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This study first proposes a temperature model to calculate the temperature indices upon which temperature-based derivatives are
written. The model is designed as a mean-reverting process driven by a Levy process to represent jumps and other features of
temperature. Temperature indices are mainly measured as deviations from a base temperature, and, hence, the proposed model
includes jumps because they may constitute an important part of this deviation for some locations. The estimated value of a
temperature index and its distribution in this model apply an inversion formula to the temperature model. Second, this study
develops a pricing process over calculated index values, which returns a customized price for temperature-based derivatives
considering that temperature has unique effects on every economic entity. This personalized price is also used to reveal the trading
behavior of a hypothesized entity in a temperature-based derivative trade with profitmaximization as the objective.Thus, this study
presents a new method that does not need to evaluate the risk-aversion behavior of any economic entity.

1. Introduction

Temperature-based derivatives represent a new financial tool
to buy and sell a natural phenomenon. Doing so requires two
things: a unit of measurement for the natural phenomenon
that everyone agrees upon and a price that may facilitate
a transaction. This study is designed to evaluate these two
requirements.

Some preexisting measures already appear in the form of
indices to meet the first requirement. To find values for these
indices, the literature contains several temperature models
using mean-reverting processes as the main tool. The most
cited study develops an Ornstein-Uhlenbeck (OU) process
to model temperature [1]. Using the equivalent martingale
measures approach, the authors determine the price of an
option. Benth and Šaltytė-Benth [2] model temperature as
a continuous time autoregressive process for Stockholm and
report a clear seasonal variation in regression residuals.
They propose a model using a higher-order continuous

time autoregressive process, driven by a Wiener process
with seasonal standard deviation. While pricing futures and
options, they consider a Gaussian structure in the tempera-
ture dynamics. In another study [3], they model temperature
with an OU process driven by a generalized Levy process.
The model contains seasonal mean and volatility. Instead of
dynamic models, some authors offer time-series models to
represent temperature. Campbell and Diebold [4] apply a
time series approach to model temperature, including trend
seasonality represented by a low-ordered Fourier series and
cyclical patterns represented by autoregressive lags. The con-
tributions to conditional variance dynamics are coming from
seasonal and cyclical components. The authors used Fourier
series and GARCH processes to represent seasonal volatility
components and cyclical volatility components, respectively.
Jewson and Caballero [5] discuss the use of weather forecasts
in pricing weather derivatives, presenting two methods for
strong seasonality in probability distributions and the auto-
correlation structure of temperature anomalies. Elias et al.
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[6] develop four regime-switching models of temperature for
pricing temperature based derivatives and find that a two-
state model governed by a mean-reverting process as the
first state and by a Brownian motion as the second state was
superior to the others. Schiller et al. [7] and Oetomo and
Stevenson [8] provide a comparison of different models.

To comply with the first requirement, the current study
offers a temperature model based on Alaton et al. [1], which
was defined after analyzing temperature data from different
locations. The temperature model in this study is a mean-
reverting Levy process. The Levy part contains a Brownian
motion and two mean reverting jump processes driven by
compound Poisson processes. For some flexibility, the jumps
are designed as slow and fast mean-reverting processes,
which are independent. The main difference with the model
proposed here is its inclusion of jumps. Because temperature
indices are mainly calculated as deviation of temperature
from a base temperature, the model assumes that jumps
are inevitable, at least for certain locations. The numerical
estimates in this study contain test results related to this
issue. The solution to the proposed temperature model is
applied inversion formula to obtain approximated expected
value of a specific index type and to obtain the approximated
distribution of the same index.

Notably, temperature has unique behavior for any loca-
tion in which it is measured. Therefore, it is not possible
to develop a single model that explains every temperature
behavior in every location. In addition, more than 100,000
weather stations worldwide measure temperature for differ-
ent periods. It may even be difficult to develop a temperature
model that is valid for all time at a single location. Thus, this
study aims to cover more locations and periods by simply
using a flexible model that can include or exclude jumps.

The second requirement, temperature-based derivatives
pricing, is more complicated. Because the underlying com-
modity is not a traded asset, weather derivatives based on
temperature have an incomplete market [9]. Carr et al.
[10], Magill and Quinzii [11], and El Karoui and Quenez
[12] provide a general discussion of incomplete markets.
Pricing temperature-based derivatives is mainly based on
two approaches: dynamic valuation and equilibrium asset
pricing.Thedynamic pricing approaches [1, 2] were discussed
above. For equilibrium pricing, Cao and Wei [13] use a
generalization of the Jr. Lucas model [14], which considers
weather as another source of uncertainty. Richards et al.
[15] suggest another equilibrium model. Davis [16] uses
the marginal substitution value approach for pricing in
incomplete markets. In addition, Xu et al. [17] use another
classification for pricing temperature-based derivatives and
add actuarial pricing and extended risk-neutral valuation in
addition to equilibrium asset pricing, where the former is
based on Jewson and Brix [18] and the latter on Hull [19] and
Turvey [20]. In addition, some researchers usedMonte-Carlo
simulations in pricing temperature-based derivatives [21].

This study bases its pricing on the monetary effect of
the natural phenomenon on economic entities. Further, this
study shows that temperature has different effects on different
entities. The same temperature may have a positive effect on
one entity and a negative effect on another and is therefore

personal, ceteris paribus.Thus, the study develops a personal
price, which may require a determination of the entity’s
risk aversion behavior. To address this problem, this study
focuses on entity-specific trading behavior rather than the
entity’s risk aversion behavior in order to develop a more
realistic approach by avoiding an inconclusive debate over
the risk premiums and utility functions used to calculate
risk premiums. Moreover, a benefit of the proposed pricing
model is that it is independent from how researchersmeasure
temperature.

Critics may object to the move from a stochastic tem-
perature model to some form of actuarial pricing model.
There are several reasons for this move: first, this study
demonstrates that risk-neutral pricing ends up with super-
hedging; second, the discussion about risk premiums in the
literature is unclear; and, finally, the calculations of jump
processes needed approximations to obtain certain results.
These considerations led to this study’s development of a
more appropriate and practical method.

The second section of the paper provides the approx-
imated index calculation and distribution of temperature
after presenting a temperature model. Third section develops
individualized prices and discusses the trading behavior of
a hypothetical entity. The paper then presents the study’s
conclusions.

2. Model

Some basic terminology is defined in the following:

𝑇𝑖 = 𝑇max
𝑖 + 𝑇min

𝑖2 , (1)

where𝑇 is the daily average temperature, 𝑖 represents a certain
day, and 𝑇max

𝑖 and 𝑇min
𝑖 are the maximum and minimum

temperatures of the given day, respectively.
For the Heating Degree Day (HDD) temperature index

used in temperature-based derivatives, for a given day,

HDD𝑖 = max (0, Base − 𝑇𝑖) , (2)

where Base is a predetermined temperature level and 𝑇𝑖 is the
average temperature calculated as in (1) for a given day 𝑖.

Cumulative HDD (CHDD):

CHDD = 𝑁∑
𝑖=1

HDD𝑖, (3)

where HDD𝑖 is calculated as in (2) and𝑁 is the time horizon,
which is generally a month or a season.

2.1. The Temperature Model. Based on Alaton et al. [1], the
temperaturemodel is anOUprocess driven by a Levy process
that contains independent processes as Brownian motions
and two mean-reverting compound Poisson processes. The
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model is represented as follows:

𝑑𝑇𝑡 = {𝑑𝑇𝑚𝑡𝑑𝑡 + 𝑏 (𝑇𝑚𝑡 − 𝑇𝑡)} 𝑑𝑡 + 𝑑𝐿 𝑡, (4)

where𝑇𝑚𝑡 is a cyclical process of temperature and represented
in (5). Additionally, 𝑏 is the mean-reversion parameter, and
subscript 𝑡 represents time.

𝑇𝑚𝑡 = 𝐴 + 𝐵𝑡 + 𝐶 sin (𝑤𝑡 + 𝜑)
where 𝑤 = 2𝜋

365 , 𝜑 is the phase angle. (5)

The differential of the driving Levy process 𝑑𝐿 𝑡 is defined as
follows:

𝑑𝐿𝑡 = 𝜎𝑡𝑑𝑊𝑡 + 𝑑𝑌𝑡 + 𝑑𝑍𝑡. (6)

The Brownian component of 𝐿 𝑡 will be approximated
by the ARCH (1) model. To represent the different jump
structures in temperature in the form of a single jump and
a series of jumps, 𝑑𝑌𝑡 and 𝑑𝑍𝑡 are defined as fast and slow
mean-reverting OU processes driven by compound Poisson
processes with intensities of 𝜆𝑌 and 𝜆𝑍, and 𝛼 and 𝛽 being
mean-reversion parameters, respectively. Hayfavi and Talasli
[22] use a somewhat similar mean-reverting jump process
combination in their model of spot electricity prices.

𝑑𝑌𝑡 = −𝛼𝑌𝑡𝑑𝑡 + 𝑑𝑄𝑡 where 𝑄𝑡 =
𝑁𝑌𝑡∑
𝑖=1

𝑈𝑖, 𝑈𝑖 are iid random variables, 𝑈𝑖 ∼ 𝑁(𝜇𝑦, 𝛿2𝑌) ,

𝑑𝑍𝑡 = −𝛽𝑍𝑡𝑑𝑡 + 𝑑𝑅𝑡 where 𝑅𝑡 =
𝑁𝑍𝑡∑
𝑖=1

𝑉𝑖, 𝑉𝑖 are iid random variables, 𝑉𝑖 ∼ 𝑁(𝜇𝑍, 𝛿2𝑍) .
(7)

The solutions to these non-Gaussian processes are [23] the
following:

𝑌𝑡 = 𝑦0𝑒−𝛼𝑡 + ∫𝑡
0
𝑒𝛼(𝑠−𝑡)𝑑𝑄𝑠,

𝑍𝑡 = 𝑧0𝑒−𝛽𝑡 + ∫𝑡
0
𝑒𝛽(𝑠−𝑡)𝑑𝑅𝑠.

(8)

The solution to (4) is given as

𝑇𝑡 = 𝑇𝑚𝑡 + 𝑒−𝑏𝑡 (𝑇0 − 𝑇𝑚0 ) + 𝑒−𝑏𝑡 ∫𝑡
0
𝑒𝑏𝑢𝑑𝐿𝑢. (9)

To find the value of a temperature-based derivative, one
needs the distribution of the underlying temperature given in
(9). However, this does not have a closed-form solution. One
way to address this problem is to use a characteristic function
of the temperature and apply inversion techniques to find the
value of an HDD, an approximated distribution of CHDD,
and an approximated distribution for temperature itself.

2.2. Characteristic Function of Temperature. This study fol-
lows Cont and Tankov [23] to find the characteristic function
given in (9). First, using 𝐿1, the characteristic exponent of
(6) will be determined, where characteristic exponent 𝜓(𝑢)
is defined as 𝐸𝑒𝑖𝑢𝐿 = 𝑒𝜓(𝑢). The solution to 𝐿1 is

𝐿1 = ∫1
0
𝜎𝑢𝑑𝑊𝑢 + 𝑦0𝑒−𝛼

+ ∫1
0
𝑒𝛼(𝑠−1)𝑑𝑄𝑠 + 𝑧0𝑒−𝛽 + ∫1

0
𝑒𝛽(𝑠−1)𝑑𝑅𝑠.

(10)

Then, the characteristic exponents of the Levy components
will be

𝜓𝐵𝑀 (𝑢) = −12𝑢2𝐶,

where 𝐶 = 𝐸(∫1
0

√𝜎2𝑡 𝑑𝑊𝑢)
2 = ∫1

0
𝜎2𝑢𝑑𝑢

(11)

and for jump processes

𝜓𝑌 (𝑢) = 𝑖𝑢𝑦0𝑒−𝛼

+ 𝜆𝑦 ∫
1

0
{𝑒𝑖𝑢𝜇𝑦𝑒−𝛼(𝑟−1)−(1/2)𝑢2𝛿2𝑌𝑒2𝛼(𝑟−1) − 1} 𝑑𝑟. (12)

𝜓𝑍(𝑢) can bewritten similarly. It is not possible to evaluate the
integral in (12). Consequently, the following approximation
method was developed.

Let 𝐴 = 𝑖𝑢𝜇𝑦𝑒−𝛼 and 𝐵 = (1/2)𝑢2𝛿2𝑌𝑒−2𝛼. Let 𝑒𝛼𝑟 = 𝑔(𝑟).
Then, 𝜓𝑌(𝑢) = 𝑖𝑢𝑦0𝑒−𝛼 + 𝜆𝑦 ∫10 {𝑒𝐴𝑔(𝑟)−𝐵𝑔2(𝑟) − 1}𝑑𝑟.

Further, let 𝐷(𝑟) = 𝐴𝑔(𝑟) − 𝐵𝑔2(𝑟), where 𝑒𝐷(𝑟) = 1 +𝐷(𝑟) + 𝐷2(𝑟)/2! + ⋅ ⋅ ⋅ .
Then, by using linear approximation,

𝜓𝑌 (𝑢) = 𝑖𝑢𝑦0𝑒−𝛼 + 𝜆𝑦𝑖𝑢𝜇𝑦 (1 − 𝑒−𝛼
𝛼 )

− 𝜆𝑦 12𝑢2𝛿2𝑌(
1 − 𝑒−2𝛼

2𝛼 ) .
(13)
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Again, 𝜓𝑍(𝑢) can be written similarly. Finally, the charac-
teristic function of the temperature model can be written
explicitly. Referring to Cont and Tankov [23],

𝐸 {𝑒𝑖𝑢𝑇𝑡} = exp{𝑖𝑢 (𝑇𝑚𝑡 + 𝑒−𝑏𝑡 (𝑇0 − 𝑇𝑚0 ))

+ ∫𝑡
0
𝜓𝑇 (𝑢𝑒𝑏(𝑠−𝑡)) 𝑑𝑠} .

(14)

In explicit form,

𝐸 {𝑒𝑖𝑢𝑇𝑡} = 0𝑇 (𝑢) = exp[𝑖𝑢 (𝑇𝑚𝑡 + 𝑒−𝑏𝑡 (𝑇0 − 𝑇𝑚0 ))

+ 𝑖𝑢(1 − 𝑒−𝑏𝑡
𝑏 ){𝑦0𝑒−𝛼 + 𝜆𝑦𝜇𝑦 (1 − 𝑒−𝛼

𝛼 )

+ 𝑧0𝑒−𝛽 + 𝜆𝑧𝜇𝑧 (1 − 𝑒−𝛽
𝛽 )} − 1

2𝑢2 (
1 − 𝑒−2𝑏𝑡

2𝑏 )

⋅ {𝐶 + 𝜆𝑦𝛿2𝑌(1 − 𝑒−2𝛼
2𝛼 ) + 𝜆𝑧𝛿2𝑧 (1 − 𝑒−2𝛽

2𝛽 )}] .

(15)

2.3. HDD and Distribution Function. This part of the study
focuses on measuring HDDs. It is easy to apply the calcula-
tions into other types of indices. In the current case, inversion
techniques will be used to find the value of an HDD and its
distribution and hence the CHDD values.

2.3.1. Approximating Density Function of Temperature. To
find an approximating density function of temperature, inver-
sion formula will be applied to the characteristic function of
the temperature defined in (15). Before applying the inversion
formula, the following shortcuts are derived from (15). Let𝑓(𝑥) and 0(𝑧) be the density function and characteristic
function of temperature, respectively.

𝑇∗ = (𝑇𝑚𝑡 + 𝑒−𝑏𝑡 (𝑇0 − 𝑇𝑚0 )) (16)

𝑀 = (1 − 𝑒−𝑏𝑡
𝑏 ){𝑦0𝑒−𝛼 + 𝜆𝑦𝜇𝑦 (1 − 𝑒−𝛼

𝛼 ) + 𝑧0𝑒−𝛽

+ 𝜆𝑧𝜇𝑧 (1 − 𝑒−𝛽
𝛽 )}

(17)

𝑀∗ = 𝑇∗ +𝑀 (18)

𝑉 = (1 − 𝑒−2𝑏𝑡
2𝑏 ){𝐶 + 𝜆𝑦𝛿2𝑌(1 − 𝑒−2𝛼

2𝛼 )

+ 𝜆𝑧𝛿2𝑧 (1 − 𝑒−2𝛽
2𝛽 )} .

(19)

Then, by inversion formula 𝑓(𝑥) = (1/2𝜋) ∫∞
−∞

𝑒−𝑖𝑧𝑥0(𝑧)𝑑𝑧,
the result is

𝑓 (𝑥) = 1
√2𝜋𝑉𝑒−(𝑥−𝑀∗)2/2𝑉. (20)

Because weather derivatives are defined on CHDDs, their
distribution will be defined. Clearly, HDD values may show
autocorrelation. In addition, due to the nature of the pro-
posed temperature model in terms of the independence of
the included processes and motivation to keep the process
simple, the model assumes the independence of the HDDs.
With this assumption, the approximated distribution of
CHDD can be found using

CHDD ∼ 𝑁 (𝑃𝐵 − 𝑃𝑀 − 𝑃𝑇∗, 𝑃𝑉) . (21)

2.3.2. Measuring HDD. HDDs are clearly contingent claims
on how temperature deviates from a base temperature. As one
way to find the expected value of an HDD, this study will first
find its Fourier transform. Then, the inverse Fourier trans-
formwill be applied to both theHDD’s Fourier transform and
the characteristic function of temperature [24].

Let 𝑥 = 𝑇𝑡, 𝑤(𝑥) is HDD’s payoff function given in (2),
Base = 𝐵, and 𝑤(𝑧) = F[𝑤(𝑥)], 𝑧 ∈ C is its generalized
Fourier transform. Then, 𝑤(𝑧) = ∫∞

−∞
exp(𝑖𝑧𝑥)𝑤(𝑥)𝑑𝑥.

Then,

𝑤 (𝑧) = −𝑒𝑖𝑧𝐵𝑧2 , Im 𝑧 < 0. (22)

Now, the inversion will be applied to 𝑤(𝑧)0𝑇(−𝑧), where𝑤(𝑧) is defined in (22) and 0𝑇 is the characteristic function
defined in (15). Let temperature in (9) be defined in shorthand
notation as 𝑇𝑡 = 𝑇∗ + Λ 𝑡, where 𝑇∗ is defined as in (16) and
Λ 𝑡 = 𝑒−𝑏𝑡 ∫𝑡

0
𝑒𝑏𝑢𝑑𝐿𝑢.

The characteristic function of Λ 𝑡 can be obtained from
(15) and written as 0Λ(𝑢) = exp (𝑖𝑢((1 − 𝑒−𝑏𝑡)/𝑏) {𝑦0𝑒−𝛼 +
𝜆𝑦𝜇𝑦((1 − 𝑒−𝛼)/𝛼) + 𝑧0𝑒−𝛽+𝜆𝑧𝜇𝑧((1 − 𝑒−𝛽)/𝛽)}−(1/2)𝑢2((1−
𝑒−2𝑏𝑡)/2𝑏) {𝐶 + 𝜆𝑦𝛿2𝑌((1 − 𝑒−2𝛼)/2𝛼) + 𝜆𝑧𝛿2𝑧((1 − 𝑒−2𝛽)/2𝛽)}).

Then, 𝐸[HDD] = 𝐸[(1/2𝜋) ∫𝑖V+∞
𝑖V−∞ 𝑒−𝑖𝑧𝑇𝑡𝑤(𝑧)𝑑𝑧], where 𝐸

represents expectations

𝐸 [HDD] = 𝑒−𝑇∗
2𝜋 ∫

𝑅
𝑒−𝑖𝑢𝑇∗𝑤 (𝑢 − 𝑖) 0Λ (−𝑢 + 𝑖) 𝑑𝑢. (23)

However, it was not possible to evaluate this integral analyti-
cally, and thus the elliptic package of the 𝑅 statistical software
package [25] was applied to evaluate the integral numerically.
The results indicated that the integral is equal to 𝐵 −𝑀−𝑇∗;
therefore,

𝐸 [HDD] = 𝐵 −𝑀 − 𝑇∗. (24)

2.3.3. Numerical Estimates. The success of the proposed tem-
perature model and (24) were tested in terms of forecasting
Cooling Degree Day (CDD), which is another index based
on temperature, and HDD values for the 12 cities listed in
Tables 1 and 2. CDD is calculated as CDD𝑖 = max (0, 𝑇𝑖 −
Base), where Base is a predetermined temperature level and𝑇𝑖 is the average temperature calculated as in (1). Cumulative
CDD (CCDD) is calculated using ∑𝑁

𝑖=1 CDD𝑖, where CDD𝑖

is calculated as in the previous sentence and 𝑁 is the
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time horizon, which is generally a month or season. The
test assumes a base temperature of 18 degrees Celsius and
proceeds in the following manner:

Data. Temperature data is available for 12 cities covering
38 years from 1974 to 2011. The first part uses 37 years of
data to estimate the parameters. The temperature data for
2011 were used to compare with one-year-ahead predictions.
Temperature data were obtained from the National Climatic
Data Center.

Design. A simulation was designed to run in two dimensions:
the first on different cities and the second to capture changes

in the parameters through time for each city. In this respect,
the initial simulations used the last 5 years of data. They were
then continued by including one more year of data to the
existing data in each turn where HDD and CDD estimates
were calculated. A turn consisted of 10,000 simulation runs.
Then, the simulation results were comparedwith actual HDD
and CDD values. Finally, the parameters of the year that
offered the best estimates of the HDDs and CDDs were
chosen for use in the one-year-ahead predictions.

Discretization. Discretization was done using Euler approxi-
mation [26–28] as follows:

𝑇𝑡+1 = 𝑇𝑡 + 𝑇𝑚𝑡+1 − 𝑇𝑚𝑡 + 𝑏 (𝑇𝑚𝑡 − 𝑇𝑡) + 𝐻𝑡+1 + 𝑌𝑡 − 𝛼𝑌𝑡 + (𝑄𝑡+1 − 𝑄𝑡) + 𝑍𝑡 − 𝛽𝑍𝑡 + (𝑅𝑡+1 − 𝑅𝑡)
where 𝐻𝑡+1 = √𝛾0 + 𝛾1𝐻𝑡𝜖𝑡, 𝛾0 and 𝛾1 are being ARCH parameters and 𝜖𝑡 ∼ 𝑁 (0, 1) . (25)

Parameter Estimation. Parameters were estimated as defined
in [1, 27, 29].

Simulation of Jumps. Because they have a different structure,
jumps were simulated separately and the results added
to the discretized model. For this aim, the jumps were
detected by first removing the mean from the actual data
and selecting the values above two standard deviations.These
jumps were then separated into two categories: single and
multiple jumps to constitute fast and slow mean reverting
jumps, respectively. The sample means and sample standard
deviations of these two jump groups were found to simulate
jump sizes. In addition, the intensities were found by �̂� =
no. of jumps/no. of observations.The simulation consisted
of 10,000 runs, during which the jump times were first
found by using intensities.Then, for each run, random draws
were taken using means and standard deviations obtained
from data. Finally, the discretized jumps were added to the
discretized jump model.

After these phases, one-year-ahead predictions were con-
ducted along with three other models: the Campbell and
Diebold [4] model (Campbell Model), the Benth and Šaltytė-
Benth [2] model (Benth Model), and the Historical Burn
Analysis (HBA) model that calculates historical averages. In
addition, HDD predictions were calculated based on (24).
This yielded the results in Tables 1 and 2. In the Appendix, the
parameter estimates for HDD and CDD values are presented,
in Tables 3 and 4, respectively, including the time period used
to obtain these parameters. In addition, statistical test values
of these parameters are shown in Tables 5 and 6.

2.3.4. Analysis of Numerical Estimates. The best estimates
of HDDs and CDDs were obtained for different periods as
shown in the Appendix. This is mainly a characteristic of
the temperature since it changes in its long-term behavior.
However, this may not be a good way to use all existing
data for a city. Instead, every location must be scanned
and evaluated for different time periods to obtain the best

prediction results. In addition, the current model is equally
successful in HDD and CDD predictions.

Having a good estimate of HDD and CDD values does
not necessarily correspond to the best fit of the model to
temperature data. This may be because including the jumps
may result in a better estimation of index values while
deteriorating the fit of the model to the data.

The current model demonstrates its capacity related
to the changing conditions of the temperature data. For
example, in Chicago, both jump types were statistically
significant and the model predicted HDDs accurately. On
the other hand, Tokyo did not have any jumps during
entire period, and the current model was still able to make
accurate predictions for HDDs. Interestingly, the Historical
Burn Analysis containing long-term HDD and CDD aver-
ages provided successful predictions. These results suggest
that temperatures do not change significantly for certain
locations.

As expected, the approximated HDD calculations
obtained from (24) were less accurate than the simulations.
Nevertheless, the predictions based on the equation were
still successful. The estimated HDDs of Los Angeles and
Washington were better than any other model. Finally,
while this study conducted comparisons for only 12 stations,
there are 125,000 weather stations worldwide. It is therefore
impossible to say that one model is superior to the others,
though the current model and (24) were successful in certain
locations and periods, which merits evaluation.

3. Pricing

This section addresses temperature risk and its differences
from classical asset risks before providing a fair price for
a temperature-based derivative written of HDD with real
probabilities. Next, this section shows that the price of the
derivative will be super-hedging when using risk-neutral
probabilities. Finally, a personal price will be developed based
on personal temperature risk.
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Table 5: 𝑃 values of parameters for HDD calculations.

City A B C Phase Gamma_0 Gamma_1 Fast_Mean Slow_Mean
Ankara 0 0 0 0 NS 0.00263 0.1609 0
Beijing 0 0 0 0 NS 0.0082 0.3174 0.02142
Cairo 0 0 0 0 NS NS 0.0879 0
Chicago 0 NS 0 0 0 0 0 0
Dallas 0 0 0 0 NS 0 0 0
Istanbul 0 0 0 0 NS NS 0.1021 0
Los Angeles 0 0 0 0 NS NS 0.07382 0
New York 0 <0.001 0 0 NS <0.001 0.2038 0
Paris 0 0 0 0 NS <0.01 0.8557 0.01075
Sydney 0 0 0 0 NS <0.05 0 0
Tokyo 0 0 0 0 NS NS NA NA
Washington 0 <0.05 0 0 NS 0 0 0
NS: not statistically significant.
NA: not available.

Table 6: 𝑃 values of parameters for CDD calculations.

City A B C Phase Gamma_0 Gamma_1 Fast_Mean Slow_Mean
Ankara 0 0 0 0 NS 0.00263 0.1609 0
Antalya 0 0 0 0 NS NS 0.3143 0.7321
Beijing 0 NS 0 0 NS 0 0.096 0
Bursa 0 0 0 0 NS NS 0.3216 0
Cairo 0 0 0 0 NS NS 0.6717 0.001395
Chicago 0 NS 0 0 <0.01 0 0.03218 0
Dallas 0 0 0 0 NS NS 0.01897 0
Istanbul 0 0 0 0 NS NS 0.7978 0
Los Angeles 0 0 0 0 NS NS 0.02789 0
New York 0 <0.001 0 0 NS <0.001 0.2038 0
Paris 0 0 0 0 NS <0.01 0.3038 0.8347
Sydney 0 <0.01 0 0 NS NS 0 0.0056
Tokyo 0 <0.01 0 0 NS <0.01 NA NA
Washington 0 0 0 0 NS <0.001 0.009 0
NS: not statistically significant.
NA: not available.

3.1. Temperature Risk. In simple terms, temperature risk is
volume risk that affects sales [13]. This study will first focus
on a single companywith an obvious exposure to temperature
to reveal the relationship between temperature index and the
company’s sales. To maintain the focus on the relationship
between sales and temperature, a very simple linear model
that omits other possible factors that may affect sales will
be introduced. As a candidate company, consider a retail
gas seller concerned about sales and profit in the following
January. The company’s risk will be measured through the
effect of sales on profits. Consider the following:

ES = 𝑎 + 𝑏CHDD where ES is expected sales. (26)

A positive value for 𝑎 in (26) indicates that the company
can sell a certain amount of its products, even in the case
of zero CHDD. Similarly, a positive value for 𝑏 in the same
equation represents a positive relationship between sales and
CHDDs.

The relationship between CHDDs and profit can be
established using cost and revenues.

Expected Cost = 𝐶 = 𝜃 + Expected Sales

where 𝜃 is a constant
(27)

Expected Revenue = 𝑅 = Price ∗ Expected Sales

where Price represents the price of the product sold
(28)

Expected Profit = 𝑃 = 𝑅 − 𝐶 = Price ∗ ES − 𝜃 − ES

= ES (Price − 1) − 𝜃. (29)

To guarantee a positive profit after a certain amount of
CHDDs is realized, assume that Price > 1 and constant.

The aim is to construct a relationship between CHDD
and profit functions to ascertain the magnitude of the effect
of temperature on the company. Figure 1 illustrates this
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Figure 1: Relationship between expected profit and CHDD.

relationship, with the assumption that 𝜃 > 𝑎 ∗ Price initially
provides negative profits.

Figure 1 constructs a relationship between CHDD and
profit such that every CHDD value now represents a mon-
etary value in terms of positive and negative profits. Figure 1
shows a deterministic relationship between CHDD level and
profit.TheCHDD value for the proposed period is unknown.

Now, the company’s risk can be defined as having a low
value of CHDD for a certain period that leads to a loss.
In other words, the company’s risk will fall left of CHDD1

and will be covered by the 𝑃 Line. This possible loss will
be referred to as temperature risk (TR) and is equal to the
area covered by 0 CHDD1𝑎(Price − 1) − 𝜃 in Figure 1. This
is actually the total TR (TTR) and can be realized if CHDD
for the next January becomes zero. In reality, the CHDD for
the next January is not known because it is a stochastic value.
Therefore, TR can be written as

TR = TTR − ∫chdd

0
𝑃𝑑CHDD = ∫CHDD1

chdd
𝑃𝑑CHDD,

where chdd is unknown value of CHDD for a certain period.
(30)

It is clear that the magnitude of TR will depend on
business type and size. For example, for a gas company, a
decrease in the index value means a lower value in sales.
However, at the same time, this decrease may result in an
increase in the sales of a beverage company. The magnitude
of the decrease or the increase in profits, on the other hand,
will be directly related to the size of the business.

3.2. An Approximated Fair Price of a Temperature Based Put
Option. Under linear approximation, the temperature has
a normal distribution with mean 𝑀∗ and variance 𝑉, as
defined in (18) and (19), respectively. Consider the following:

CHDD = HDD of Day 1 +HDD of Day 2 + ⋅ ⋅ ⋅
+HDD of Day 𝑃. (31)

The distribution function is given in (21). Let 𝐾 be the
strike value, 𝑥 = CHDD, let 𝑓(𝑥) be the probability density
function of CHDD, and tick the monetary value for each

Level 4
Level 3
Level 2

0 0 0 0 Level 1
Day 0 Day 1 Day 2

PU Level P
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· · ·

· · ·

· · ·
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Day P

...

Figure 2: Construction of a CHDD tree using a binomial model.

CHDD. Then, the value of a put option on CHDD will be
equal to

𝐸 [max (𝐾 − 𝑥, 0)] = ∫𝐾
−∞

(𝐾 − 𝑥) 𝑓 (𝑥) 𝑑𝑥
𝐸 [max (𝐾 − 𝑥, 0)]

= 𝑒−𝑟(𝑇−𝑡) [(𝐾 − 𝑃𝐵 + 𝑃𝑀∗)𝑁 (𝐾 − 𝑃𝐵 + 𝑃𝑀∗)

+ √𝑃𝑉
√2𝜋 𝑒−𝐴2/2𝑃𝑉] ∗ tick.

(32)

Equation (32) provides an actuarial price since it is based
on expected values. Derivative pricing using real probabilities
may require an evaluation of risk premiums. The literature
offers only inconclusive discussions. For example, Hull [19]
states that it is possible to calculate the payoffs of weather
derivatives with real probabilities because these derivatives
have no systemic risk. Turvey [30] supports this idea. On
the other hand, Chincarini [31] examines the efficiency of
weather futures in CME in HDD and CDD futures assuming
an efficient market and risk premiums varying from negative
to positive values across cities. In addition, Cao and Wei [13]
highlighted the importance of the market price of risk for
weather derivatives. This study will follow a different path
by evaluating the trading behavior of a candidate company
instead of the company’s risk behavior. The next section will
show the outcome of using risk-neutral probabilities in (32).

3.3. Risk-Neutral Pricing. In this part, the put option of the
previous section will be priced using risk-neutral probabil-
ities in a binomial model. CHDD is clearly composed of
HDDs. A closer look at HDDs reveals that realizations of
HDDs can be represented by a binomial model such that
if HDD is realized, there will be an upward movement as
in the binomial model; otherwise, in case of a downward
movement, there will be 0. The calculations were done
according to Björk [32]. For the up movement, the best
candidate for HDD will be the mean value of an HDD
calculated using (24). Let 𝑈 = (24). Figure 2 represents the
binomial model.

The probability of an upward movement, 𝑝𝑢, is found by
∫𝐵
−∞

𝑓(𝑥)𝑑𝑥, while the probability of downwardmovement is
equal to 𝑝𝑑 = 1 − 𝑝𝑢. Let risk-free rate 𝑅 = 0. The model
satisfies the condition of being arbitrage-free in the form of𝑑 ≤ 1 + 𝑅 ≤ 𝑢 by definition. The martingale measure for the



12 Advances in Meteorology

0

CHDD

2

a (Price − 1) − 

P

P2U

PU

U

CHDD1

P Line

·

Figure 3: Evolution of TR.

current model is CHDD𝑡 = 𝐸𝑄[CHDD𝑡+1]. As in Björk [32],
if it is set 𝐾 = 𝑃𝑈, the value of the option will be equal to 𝐾
itself.

The above results from the fact that CHDD is a summa-
tion process and certainly a submartingale compared to the
underlying asset of an ordinary option. The only possibility
to obtain amartingale form of the underlying process CHDD
is then to consider the whole summation process and reflect
it as a constant. Reexamining Figure 1 reveals one interesting
implication of this result. Figure 3 is a combination of Figures
1 and 2.

In Figure 3, each level of TR is connected to upward
movements created by HDDs. This time, TR becomes a
super-martingale; when TR is converted into a martingale,
it will be equal to TTR, a situation known as super-hedging.
Put simply, it means hedging the total risk. In pricing, the
price of the hedge will be equal to total risk. Using the
total risk instead of actual risk will definitely prevent any
form of transaction, for both hedge suppliers and demanders.
Therefore, using risk-neutral probabilities is not ideal for
pricing a temperature-based derivative. With these unclear
results from the risk premiums and the inappropriateness of
using risk-neutral probabilities, the current study offers the
following for pricing temperature-based derivatives.

3.4. A New Setup for Pricing. In this setup, any economic
entity, an individual or a company, will try to achieve an
objective. In this case, the natural objective for the hypothet-
ical company is to maximize its expected profit given in (29).
Then, the issue is determining the conditions under which
this company will maximize its profits.The answer will reveal
the company’s trading behavior. Consider Proposition 1.

Proposition 1. The company will buy a put option if the
following condition is satisfied:

𝐸 [max (𝐾 − 𝐶𝐻𝐷𝐷, 0)]𝑁 (𝐾 − 𝑃𝐵 + 𝑃𝑀∗) ≥ 𝐶. (33)

𝐸[max(𝐾 − 𝐶𝐻𝐷𝐷, 0)] is given in (32). 𝑁(𝐾 − 𝑃𝐵 + 𝑃𝑀∗),
which is the probability of being in the money, is also obtained
from (32). 𝐶 is the cost of the put option.The tick value is equal
to $1.

Proof. Equation (29) is the expected profit when there is no
trade for options. If there is a chance to trade an option, the
company will prefer a put option with a strike value equal to
CHDD1 from Figure 1. Assume that the company buys a put
option equal to 𝜖 with a cost of 𝐶. There will be two states at
the end of the determined period depending on the payout of
the option. The setup is given in the following.

Let 𝑥 represent CHDD.Then, one has the following.

State 1

((𝑎 + 𝑏𝐸 [𝑥]) (Price − 1) − 𝜃 − 𝜖𝐶
+ 𝜖𝐸 [max (𝐾 − 𝑥, 0)])

where 𝐸 represents expectation.
(34)

State 2

((𝑎 + 𝑏𝐸 [𝑥]) (Price − 1) − 𝜃 − 𝜖𝐶)
where 𝐸 represents expectation. (35)

The probability𝑁(𝐾−𝑃𝐵+𝑃𝑀∗) also defines the probability
of State 1. Then, the probability of State 2 will be 1 − 𝑁(𝐾 −𝑃𝐵 + 𝑃𝑀∗). Under these probabilities, the expected value of
the two states will be

((𝑎 + 𝑏𝐸 [𝑥]) (Price − 1) − 𝜃 − 𝜖𝐶
+ 𝜖𝐸 [max (𝐾 − 𝑥, 0)])𝑁 (𝐾 − 𝑃𝐵 + 𝑃𝑀∗)
+ ((𝑎 + 𝑏𝐸 [𝑥]) (Price − 1) − 𝜃 − 𝜖𝐶) (1
− 𝑁 (𝐾 − 𝑃𝐵 + 𝑃𝑀∗)) .

(36)

The company will enter a trade for a put option if (36) is
greater than or equal to the no trade case such that

((𝑎 + 𝑏𝐸 [𝑥]) (Price − 1) − 𝜃 − 𝜖𝐶
+ 𝜖𝐸 [max (𝐾 − 𝑥, 0)])𝑁 (𝐾 − 𝑃𝐵 + 𝑃𝑀∗)
+ ((𝑎 + 𝑏𝐸 [𝑥]) (Price − 1) − 𝜃 − 𝜖𝐶) (1
− 𝑁 (𝐾 − 𝑃𝐵 + 𝑃𝑀∗)) ≥ (𝑎 + 𝑏𝐸 [𝑥]) (Price − 1)
− 𝜃.

(37)

Additionally, the profit function in the no trade case is
also reflected in the left hand side of the equation with a
probability of 1. Consequently, subtracting the right hand side
from the left hand side will result in

−𝜖𝐶 + 𝜖𝐸 [max (𝐾 − 𝑥, 0)]𝑁 (𝐾 − 𝑃𝐵 + 𝑃𝑀∗) ≥ 0. (38)

Although the above calculations are given for a candidate
company, since profit function dropped out and the tick
value is equal to $1, (33) defines a general case valid for any
company dealing with a put option with 𝐾 = CHDD1. Thus,
the following definition is given for the case 𝐸[max(𝐾 −𝑥, 0)]𝑁(𝐾 − 𝑃𝐵 + 𝑃𝑀∗) = 𝐶.
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Definition 2. When 𝐸[max(𝐾−𝑥, 0)]𝑁(𝐾−𝑃𝐵+𝑃𝑀∗) = 𝐶,𝐶 is the general price, which is valid for any economic entity.

The above setup can be extended by the concept of a
shadow price, which describes the effects of the resources in
a production process on profit. In the current case, the profit
function is a deterministic function that is a payoff function of
the index value CHDD.Therefore, CHDD can be seen as the
resource that produces the profit. It is possible to measure the
effect of one unit of change in CHDD on profit and use it as
the price of one unit of CHDD. Again, assuming CHDD = 𝑥,
consider the following:

𝑑Profit (𝑥)
𝑑𝑥 = 𝑏 (Price − 1) . (39)

The value given in (39) is a good candidate for the tick value
mentioned in (32). Now, using (32) and (39), a new definition
can be given.

Definition 3. The personalized price for the put option𝐸[max(𝐾 − 𝑥, 0)] is given by

𝐸 [max (𝐾 − 𝑥, 0)]𝑁 (𝐾 − 𝑃𝐵 + 𝑃𝑀∗) (𝑏 (Price − 1))
= 𝐶. (40)

3.5. Discussion of the New Pricing Setup. Equation (33)
defines the profitable conditions for the company, of which
there are three.When𝐸[max(𝐾−𝑥, 0)]𝑁(𝐾−𝑃𝐵+𝑃𝑀∗) ≥ 𝐶,
the company will buy the option. If 𝐸[max(𝐾 − 𝑥, 0)]𝑁(𝐾 −𝑃𝐵 + 𝑃𝑀∗) = 𝐶, the company will be indifferent between
buying the option or doing nothing. Finally, when𝐸[max(𝐾−𝑥, 0)]𝑁(𝐾 − 𝑃𝐵 + 𝑃𝑀∗) ≤ 𝐶, it is the best interest of the
company to sell the option because it maximizes profit. The
value of 𝐶when 𝐸[max(𝐾−𝑥, 0)]𝑁(𝐾−𝑃𝐵+𝑃𝑀∗) = 𝐶 can
be defined as the fair price since it does not result in a positive
profit.

From here, a connection between the current approach
and the utility approach can be established. Since the current
setup is based on profit maximization, it coincides with the
utility approach based on wealth maximization. The gain is
that this statement is true for any utility function choices.

A numerical one-day-ahead estimate of temperature for
the price of anHDD for Ankara was developed using (33) and
(32). The mean and standard deviation of the approximated
distribution were calculated according to (18) and (19). The
value of 𝐶 in (19) was approximated by conditional variance
of the ARCH model. The tick value was taken as $1, and the
strike value 𝐾 was taken as an interval from 65 to 100. The
estimated values are shown in Figure 4.

As mentioned earlier, (33) defines a general price and
trading behaviors for any company since the equation does
not include the profit function. This generality does not give
much insight into what a put option with a strike value of𝐾 actually means for a specific company. This deficiency
was corrected by replacing the tick value with (40) because,
unlike ordinary assets, temperature affects economic entities
on different scales. Thus, a personalized price must apply
for each economic entity. Moreover, (40) and Definition 3
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Figure 4: Estimated value of an HDD for Ankara.

state that the hypothetical company will enter a trade for the
option if there is a possibility for arbitrage. If the fair price
is available, the company will be indifferent to entering a
trade or doing nothing. In the new pricing setup, the expected
profit will always be the maximum, as will be the company’s
utility. Risk aversionwill negatively affect themaximumprofit
and utility. Therefore, having a maximum profit and the
resulting maximum utility will direct the company to follow
the presented approach rather than the one of suboptimal risk
aversion.

4. Conclusions

Derivatives written on temperature are based on index values
obtained from temperature data, which are essentially mea-
sured as deviations of temperature from a threshold value.
This makes measuring deviations from a base temperature
in the form of jumps important for any temperature model
for some locations. This study proposed and demonstrated
a temperature model that included different kinds of jumps
that was then handled using different techniques. In addition,
unlike existing models that consider temperature risk as the
result of the temperature itself, like in stocks, the proposed
model shows that financial risk caused by temperature differs
from classical asset risk, though this risk depends on the type
of business. This study demonstrated a method to measure
this temperature risk. Moreover, almost all of the existing
pricing methods are based on risk-neutral valuations. The
results from this study showed that risk-neutral valuation
in temperature-based derivatives ends with super-hedging.
Finally, the current study offers a pricing scheme that dif-
fers from classical pricing approaches that are based on
risk-neutrality or risk-aversion concepts. Instead of utility
functions, this study employs a more realistic and practical
approach in terms of objective functions set by the firm itself.
In return, the model provides a personalized price based on
company-specific temperature risk to realize an objective in
terms of profit.
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Appendix

See Tables 3, 4, 5, and 6.
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