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Abstract

Metabolic networks are defined as the collection of biochemical reactions within a
cell that define the functions of that cell. Due to the growing need to understand the
functions of biological organisms for industrial and medical purposes, modeling and
simulation of metabolic networks has attracted a lot of attention recently. Tradition-
ally, metabolic networks are modeled such as flux-balance analysis that considers
steady-state nature of the cell. But it is important to consider the dynamic behavior
of a cell since the environmental conditions continuously change. Sometimes due to
the critical changes in the environment some of the reactions exhibit completely
different behavior leading to discrete changes in the metabolic network. Therefore,
a cell exhibits discrete-continuous behavior in continuous time. Since hybrid sys-
tems exhibit the same characteristics, modeling a cell as a hybrid system gives an
accurate representation. The aim of this paper is to develop a simulation framework
to model the evolving structure of the cell metabolism under changes in the envi-
ronment. The metabolic responses that cell gives, against multiple changes in the
environment are not fully understood. Therefore, in this study, a cell is modeled as
a hybrid system that is composed of a system of differential and algebraic equations.
The changes in the concentration of metabolites in the environment are represented
by Ordinary Differential Equations and intracellular cell metabolism is represented
by a set of algebraic equations. To understand the feedback relationship between
intracellular and extracellular changes, the system is solved considering the effects
of extra cellular stresses on the metabolic responses.
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1 Introduction

Recent years have witnessed dramatic changes in the cellular biology. One of
the main problems in the cell biology was the lack of enough dependable in-
formation. However, the sequencing of the first bacterial genome changed the
biology from a data-poor science to a data-rich science [1,12]. In this data-rich
environment, an entire metabolic map representing all metabolic reactions
that take place in the cell are determined [11]. The cellular organisms can
be modeled using this information to understand its behavior in certain envi-
ronmental conditions. The prediction of the behavior of the cellular organism
gives valuable opportunities for using these organisms for industrial and med-
ical purposes. In this work, we use the fermentation of wine as a case study.
Because of highly variable environmental conditions during fermentation, de-
termination of behavior of yeast and content of wine during fermentation is a
very challenging task. Due to that unpredictability, many fermentations can
be problematic. In some cases, the fermentation process takes too long and
in some cases the process finishes very quickly without consuming all of the
sugar. In these cases, the main problem is the inhibition of the some pathways
in the metabolism of the yeast rather than cell death [5]. The main reason for
the inhibition of certain pathways is the changing environmental conditions
such as excessive temperature or lack of nitrogen. Therefore, if the behavior
of the cell is known under different environmental conditions, the problems
during fermentation process can be handled and huge economic loss can be
prevented in wine making industry.

There are a number of approaches to model metabolic networks. One of the
most used modeling techniques is the Flux Balance Analysis (FBA) [17,18].
In FBA, models are built with respect to stoichiometry of the reactions that
take place in the cellular organism and predictions are made using linear pro-
gramming (LP) whose objective is the maximization of certain products or the
minimization of consumption of certain metabolites. Burgard and Maranas [3]
proposed a bi-level optimization model to determine the objective function in
FBA. Sainz et al. [14] proposed a two stage model to simulate yeast metabolism
and its interaction with the environment. The internal metabolism of the yeast
is modeled as a linear programming problem and variations in the environment
are modeled with a set of Ordinary Differential Equations (ODE). In the LP
part, the biomass is maximized with respect to flow bounds that depend on
the environmental conditions. Raghunathan et al. [10] describe dynamics of
fermentation process using Differential Variational Inequalities (DVIs). The
solution of the problem is accomplished by discretization of the differential
equations.
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In this paper, the internal metabolism of yeast is modeled as a LP problem
and variations in environmental metabolic concentration are modeled by a set
of Ordinary Differential Equations (ODE). In the LP part, the biomass accu-
mulation is maximized with respect to flow bounds that depends on the envi-
ronmental conditions. The relationship between environmental conditions and
flow constraints are obtained based on experimental data that are represented
with piecewise smooth functions of environmental metabolite concentrations.
Instead of using two separate models, an LP that represents intracellular activ-
ities and a set of ODEs that represents extracellular metabolite concentration;
we apply an integrated approach. This model leads to a Differential Algebraic
Equation (DAE) system to predict the important parameters in the fermen-
tation process. The rest of the paper is organized as follows. We describe the
theoretical background in section 2. Section 3 is devoted to explanation of
the model. In section 4, a solution procedure and result of the model will be
discussed. Conclusions are presented in section 5.

2 Theoretical Background

The complete genomes of cellular organisms can be sequenced in a short time
with currently available experimental methods [4]. However, the real challenge
begins after sequencing. Because abundance of biological data requires a new
and revolutionary understanding of biology focusing on how chemical and
biological functions of organism are realized, a new and interdisciplinary field
appeared: systems biology [11],[13]. In systems biology, the main concern is
the determination of emergent properties of interconnected nodes of the data
rather than determination of properties of a single object or node of data. In
this paper, the emergent property that we are looking for is the fermentation
dynamics of the yeast during wine formation [16].

Intracellular Representation: With today’s technology the metabolic net-
work and the set of reactions that take place in the cell can be determined
easily [11]. We can acquire knowledge of components that comprise cells and
how they interact using metabolic networks. A sample metabolic network is
illustrated in Fig. 1. In Fig. 1 only the reactants and products of each reaction
are shown without explicitly showing the stoichiometry of network.

In this simple metabolic network, there are 5 reactions (v1 to v5) and 4 metabo-
lites (A, B, C, D). In the reaction set, the network converts 2 moles of A to
1 mole of B and the remaining reactions makes similar effect in the network.
The stoichiometry of the network in Fig. 1 is represented in Table 1. In this
representation each row corresponds to a metabolite and columns correspond
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Fig. 1. Sample Metabolic Network

to reactions that the metabolites participate. If the matrix element for a par-
ticular reaction and metabolite is positive, then the metabolite is consumed
by the reaction. When the matrix element is zero, then the metabolite is not
involved in the reaction.

Table 1
Stoichiometric Matrix representation of Metabolic Network in Fig. 1

Sij v1 v2 v3 v4 v5

A -2 -2 0 0 0

B 1 0 -1 -1 0

C 0 1 0 1 -1

D 0 0 2 0 2

The matrix in the Table 1 is called a stoichiometric matrix. According to the
matrix in Table 1, for instance, reaction 3 takes 1 unit of metabolite B and
produces 2 units of metabolite D. We can model internal flux of a cell. If we
represent the rate of change of concentration metabolites with the differential
equations, the corresponding set of reactions for the network in the example
will be as follows:

dxA

dt
=−2ν1 − 2ν2

dxB

dt
= ν1 − ν3 − ν4 (1)

dxC

dt
= ν2 + ν4 − ν5

dxD

dt
= 2ν3 + 2ν5

Comparing the stoichiometric matrix in Table 1 and the set of ODE in Eq.
(1), the ODEs can be written as:

dx

dt
= Sν (2)

4



A
 D


C


B
v
1
 v
3


v
2
 v
5



v

4



v
1
 v
3


bio


Fig. 2. Sample Metabolic Network with Biomass

where S is the stoichiometric matrix, ν = (ν1, ν2, ν3, ν4, ν5)
T is the flux vector,

and x = (xA, xB, xC , xD)T is the concentration of metabolites. Within the cell
at steady state Eq. (2) can be converted to set of homogenous linear equations:

0 = Sν (3)

To determine the dynamic behavior in an organism, Eq. (3) does not give
enough information. From Eq. (3) we can only model the flux cone that in-
cludes all possible fluxes of a cell. However, the main problem here is which
flux set will be carried out by the cellular organism under different conditions.
One of the main tools to answer to this question is the constraint based ap-
proach [9]. In this approach an LP is solved to predict the future behavior
of organisms. First, the constraints based on stoichiometry and thermody-
namics’ of system are determined and an objective function is included in
the system to find the most promising flux distribution. Different objective
functions are then applied to mimic the behavior of the organisms; these in-
clude maximization of biomass or ATP production. The suitability of these
objectives are tested with experiments. However, despite existence of many
objective functions, the most promising one with respect to the experimental
results is the maximization of the biomass. Also it was determined that with
the objective of optimal biomass formation the prediction of internal flux dis-
tributions matches the experimental results better than any other objective
[9]. Nevertheless it should be noted that in the cellular organism, there is no
metabolite called biomass. To add it to our metabolic network, we have to
add an artificial reaction that takes some of the existing metabolites from
the system and produce biomass as illustrated in Fig. 2. For the wine fer-
mentation process, the biomass for yeast includes Carbohydrate, DNA, RNA,
Lipids, and Protein. The compositional coefficient of these metabolites in the
artificial biomass metabolites is determined by solving a parameter estimation
problem that minimizes the difference between the experimental results and
the model predictions.

The LP model developed to predict the internal dynamics of the system is the
following:
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Fig. 3. Sample Metabolic Network with Biomass and Cell Exterior

max biomass

st Sν = 0 (4)

ν ≥ 0

In the LP problem (Eq. (4)) all fluxes are greater than or equal zero. The main
reason for this is the irreversibility of all reactions. If a reversible reaction exists
in the system, we can still put the non-negativity constraint for each flux by
decomposing it into two irreversible reactions.

Extracellular Representation: In the LP represented in Eq. (4), the main
assumption is the steady-state of the system. At steady state, the concentra-
tion of metabolites remains constant. However, here constant concentrations
do not imply that all reactions stop. Instead, all reactions continue to be active,
but there exists a balance between each reaction. Therefore, consumption and
production of each metabolite are equal to each other, and that is the main
reason for the steady state. Moreover, these concentrations do not stay con-
stant, because of the environmental stress changes. Although in Figures 1 and
2 the reactions are represented independent from cell exterior, there is a close
relationship between cell interior and exterior. A more complete representation
of the cell can be seen in Fig. 3.

As seen in the Fig. 3 , the metabolite A cannot be produced in the cell, there-
fore it should be supplied by the environment. In the case that A does not
exist, most probably all of the metabolic reactions will stop. The metabo-
lite B can be both taken from and emitted to the environment. Therefore
non-existence of B will not terminate the system, but may decrease the per-
formance of the system. If the system has to produce more B, then this may
affect performance of ν3 and ν4 which effects biomass creation. In this study,
metabolite accumulation in the extracellular medium is modeled with ODEs.
For the network in Fig. 3, the ODE system is the following:
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dA

dt
= b1Cbio

dB

dt
= (b3 − b2)Cbio (5)

dC

dt
=−b4Cbio

dD

dt
=−b5Cbio

where, bi is external flux value of the corresponding reaction, and Cbio is the
biomass concentration. Another important point is, as the reactions in the
cell continue, certain metabolite concentrations in the environment can be de-
pleted. For instance, after a while the concentration of the metabolite A may
drop to zero if it is not supplied to the cell. For the case of wine fermentation,
the glucose level will drop to zero, as fermentation continues. Therefore, extra-
cellular concentration changes and stresses occur due to these changes. This
behavior of the organism is a response of the cell to the environmental stresses.
This response is mainly given by changing the flux values of some reactions
that take place in the organism. In the model, this behavior is represented by
making changes in the upper and lower bounds of fluxes. Therefore, for differ-
ent environmental conditions different flux cones are formed for the reactions
that take place inside a cell. For instance, in Fig. 3, increase of metabolite C
may affect the upper bounds of ν2 and ν4.

3 Model

The yeast metabolism that we model includes 42 metabolites and 48 reac-
tions (see Appendix). In the model, there are 6 external metabolites, (glucose,
fructose, glycerol, ethanol, biomass, and ammonium). The LP model for in-
tracellular fluxes is the following:

max biomass

st Sν = 0 (6)

ν l ≤ ν ≤ νr

ν ≥ 0

where

θPro[Protein]+θcarb[carbonhydrate]+θDNA[DNA]+θlipids[lipids]+θRNA[RNA] → 1g.biomass

where θ values are the parameters that should be estimated in the biomass
composition.
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Fig. 4. Feedback relation between interior and exterior

From the result of the LP problem in Eq. 6, the optimal flux values that
maximize the biomass are obtained under the assumption of steady-state.
However, this steady-state characteristic of the system is not constant. In
other words, as the concentration of extracellular medium changes, a new
steady-state is formed. The concentration changes of the external metabolites
are represented by system of ODEs:

dCi

dt
= νiCbio (7)

where i ∈ EXMET (glucose, fructose, glycerol, biomass, ammonium) and Ci

is the concentration of the corresponding metabolite.

The reaction sets Eq. (6) and (7) affect each other as the fermentation process
continues. In the yeast cell, as a steady-state condition is formed, a new flux of
intracellular reactions changes the concentration level of the environment. The
environmental changes create a stress on the cellular organism, to change its
previous steady-state. As the previous steady-state of cell changes, a new flux
distribution appears which changes the environment. This feedback relation
continues until cell death or inhibitation of metabolism is reached (Fig. 4).

The missing piece in Fig. 4 is the lack of connection between exterior and
interior of the cell. Specifically, to determine the new flux cone of the metabolic
network, we have to know the kinetic relationship between cell exterior and
interior. This can be done by finding kinetic parameters that determines the
flow bounds in certain environmental conditions. This information is given by
look-up tables [5,6], (Chapter Heat Stress Response, [8]) that specify bounds on
reaction rates for given extracellular metabolite concentrations. The bounded
reactions by these parameters are the following:

• Bounding the ammonium (NH4) uptake rate: The upper bound of the am-
monium uptake rate depends on the ammonium concentration in the extra-
cellular medium. The corresponding value can be seen in the Figure 5-a.

• Glucose uptake rate: The uptake rate of the glucose is determined experi-
mentally by the following equality:
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νglu = Kglu,1(Cammon)Kglu,2(Cammon)νglu,3(Cglu, Ceth) (8)

where Cglu and Ceth are the concentrations of glucose and ethanol, respectively,
in g/l. As seen from Fig. 5, Kglu,1 and Kglu,2 depends on the ammonium con-
centration and νglu,3 depends on the Cglu and Ceth values. The value of Kglu,2

can be determined from Figure 5-b. The remaining coefficients are determined
from the following equalities:

Kglu,1(Cammon) =





Khi
glu,1, Cammon > ε

K lo
glu,1, Cammon < ε

(9)

νglu,3(Cglu, Ceth) =





ν1
glu,3(Cglu, Ceth), 0 < Cglu ≤ 5

ν2
glu,3(Cglu, Ceth), 5 < Cglu ≤ 20

ν3
glu,3(Cglu, Ceth), 20 < Cglu

(10)

The calculation of νglu,3 is done using the following:

ν1
glu,3(Cglu, Ceth) =

∑

j={3,4,7,8}

νmax,j
glu,3 Cglu

kj
glu + Cglu

(
1 + Ceth

k1
eth

)

ν2
glu,3(Cglu, Ceth) =

∑

j={2,5,6}

νmax,j
glu,3 Cglu

kj
glu + Cglu

(
1 + Ceth

k2
eth

) (11)

ν3
glu,3(Cglu, Ceth) =

∑

j={1,5}

νmax,j
glu,3 Cglu

kj
glu + Cglu

(
1 + Ceth

k3
eth

)

where the values of the parameters in these equations can be found in Table
2.

Table 2
Values of Glucose update constants

i vmax,i
glu,3

ki
glu ki

eth i vmax,i
glu,3

ki
glu ki

eth

1 7.45 18 17.24 5 2.7 10.8 17.24

2 1.9 1.8 46.03 6 1.08 1.67 17.24

3 1.05 0.27 46.03 7 1.31 0.18 17.24

4 4.86 10.8 46.03 8 1.31 0.36 17.24

• Bounding ATP consumption: The minimal ATP update rate is determined
by the following equation:
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Fig. 5. Glucose update rates.

ν
L
AT P (Cammon, Ceth, Cglu) ≤ νAT P

(12)

ν
L
AT P (Cammon, Ceth, Cglu) = KAT P (Ceth)Kglu,1KAT P (Cammon)Kglu,2Kammon(Ceth)Kglu,3(Cglu, Ceth)

where the dependence between KATP and ethanol concentration in the medium
found in the Fig. 5

As indicated before, the corresponding flux bounds of the internal reactions
are determined with respect to external metabolite concentrations, in Eq.
(8)-(12). After a while these reactions and the resultant concentrations reach
steady-state. As this new steady-state is formed, the external metabolite con-
centration is updated. To mimic this behavior, Eqs. (6) and (7) are solved
iteratively as shown in the Fig. 4, and the connections between these two
equations are formed by using the look-up tables and Eq. (8-12).

Formulation integrating intra and extra-cellular reactions: In this pa-
per, instead of decomposing the intra and extra-cellular reactions, an inte-
grated approach is used to simulate the fermentation process. To carry this
out, we write the Karush-Kuhn-Tucker (KKT) conditions for Eq. (6) in Eq.
(13).

d + ST λ + µu − µl = 0

Sν = 0

(µu)T (νu − ν) = 0 (13)

(µl)T (ν − ν l) = 0

µu, µl, νu − ν, ν − νl ≥ 0

where µu, µl, λ are the Lagrange multipliers. The two equalities correspond to
complementarity conditions in Eq. (13) include non-linearities and the follow-
ing changes in these constraints are made for simplification:
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(µu)T (νu − ν) = 0, µu, (νu − ν) ≥ 0 ⇔ µu
i −max(0, µu

i − (νu
i − νi)) = 0 i ∈ MET

(14)

(µl)T (ν − ν l) = 0, µl, (ν − ν l) ≥ 0;⇔ µl
i −max(0, µl

i − (νi − νl
i)) = 0 i ∈ MET

With the modification in Eq. (14) and addition of the differential equations
that illustrate extracellular concentration change, the final DAE formulation
is the following:

dCi

dt
= νiCbio

d + ST λ + µu − µl = 0

Sν = 0 (15)

µl
j −max(0, µl

j − (νj − ν l
j)) = 0 j ∈ MET

µu
j −max(0, µu

j − (νu
j − νj)) = 0 j ∈ MET

where i ∈ EXMET . The set MET includes all of the metabolites in the
network and EXMET is the set of external metabolites that make up the
biomass.

The system in Eq. (15) is classified as a DAE system. If one instance of Eq.
(15) is solved for a given time-span value, a steady-state for the given extra-
cellular conditions will be observed. However, during the whole fermentation
process, there are dynamic changes in the extracellular conditions and intra-
cellular steady-state. Therefore, to model, these dynamic characteristics of the
intra- and extra- cellular conditions, the whole fermentation process is divided
into discrete time steps, with lengths equal to the time-span. To model the
intracellular and extracellular relation, the look up tables in Eq. (8-12) are
used. After one instance of Eq. (15) is solved, a new intracellular steady-state
and extracellular metabolite concentration is observed. By using the lookup
tables in Eq. (8-12) and extracellular concentration for the determination of
new νu and νl values, a new steady-state is established for the following time
step, whose length is equal to the time-span. This computational process is
executed till the end of fermentation process.

Parameter Estimation: The biomass is actually a collection of different
substances. Therefore, to quantitatively represent the growth in the cell, bio-
mass is created artificially from sum of the metabolites which are expected to
be the main ingredients of growth. However, determination of the molecular
composition and its coefficients is the main difficulty of this procedure.

In this paper, the biomass is represented by composition of protein, carbo-
hydrate, DNA, RNA and lipid. Therefore Eq. (16) is added to represent the
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biomass accumulation:

θCarb[carbohydrate]+θPro[Protein]+θLip[Lipid]+θDNA[DNA]+θRNA[RNA] → 1g.Biomass
(16)

Besides determination of composition of the biomass, the coefficients of these
metabolites is another important issue that should be determined. In this
paper, a parameter estimation scheme is applied to estimate the θ values in
the Eq. (16) and value of Khi

glu,1 in (9).
To estimate these parameters, the Eq. (17) should be minimized.

∑

j

∑

t

(Cj(t)− Cmeas
j (t))2 (17)

where Cj(t) is the concentration level found by the model, Cmeas
j (t) is the

concentration of measured coefficients by the experiments, ∀j ∈ MEAS and
∀t ∈ T . In Eq. (17) MEAS represents the set of the measured metabolites
in the experimental setup and t represents the time interval of the simulation
takes place.

4 Numerical Results

The DAE system in the Eq. (15) is solved with MATLAB Version 7.2. However
without any preprocessing, above system cannot be solved by most commercial
solvers. The system in Eq. (15) has a DAE index greater than 1 therefore;
with this form, MATLAB cannot solve the system. The main reason of above
situation is the singularity of the algebraic part. To deal with that singularity
we approximate the max operator in the last two equalities of the system [2].

The function f(x) = max(0, g(x)) behaves like in Fig. 6. As seen from Fig. 6,
there is a nondifferentiability at 0. We can smooth this nondifferentiability by
using the approximation given in Eq. (18).
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f̄(x) = 0.5[g(x)2 + ε2]
1
2 +

1

2
g(x) (18)

where ε is a sufficiently small number. After the implementation of smooth-
ing in Eq.(18), the resulting approximated function behaves as shown in Fig. 7.

After the foregoing change the updated Eq. (15) will be the following:

dCi

dt
= νiCbio

d + ST λ + µu − µl = 0

Sν = 0 (19)

0.5[(µu
j − (νu

j − νj))
2 + ε2]

1
2 +

1

2
(µu

j − (νu
j − νj)) = 0 j ∈ MET

0.5[(µl
j − (νj − ν l

j))
2 + ε2]

1
2 +

1

2
(µl

j − (νj − ν l
j)) = 0 j ∈ MET

To solve DAE system in Eq. (19), the θ parameters in the Eq. (16) and value
of Khi

glu,1 in the Eq. (9) should be estimated. To estimate these parameters,
we have used fminsearch solver of the MATLAB during the minimization
of Eq. (17). This solver is DFO (Derivative Free Optimization) solver which
implements a Nelder-Mead (NM) method. The solution of the parameter es-
timation is schematically represented in Fig. 8.

At the end of the solution of the parameter estimation problem, the resulting
parameter values are shown in Table 3.

The DAE system in Eq. (19) can be solved by MATLAB’s DAE solver, ode15s.
The program simulated with the initial conditions in Table 4.

Fig. 9 and 10 compares the experimental data and result of the model for
biomass and glucose respectively. As shown, although there is not one to one
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Fig. 8. Parameter estimation problem.

correspondence between model and experimental data, the trends are same.
The the result of the simulation follows the experimental model very closely.

5 Conclusions

We have presented a new framework to determine the behavior of yeast during
the fermentation process. Many fermentation processes during wine produc-
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Table 3
Result of Parameter Estimation Problem.

Parameter Value

θCarb 0.0134

θDNA 0.00014

θRNA 0.000469

θPro 0.0164

θLip 0.000169

Khi
glu,1 0.35

Table 4
Initial Metabolite Concentration

Metabolite Concentration

Biomass 0.1

Glucose 225

Fructose 115

Ethanol 1.25

Ammonium 1.24

Glycerol 0
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Fig. 9. Comparison of biomass profile.

tion are problem fermentations and the main reason is due to inconvenient
environmental conditions. In this study, we represent the fermentation dy-
namics with a set of DAEs. We model both interior and exterior of the cell.
The kinetic parameters in the system formulation are estimated by using a
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DFO routine. The behavior of the yeast cell during wine fermentation is de-
termined and compared with the experimental results. It is illustrated that
the result taken from simulation study matches the results taken from exper-
imental studies.
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