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Abstract
Purpose Drug resistance presents a major obstacle for the
treatment of some patients with chronic myeloid leukemia
(CML). Pro-apoptotic ceramide mediates imatinib-induced
apoptosis, and metabolism of ceramide by glucosylcera-
mide synthase (GCS) activity, converting ceramide to glu-
cosyl ceramide, might contribute to imatinib resistance. In
this study, we investigated the role of ceramide metabolism
by GCS in the regulation of imatinib-induced apoptosis in
drug-sensitive and drug-resistant K562 and K562/IMA-0.2
and K562/IMA-1 human CML cells, which exhibit about
2.3- and 19-fold imatinib resistance, respectively.
Methods Cytotoxic eVects of PDMP and imatinib were
determined by XTT cell proliferation assay. Expression
levels of GCS were determined by RT-PCR and western
blot. Intracellular ceramide levels were determined by LC–
MS. Cell viability analyses was conducted by Trypan blue

dye exclusion assay. Cell cycle and apoptosis analyses were
examined by Xow cytometry.
Results We Wrst showed that mRNA and protein levels of
GCS are increased in drug-resistant K562/IMA as com-
pared to sensitive K562 cells. Next, forced expression of
GCS in sensitive K562 cells conferred resistance to imati-
nib-induced apoptosis. In reciprocal experiments, targeting
GCS using its known inhibitor, PDMP, enhanced ceramide
accumulation and increased cell death in response to imati-
nib in K562/IMA cells.
Conclusion Our data suggest the involvement of GCS in
resistance to imatinib-induced apoptosis, and that targeting
GCS by PDMP increased imatinib-induced cell death in
drug-sensitive and drug-resistant K562 cells via enhancing
ceramide accumulation.

Keywords Ceramide · Apoptosis · Glucosylceramide · 
Drug resistance · CML

Abbreviations
CML Chronic myeloid leukemia
IMA Imatinib
MDR Multiple drug resistance
K562/IMA-0.2 K562 cells those were able to grow in 
and K562/IMA-1 the presence of 0.2 and 1 �M Imatinib
GCS Glucosylceramide synthase
GlcCer Glucosylceramide
(IC)50 The concentration of any chemical that

inhibits growth by 50%
XTT 2,3-bis-(2-methoxy-4-nitro-5-sulfophe-

nyl)-2H-tetrazolium-5-carboxanilide
RT-PCR Reverse transcriptase-polymerase

chain reaction
Pi Inorganic phosphate
LC/MS LC/MSLiquid chromatography-mass

spectrometry
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Introduction

A major advancement in the treatment of chronic myeloid
leukemia (CML) has been the development of imatinib,
which has shown striking activity in the chronic phase and
the accelerated phase, but less so in the blast phase of the
disease (Buchdunger et al. 1996). Despite high rates of
hematologic and cytogenetic responses to therapy, the
emergence of resistance to imatinib has been recognized as
a major problem in the treatment of patients with CML
(Deininger 2005; Hegedus et al. 2002; Krystal 2001; Koca
and Haznedaroglu 2005; Walz and Sattler 2006).

Resistance to anticancer agents can be explained by a
number of mechanisms including decreased uptake,
increased detoxiWcation, and alteration of target proteins or
increased excretion. Even if anticancer drugs reach their
sites of action, by passing drug eZux system of the cells,
some cells still survive via the inhibition of pro-apoptotic
signaling (Robertson et al. 1993). It has been well known
that multidrug-resistant (MDR) cells show cross-resistance
not only to anticancer agents but also to pro-apoptotic
stresses including tumor necrosis factor �, irradiation, anti-
Fas antibody cross-linking, and serum starvation (Brad-
shaw and Arceci 1998). These suggest the possibility that
dysregulation of apoptotic signaling plays a very important
role in MDR (Hale et al. 1996).

Sphingolipids are a family of membrane lipids with
important roles not only in the regulation of the Xuidity and
sub-domain structure of the lipid bilayer but also in many
aspects of cell biology, from inXammatory responses
through cell proliferation and apoptosis to cell migration
and senescence (Ogretmen and Hannun 2004). Many sphin-
golipid-regulated functions have signiWcant and speciWc
links to various aspects of cancer initiation, progression,
and response to anticancer treatments. Ceramide, an eVec-
tor molecule in apoptotic signaling, plays a principal role in
the nature of cellular response to anticancer therapies and
other stress-causing agonists (Hannun and Obeid 2002;
Kolesnick and Kronke 1998). The levels of intracellular
pro-apoptotic ceramide were shown to be increased by anti-
cancer drugs and stresses in cancer cells (Hannun 1996;
Okazaki et al. 1998; Sawai et al. 1997). It was also shown
previously by diVerent groups that increased ceramide lev-
els enhance the eYcacy of vinblastine (Cabot et al. 1999),
Adriamycin, daunorubicin, actinomycin D (Bose et al.
1995; Dbaibo et al. 1998; Liu et al. 1999), and taxol
(Myrick et al. 1999).

On the other hand, alterations of the accumulation of
ceramide via its increased metabolism to glucosylcera-
mide (GlcCer) by glucosyceramide synthase (GCS) are a
characteristic of various MDR cancer cells of colon,
breast, ovarian, and epithelioid carcinomas (Kok et al.
2000; Lavie et al. 1996; Nicholson et al. 1999). Lucci and

co-workers showed that GlcCer levels are elevated in
tumor specimens from patients with breast cancer and
melanoma who demonstrated poor response to chemo-
therapy (Lucci et al. 1998). The enzyme GCS transfers
glucose from UDP-glucose to ceramide and produces
GlcCer. GCS appears to have important functions over
cell growth and apoptosis. It was shown that GlcCer
induces tumor growth (Perales et al. 1998) and cell prolif-
eration (Marsh et al. 1995) while inhibition of GCS
results in cell death, eVect, inhibition of cell division
(Kyogashima et al. 1996), and reduction of metastasis
(Inokuchi et al. 1990). However, involvement of
increased ceramide metabolism by GCS in the regulation
of imatinib-induced apoptosis and/or resistance in CML
has not been reported previously.

In our previous study, we reported that increased genera-
tion of ceramide mediates imatinib-induced apoptosis, and
overexpression of sphingosine kinase 1 (SK1) results in
imatinib resistance in K562 cells via modulation of cera-
mide/S1P rheostat (Baran et al. 2007). Since glycosylation
of ceramide by GCS emerges as a novel mechanism of drug
resistance (Liu et al. 1999, 2000; Kok et al. 2000), we
hypothesized that targeting GCS might be a novel strategy
to overcome resistance to imatinib-induced cell death via
restoring ceramide accumulation in CML cells.

In this study, our goal was to identify the role of cera-
mide metabolism by GCS in imatinib resistance, and to
explore whether targeting GCS using its known inhibitor,
D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-pro-
panol (PDMP), presents a novel approach to reverse drug
resistance in human K562 CML cells. Our data suggested
that GCS expression at both mRNA and protein levels was
increased signiWcantly in drug-resistant K562/IMA-0.2 and
K562/IMA-1 cells as compared to parental and drug-sensi-
tive K562 cells. Importantly, while forced expression of
GCS inhibited imatinib-induced cell death in sensitive
K562 cells, targeting GCS by PDMP in drug-resistant
K562/IMA cells increased apoptosis in response to imati-
nib, which was consistent with elevation of endogenous
ceramide levels, measured by Lipidomics. Thus, these data
indicate that increased metabolism of ceramide by GCS is
involved in the inhibition of imaitnib-induced cell death,
and that targeting GCS by PDMP partially reverses drug
resistance in K562/IMA cells via elevation of pro-apoptotic
ceramide accumulation.

Materials and methods

Cell lines and culture conditions

The Philadelphia (Ph) chromosome-positive K562 human
CML cells were obtained from German Collection of
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Microorganisms and Cell Cultures and maintained in RPMI
1640 growth medium containing 10% fetal bovine serum
and 1% penicillin–streptomycin (Invitrogen, USA) at 37°C
in 5% CO2.

Selection of imatinib-resistant K562 cells

We generated imatinib-resistant sublines of K562 cells that
could grow in the presence of 0.2 (K562/IMA-0.2) and
1 �M (K562/IMA-1) imatinib.

Measurement of cell growth by XTT assay

The IC50 values (drug concentration that inhibits cell
growth by 50%) of imatinib and PDMP were determined by
XTT cell proliferation assay. In short, 2 £ 104 cells/well
were seeded into 96-well plates containing 100 �l of the
full medium with increasing concentrations of imatinib and
PDMP and then incubated at 37°C in 5% CO2 for 72 h.
Then, the cells were treated with 50 �l XTT for 4 h, and the
plates were read under 492-nm wavelengths by ELISA
reader (Thermo Electron Corporation Multiskan Spec-
trum,Vantaa, Finland) (Piskin et al. 2007).

Measurement of endogenous ceramide levels by lipidomics

The cellular levels of endogenous ceramides were mea-
sured using high performance liquid chromatography/mass
spectrometry (LC/MS) as described previously (Koybasi
et al. 2004). In short, after cells were collected by centrifu-
gation, lipids were extracted directly from cell pellets, and
the levels of sphingolipids and inorganic phosphate (Pi)
levels in the same extracts were measured as described
(Koybasi et al. 2004). The levels of ceramides were nor-
malized to Pi concentrations.

Plasmids and transfections

pcDNA3.1 and pcDNA3.1/GCS plasmids were obtained
from Invitrogen, USA. Transfection of human CML cells
was performed using an EVectene transfection kit (Qiagen)
as described by the manufacturer.

Detection of human GCS mRNA by RT-PCR

Total RNA was extracted using Rneasy RNA isolation kit
(Qiagen) as described by the manufacturer. Using reverse
transcriptase (Promega), 1 �g of total RNA was reverse
transcribed. After 1 h incubation at 50°C, the reactions
were stopped by 95°C heating for 5 min. The resulting total
cDNA was then used in PCR to measure the mRNA levels
of GCS and beta-actin. The mRNA levels of beta-actin
were used as internal control (Ogretmen et al. 2001). The

primer sequences and PCR conditions were as follows:
GCS-forward (5�ATGACAGAAAAAGTAGGCT3�),GC
S-reverse (5�-GGACACCCCTGAG TGGAA-3�); and
beta-actin-forward (5�-CAGAGCAAGAGAGGCATCCT-
3�), beta-actin-reverse (5�-TTGAAGGTCTCA AACATG
AT-3�). Using these primers, 1 �l of the reverse transcrip-
tase reaction was ampliWed for 35 cycles (94°C, 1 min;
55°C, 2 min; 72°C, 2 min) using Taq DNA polymerase
(Qiagen), and their levels were normalized to that of beta-
actin as described previously (Ogretmen et al. 2001).

Western blot analysis

The protein levels of GCS and beta-actin were detected by
Western blot analysis (Sultan et al. 2006). In short, total pro-
teins (50 �g/lane) were separated by 5–15% SDS–PAGE
(Bio-Rad) and blotted onto an Immobilon membrane, and
GCS and beta-actin proteins were detected using 1 �g/ml of
rabbit polyclonal anti-GCS or beta-actin (Santa Cruz Bio-
technology) antibodies, and peroxidase-conjugated second-
ary anti-rabbit antibody (1:2,500). The proteins were
visualized using the ECL protein detection kit (Amersham
Pharmacia Biotech) as described by the manufacturer.

Detection of cell death

EVects of imatinib on cell death in the presence and/or
absence of GCS overexpression, or PDMP treatment in
K562 versus K562/IMA-0.2 or K562/IMA-1 cells were
examined using trypan blue exclusion and/or Xow cytome-
try, as we described previously.

Results

One of the mechanisms of resistance to imatinib-induced 
cell death involves the overexpression of GCS

We previously explored cytotoxic eVect of imatinib on
imatinib-sensitive and imatinib-resistant K562 cells (Baran
et al. 2007). The results revealed that K562/IMA-0.2 and
K562/IMA-1 cells showed 2.3- to 19-fold resistance to
imatinib, as compared to sensitive cells. The IC50 values of
imatinib for K562, K562/IMA-0.2, and K562/IMA-1 cells
were 240, 565, and 4,600 nM, respectively (Baran et al.
2007). To examine whether mechanisms by which K562/
IMA-0.2 and K562/IMA-1 cells acquired resistance to
imatinib-induced apoptosis involves the overexpression of
GCS, the mRNA levels of GCS in these cells as compared
to their parental sensitive controls were examined by RT-
PCR (Fig. 1a) and protein levels were detected by western
blotting (Fig. 1b). The data in Fig. 1a showed that there
were 1.85-fold increases in expression levels of GCS in
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K562/IMA-1 cells as compared to parental sensitive cells.
Western blot analysis also conWrmed overexpression of
GCS in protein levels (Fig. 1b). Beta-actin levels were used
as loading controls in Western blotting (Fig. 1b, lower
panel, lanes 1–3).

Role of GCS in resistance to imatinib-induced apoptosis

As shown in Fig. 2a, in GCS transfected K562 cells, imati-
nib signiWcantly prevented cell death (Fig. 2a). SpeciWcally,
treatment with 200 and 500 nM imatinib resulted in about
30 and 55% cell death in response to control vector in K562
cells. On the other hand, in GCS transfected K562 cells,
200 and 500 nM imatinib caused only around 10 and 25%
growth inhibition, respectively (Fig. 2a). The expression
levels of GCS in control (vector-transfected) and GCS
transfected human K562 cells were conWrmed by RT-PCR,
and beta-actin levels were used as loading controls (Fig. 2b,
lanes 2–3, and 4–5, respectively). These data, therefore,
demonstrate an important role for GCS in resistance to
imatinib-induced cell death in K562 cells.

Analyses of ceramide levels in human CML cells 
in response to PDMP in the absence or presence 
of imatinib

The levels of endogenous ceramide in parental and imati-
nib-resistant K562 cells, treated with PDMP, in the absence

or presence of imatinib (48 h), were measured by LC/MS
(Fig. 3a–c). The intracellular levels of ceramides were
increased about 2- to 8-fold in K562 and K562/IMA-0.2
and about 2- to 4-fold K562/IMA-1 cells treated with imati-
nib (0.2, 0.5 and 2 �M, respectively). In PDMP exposed
K562 cells, the ceramide levels were slightly increased
(about 1- to 5-fold). Importantly, in all three K562 sub-
lines, combination of PDMP with imatinib treatment
caused signiWcant increases in C18-ceramide levels (35-,
11-, and 6-fold, respectively) in K562, K562/IMA-0.2, and
K562/IMA-1 cells, respectively (Fig. 3a–c). Taken
together, these data suggest that imatinib induces C18-cera-
mide accumulation, and targeting GCS using PDMP further
enhances its accumulation in K562, K562/IMA-0.2, and
K562/IMA-1 cells.

Cell viability analyses of parental and imatinib-resistant 
K562 cells exposed to GCS inhibitor, PDMP

To examine the involvement of GCS in resistance to imati-
nib-induced cell death, parental and K562/IMA-0.2 cells
were exposed to PDMP, in the absence or presence of

Fig. 1 Expression analyses of GCS in parental versus resistant human
CML cells. a GCS mRNA levels in K562 and K562/IMA-1 cells were
measured by RT-PCR. Beta-actin levels were used as internal positive
controls. QuantiWcation of expression levels of the genes were per-
formed by Quantity One-1D-Gel-Imaging programme (BIORAD).
b GCS protein levels in K562, K562/IMA-0.2 and K562/IMA-1 cells
(lanes 1, 2, and 3) were also measured by western blotting. Beta-actin
levels were used as internal
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imatinib. K562 cells exposed to 10 �M PDMP in the
presence of 500 nM imatinib resulted in about 90% cell
death, while 500 nM imatinib, by itself, caused around only
60% of growth inhibition (Fig. 4a). As shown in Fig. 4b,
K562/IMA-0.2 cells exposed to 10 �M PDMP in the pres-
ence of 500 nM imatinib resulted in about 35% cell death.
Treatment of K562/IMA-0.2 cells with 500 nM imatinib,
by itself, caused around 8% growth inhibition (Fig. 4b).
Ten �M PDMP did not have any eVect on K562 or K562/
IMA-0.2 cells. These data showed that combination therapy
of imatinib and PDMP together resulted in higher number

of cells in apoptosis as compared to only imatinib exposed
cells.

Cell cycle proWles of human CML cells exposed to PDMP 
in the absence or presence of imatinib

In addition to cell viability analyses, the cell cycle proWles
of K562 and K562/IMA-0.2 cells, exposed to PDMP, in the
absence or presence of imatinib, were examined for 6, 24,
and 48 h by Xow cytometry. The data revealed that expo-
sure to imatinib (200 nM, 6 h) did not cause apoptosis in

Fig. 3 Relative changes of cera-
mide levels in parental and 
imatinib-resistant K562 cells 
treated with PDMP, in the ab-
sence or presence of imatinib. 
The concentrations of C18:1-, 
C14-, C16-, C18-, C20-, C24-, and 
C24:1-ceramides in K562 (a), 
K562/IMA-0.2 (b) and K562/
IMA-1 (c) cells treated with 
PDMP (20 �M) in the absence 
or presence of imatinib were 
measured by LC/MS. The levels 
of ceramide were normalized to 
Pi concentrations. Percent 
changes of the levels of cera-
mide levels were calculated. The 
experiments were done in at 
least two independent trials. Sta-
tistical analysis was done using 
two way anova, and P < 0.01 
was considered signiWcant
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sensitive K562 cells. Treatment of K562 and K562/IMA-
0.2 cells with 20 �M PDMP in the presence of 200 and
500 nM for 6 h also did not cause apoptosis. There were
also no signiWcant changes in percent of cells in diVerent
cell cycle phases (data not shown). Treatment of K562 or
K562/IMA-0.2 cells with PDMP (20 �M) in the presence
of 200 and 500 nM for 24 h resulted in 12 and 26% or 8 and
12% apoptosis, respectively, while only in imatinib-
exposed parental and imatinib-resistant K562 cells, there
was no apoptosis (data not shown).

The data for 48 h showed that exposure to imatinib
(200 nM, 48 h) resulted in 9 and 0% apoptosis in parental
(Fig. 5a) and resistant K562/IMA-0.2 (Fig. 5c) cells,
respectively. Imatinib treatment in K562 cells resulted in an
increase in G1 and a decrease in G2 and S phases (Fig. 5a).
K562 cells exposed to 20 �M PDMP and 200 and 500 nM
imatinib (48 h) resulted in 20 and 40% apoptosis, respec-
tively (Fig. 5b). PDMP and imatinib treatment also resulted
in an increase in G1-phase, no change in S-phase, and a sig-
niWcant decrease in G2 phase in K562 cells. In case of
K562/IMA-0.2 cells, treatment with 20 �M PDMP 200 and

500 nM imatinib (48 h) resulted in 14 and 22% apoptosis,
respectively (Fig. 5d) while there was no cell in apoptosis
in only imatinib applied resistant cells.

Taken together all these data showed that imatinib with
the combination of PDMP has much more apoptotic eVect
on both sensitive and resistant cells. This combination ther-
apy has started to be eVective after 24 h of application.
Besides induction of apoptosis, PDMP and imatinib treat-
ment also resulted in cell cycle arrest at G1 phase in K562
cells.

XTT cell proliferation assay in human CML cells exposed 
to PDMP in the absence or presence of imatinib

The IC50 values of imatinib and the combination therapy of
PDMP and imatinib together in K562/IMA-1 cells were
determined. The IC50 values of imatinib and combination
therapy of PDMP and imatinib were 4,600 and 1,100 nM
for K562/IMA-1 cells, respectively (Fig. 6). As shown in
Fig. 6, K562/IMA-1 cells, exposed to PDMP and imatinib,
expressed about 4-fold more sensitivity, as compared to
only imatinib-treated counterparts.

Discussion

In order to generate imatinib-resistant sub-lines of human
CML cell line, K562 were cultured in the presence of grad-
ually increasing concentrations (0.05–1 �M) of imatinib
over a period of 24 months. However, rare Ph-positive
K562 cells were observed, which were unaVected by con-
centrations of imatinib that suppress the proliferation of
most CML cells. These sub-lines with diVerential sensitiv-
ity to imatinib were generated from imatinib-sensitive
BCR-ABL-positive human CML cells.

The Wrst important observation from this study was the
overall diYculty in generating resistant sub-lines from the
parental sensitive cells. Rare survivors could be obtained
from high numbers of cells, even when subjected to a grad-
ual exposure to imatinib. These results emphasized the high
eYcacy and speciWcity of imatinib in the treatment of BCR-
ABL-positive cells.

Similar approach has been used in various studies to
derive imatinib resistance starting with Ph-positive cell
lines previously, including AR230, LAMA84, and K562
cell lines (Mahon et al. 2000). Mahon and co-workers were
able to grow K562 cells up to the presence of 0.6 �M imati-
nib concentrations. In this study, K562 cells were able to be
grown up to 1 �M.

Drug resistance could result from elevated levels of the
various components of the cell such as GlcCer (Kok et al.
2000; Lucci et al. 1998). Analysis of human tumor speci-
mens revealed elevated GlcCer levels in patients who failed

Fig. 4 The role of inhibition of GCS by PDMP on cell viability of
K562 and K562/IMA-0.2 cells. Percent changes of cell viability in
K562 (a) and K562/IMA-0.2 (b) cells, exposed to PDMP in the
absence or presence of imatinib (500 nM, 48 h), were determined by
trypan blue dye exclusion assay. Experiments were done in duplicates
in at least two independent experiments. Error bars represent SD.
Statistical analysis was done using two way anova, and P < 0.01 was
considered signiWcant
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conventional chemotherapy, but GlcCer levels were low in
those who responded to treatment (Lucci et al. 1998). Sup-
port for the involvement of GCS in drug resistance came
from transfection experiments, which showed that overex-
pression of the enzyme resulted in increased resistance to
Adriamycin in drug-sensitive MCF-7 tumor cells (Liu et al.
1999). These results can be interpreted in the sense that
MDR tumor cells display an enhanced activity of GCS,
which results in accumulation of GlcCer and metabolic
removal of ceramide from the sphingolipid pool. In agree-
ment with the previous studies, GCS overexpression has
been observed in imatinib-resistant human CML cells,
K562/IMA-0.2 and K562/IMA-1, as compared to parental
sensitive counterparts.

Our previous data revealed an important role for SK1/
S1P signaling as a major mechanism of imatinib resistance
by decreasing ceramide/S1P ratio in CML cells (Baran

et al. 2007). The role of SK1/S1P in drug resistance in
CML was also conWrmed by independent studies (Bonho-
ure et al. 2008; Li et al. 2007). In the current study, we
increased the intracellular concentrations of ceramide via
inhibition of GCS and examined the possibility of enhanc-
ing apoptosis in response to imatinib in both sensitive and
resistant cells. GCS inhibitors have been found to raise cel-
lular ceramide levels by blocking its conversion into
GlcCer and to induce apoptosis (Nicholson et al. 1999;
Spinedi et al. 1998). It has previously been demonstrated
that PDMP sensitizes murine neuroblastoma cells to Taxol
and Vincristine (Sietsma et al. 2000). In this study, PDMP-
induced chemo sensitization was investigated in two
imatinib-resistant human CML cells. In parallel with the
previous data, LC/MS analyses revealed that impairment of
ceramide glycosylation by PDMP increased intracellular
ceramide levels. On the other hand, cell viability analyses

Fig. 5 Cell cycle proWles in K562 cells in response to PDMP. The
eVects of PDMP (20 �M), in the absence or presence of imatinib (200
and 500 nM), on cell cycle proWles of K562 (a or b) and K562/IMA-

0.2 (c or d) were determined using Xow cytometry. Statistical analysis
was done using two way anova, and P < 0.01 was considered signiW-
cant
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by trypan blue dye exclusion assay and Flow cytometry and
cell proliferation analyses by XTT assay also showed that
PDMP in combination with imatinib resulted in higher

numbers of cells in apoptosis as compared to only imatinib
exposed cells. These Wndings demonstrate the ability to
modulate ceramide metabolism should provide a new ave-
nue by which drug sensitivity can be increased in multi-
drug-resistant cells.

In conclusion, these results show, for the Wrst time, that
overexpression of GCS, via increased metabolism of cera-
mide via conversion to GlcCer, decreasing its cellular accu-
mulation, is involved in the regulation of imatinib
resistance in K562 cells, and that this resistance could be
overcome, at least in part, by inhibition of GCS, which
enhances ceramide accumulation in response to imatinib
treatment.
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Fig. 5 continued
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