the fluctuations of the intervention

counts in Figure 4 happen when the learning algorithm encounters

unknown states, ie, the cold-start problem. Tackling the cold-start

problem, the evidence from various micro-randomized trials,49 mea-

suring the effect of individual intervention components, or any ex-

pert-knowledge-based heuristic can be utilized to provide a warm

start for the learning algorithm. An unknown state might be encoun-

tered, eg, when the person attains a certain habit strength, the high-

est one, for the first time. Instead of taking random actions in such

cases, the algorithm might employ a machine learning classifier to

make an educated guess, or it might simply favor not delivering an

intervention in proportion with the current habit strength. The rein-

forcement learning methodology is convenient for integration of

such external knowledge by setting the initial scores of relevant

state–action pairs inside the learning agent’s policy accordingly.

Furthermore, the learning models can be enriched with additional

Figure 5. Person vs. intervention type ratio plot. The plot shows the ratio of the number of a specific intervention type to the total number of interventions deliv-

ered for each intervention type for each persona.
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state parameters, eg, performance parameters to represent the per-

son context more accurately.

Besides improvements to the learning models, the JITAI design

capabilities could be improved with additional intervention types or

content presentation modalities. Section 1 of the Supplementary

Material presents all the currently available constructs of the design

approach. Although a simple system with the limited number of

built-in constructs targeting the POWER2DM case study, the design

mechanism lays out the basis to expand the system with more con-

structs as needed by the targeted health problem.

Finally, in this study, we consider preferences for intervention

types, commitment intensities, and daily activities as differentiating

factors in the persona simulation. A more realistic simulation could

be achieved by also considering factors such as self-efficacy, motiva-

tion, and prior experience, changing the behavior or outcome

expectancies.

CONCLUSION

We present a framework for JITAI design and personalization that

can be customized for care programs targeting varying health prob-

lems and populations. The design mechanism, incorporating a rule

definition language, can be specialized with add-on constructs to

conceive interventions addressing the specific requirements of a care

program. The personalization part employs a reinforcement learn-

ing-based approach to optimize/personalize the intervention delivery

concerning the frequency, type, and timing of interventions dynami-

cally according to data aggregated for a person over time.

We validate the JITAI design mechanism by providing example

JITAI definitions in which the characteristics of JITAIs are extracted

from various relevant resources available in the literature, such as

clinical guidelines and taxonomies of behavior change, and by a

real-world case study providing self-management support to diabe-

tes patients.

We validate the personalized intervention delivery mechanism

through a simulation testbed in which action plans, JITAIs, and per-

sonas, with differentiating characteristics, are simulated. We present

that the personalization algorithm is able to capture the rules

associated with the simulated concepts, indicating its potential to be

used in real-world settings. In future studies, we aim to validate the

personalization mechanism empirically throughout a randomized

controlled trial to be carried out in the scope of POWER2DM with

280 diabetes patients in total.50
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