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In just four decades, hundreds of hydrothermal vent fields have been discovered, widely
distributed along tectonic plate boundaries on the ocean floor. Vent invertebrate biomass
reaching up to tens of kilograms per square meter has attracted attention as a potential
contributor to the organic carbon pool available in the resource-limited deep sea. But
the rate of chemosynthetic production of organic carbon at deep-sea hydrothermal
vents is highly variable and still poorly constrained. Despite the advent of molecular
techniques and in situ sensing technologies, the factors that control the capacity of vent
communities to exploit the available chemical energy resources remain largely unknown.
Here, we review key drivers of hydrothermal ecosystem productivity, including (a) the
diverse mechanisms governing energy transfer among biotic and abiotic processes;
(b) the tight linkages among these processes; and (c) the nature and extent of spatial
and temporal diversity within a variety of geological settings; and (d) the influence
of these and other factors on the turnover of microbial primary producers, including
those associated with megafauna. This review proposes a revised consideration of
the pathways leading to the biological conversion of inorganic energy sources into
biomass in different hydrothermal habitats on the seafloor. We propose a conceptual
model that departs from the canonical conservative mixing-continuum paradigm by
distinguishing low-temperature diffuse flows (LT-diffuse flows) derived from seawater
and high-temperature fluids (HT-diffuse flow) derived from end-member fluids. We
further discuss the potential for sustained organic matter production at vent-field scale,
accounting for the natural instability of hydrothermal ecosystems, from the climax vent
communities of exceptional productivity to the long-term lower-activity assemblages.
The parameterization of such a model crucially needs assessment of in situ rates and
of the largely unrecognized natural variability on relevant temporal scales. Beyond the
diversity of hydrothermal settings, the depth range and water mass distribution over

Frontiers in Marine Science | www.frontiersin.org 1 January 2019 | Volume 5 | Article 531

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2018.00531
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2018.00531
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2018.00531&domain=pdf&date_stamp=2019-01-18
https://www.frontiersin.org/articles/10.3389/fmars.2018.00531/full
http://loop.frontiersin.org/people/138106/overview
http://loop.frontiersin.org/people/31277/overview
http://loop.frontiersin.org/people/665772/overview
http://loop.frontiersin.org/people/21369/overview
http://loop.frontiersin.org/people/592273/overview
http://loop.frontiersin.org/people/17135/overview
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-05-00531 January 16, 2019 Time: 19:28 # 2

Le Bris et al. Hydrothermal Energy and Organic Carbon

oceanic ridge crests, volcanic arcs and back-arc systems are expected to significantly
influence biomass production rates. A particular challenge is to develop observing
strategies that will account for the full range of environmental variables while attempting
to derive global or regional estimates.

Keywords: chemosynthetic biological communities, hydrothermal ecosystem, diffuse flow fluids, habitat
diversity, redox gradients, carbon-fixation, productivity, deep-sea organic carbon

INTRODUCTION

Deep-sea hydrothermal vent exploration has progressively
intensified over the last 40 years, since the discovery of low-
temperature diffuse flows in 1977 and of high-temperature black
smokers in 1979 on the Galapagos Ridge and East Pacific Rise,
respectively (Corliss et al., 1979; Spiess et al., 1980). By 2009,
more than 250 vents were visually confirmed (Beaulieu et al.,
2013), and about the same number have been inferred from
chemical and physical tracers of hydrothermal plumes in the
water column. Hydrothermal vents encompass various types of
fluid flows observed at the seafloor, whose temperatures range
from a few tens of degrees above background seawater up to
410◦C at black smoker orifices (Beaulieu et al., 2013). The
number of known “vent fields,” i.e., areas hosting a vent network
typically distributed over a few square kilometers, is rapidly
growing and includes a variety of geophysical settings along
mid-ocean ridges (MOR), as well as volcanic arcs and back-
arc spreading systems (ABA) (German et al., 2011; Beaulieu
et al., 2013, 2015; Baker et al., 2016). Broadly speaking, the
abundance of chemolithoautotrophic microorganisms, which are
capable of fixing inorganic carbon to organic carbon by using
energy from oxidation-reduction chemical reactions (McCollom
and Shock, 1997; Takai and Nakamura, 2011; Nakamura and
Takai, 2014) provides a local source of primary production,
and thus sustains much higher invertebrate biomasses than
in the surrounding deep-sea (Tunnicliffe et al., 2003). Recent
attempts to assess the contribution of vent ecosystems to
the global ocean organic carbon budget have shown that
the energy flux available for CO2 fixation is orders of
magnitude lower than that for photosynthesis (Olins et al., 2013;
Nakamura and Takai, 2014; McNichol et al., 2018). Nevertheless,
these chemosynthetic productivity hotspots interact with the
surrounding deep-sea environments, providing labile organic
resources to benthic and pelagic ecosystems that receive limited
input from photosynthetic production (Levin et al., 2016).
Indeed, vent-derived organic carbon flux supplements the
metazoan food web much beyond the areas where hydrothermal
venting occurs (Bell et al., 2017). Furthermore, chemosynthetic
carbon exerts an influence at larger ocean scale, through the
formation of complexes of metals like iron or copper issued
from vents with organic ligands (Bennett et al., 2008; Sander
and Koschinsky, 2011; Sands et al., 2012; Hoffman et al.,
2018), hence contributing to the global ocean micronutrient
budgets (Tagliabue et al., 2010; Wu et al., 2011; Hawkes
et al., 2013; Fitzsimmons et al., 2014; Resing et al., 2015).
As anthropogenic pressures intensify on these environments
with the prospects of industrial mineral mining (Halfar and

Fujita, 2007; Van Dover, 2011; Collins et al., 2013; Mengerink
et al., 2014) and the exploitation of other deep-sea resources
(Ramirez-Llodra et al., 2010; Santos et al., 2012), assessing
ecological functions and the services they support warrants
greater attention (Boschen et al., 2013). We posit that a more
critical examination of the functional role of hydrothermal
ecosystems is needed, not only in target areas of anthropogenic
disturbance (Gollner et al., 2017), but also on a more conceptual
basis in order to consider their significance in a broader deep-
ocean context.

With the growing knowledge of the geochemical,
biogeochemical and ecological diversity of deep-sea vents,
the possibility of a more comprehensive understanding of
these drivers has recently emerged. In particular, a diversity of
microbial carbon fixation pathways has now been elucidated
in habitats as diverse as hydrothermal edifices, diffuse flow
zones on sulfide precipitates or seafloor basalts and sediments
hosting hydrothermal seepage. Yet the factors constraining
organic matter production by these microbial primary producers
remain largely unknown. Whereas recent review papers have
examined this question in the sub-seafloor (Orcutt et al.,
2011) or along hydrothermal plumes (Dick et al., 2013), a
fully integrated synthesis bridging the knowledge of different
disciplinary fields, encompassing the wide diversity of vent
systems, is still lacking for seafloor hydrothermal vent habitats
that are associated with the largest biomasses. A comprehensive
understanding of the mechanisms driving the efficiency of
energy transfer and CO2-fixation pathways across diverse
hydrothermal habitats additionally requires accounting for
the ephemeral nature of vent systems. For example, the rise
and decline of populations monitored over years on recent
massive lava flows on fast-spreading ridges have been attributed
to the interplay of changes in end-member fluid composition
(Fustec et al., 1987; Shank et al., 1998; Tsurumi and Tunnicliffe,
2001) and species dispersal capacities (Mullineaux et al., 2000,
2003, 2010, 2018; Adams et al., 2011). Such pulses of organic
carbon may have a profound influence on the oligotrophic
deep-sea biota, which often thrive on an intermittent resource
supply on decadal or longer timescales (Glover et al., 2010).
Conversely, relatively stable, fluid composition and invertebrate
populations were described on slow-spreading ridges over
decades (Cuvelier et al., 2011; Du Preez and Fisher, 2018),
suggesting a more continuous supply of organic production to
peripheral areas in these contexts. There is, however, a critical
lack of information on the temporal dynamics for most of
the known vent fields, and especially on the volcanic arcs and
back-arc systems, which have been rarely revisited (Du Preez and
Fisher, 2018).
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FROM GEOFUELS TO
CHEMOLITHOAUTOTROPHS

The Mosaics of Hydrothermal Energy
Hotspots
Vent fluids transport a variety of chemically reduced compounds,
primarily sulfide, methane, hydrogen, iron and manganese, in
variable proportions from the deep crust to the seafloor (German
and Von Damm, 2004). The supply of these so-called “geofuels”
(Bach et al., 2006), along with the abundance of chemically-
oxidized species (e.g., oxygen, nitrate and sulfate) in deep
seawater, provides a geochemical haven for chemolithotrophic
microbes, especially at the interface where vent and seawater
mixes. Chemolithotrophic microbes harness energy from these
reduction-oxidation reactions, and use that energy to support
carbon fixation. Along MOR and ABA, distinct properties of
basement rocks such as basalts, peridotites and felsic rocks are
believed to govern the concentration of reduced chemicals in
hydrothermal fluids formed at high temperature and pressure
(Von Damm, 1995; Ishibashi et al., 2014; German and Seyfried,
2014) (Figure 1). Back-arc SO2-rich fluids are particularly
influenced by subducted material and magma degasing, and
transport intermediate redox states of sulfur (S◦, S2O3

2−) and
nitrogen (NH4

++) that can contribute to the flux of geofuels
(Resing et al., 2007; Butterfield et al., 2011; German and
Seyfried, 2014). More generally, the heterogeneous structure
and topography of the seafloor with variable depth, spreading
rate, magmatic and tectonic activity, further creates tremendous
differences in geofuel concentrations among high-temperature
end-member fluids, even among proximal vent fields along MOR
and ABA.

The concentrations of sulfide (S−II) and ferrous iron
(FeII), two key players in geochemical and biogeochemical
hydrothermal processes, are particularly variable. Sulfide in
end-member fluids ranges from 0 to 19.5 mmol kg−1 and
1 to 13.1 mmol kg−1, respectively on MOR and ABA, with
outliers reported for ultrafast spreading ridges following volcanic
eruptions (e.g., 110 mmol kg −1, German and Von Damm,
2004; Tivey, 2007; Gartman et al., 2014). Iron concentrations
in end-member fluids are slightly higher on MOR (0.007–
24 mmol kg−1) than on ABA (0.01–13.0 mmol kg−1), though
the ABA systems are undersampled so this generalization is not
robustly supported (Gartman et al., 2014; Nakamura and Takai,
2014). Additionally, the ridge spreading-rate is thought to be
a determining factor of the ranges of sulfide and iron in end-
member fluids, with a decrease in sulfide and an increase in
iron with decreasing spreading rate (Gartman et al., 2014). On
back-arcs, the proximity to the associated volcanic arc within
tens of kilometers further adds to this variability. The Eastern
Lau Spreading Center (ELSC) where the Mariner vent field
hosts substantially metal-enriched end member fluids provides
striking examples of such geochemical contrasts within short
geographical distances, with sulfide and iron concentrations
ranging from 1.2 to 9.3 mmol kg−1 and 0.14 to 13 mmol kg−1,
respectively (Mottl et al., 2011; Reeves et al., 2011; Yücel et al.,
2011).

On slow-spreading ridges, tectonics shape the structure of
the ridge axis and further creates differences in geofuel contents
in fluids (Allen and Seyfried, 2004; Cannat et al., 2010).
Exposure of mantle rocks to the hydrothermal circulation induces
serpentinization and generates serpentine-hosted end-member
fluids that are distinguishable from basalt-hosted ones by their
high concentrations of H2 and methane (Charlou et al., 2002,
2010; Proskurowski et al., 2008). Described from the late 1990s’
on the Mid-Atlantic Ridge (Charlou et al., 2002; Schmidt et al.,
2007) and Central Indian Ridge (Gamo et al., 2001; Gallant
and Von Damm, 2006; Kumagai et al., 2008), end-member
fluids display hydrogen concentrations up to 26 mmol kg−1

at Rainbow (Charlou et al., 2010). In comparison, hydrogen
remains low in ABA fluids (0.035–0.5 mmol kg−1 (German
and Von Damm, 2004). CH4, a by-product of the abiotic
reaction of H2 with CO2 at high temperature and pressure,
also reaches unusually high values in serpentine-hosted end-
member fluids [e.g., up to 3.5 mmol kg−1 at Logatchev (Schmidt
et al., 2007); 2.5 mmol kg−1 at Rainbow (Charlou et al.,
2002)]. Methane usually does not exceed 0.15 mmol kg−1 in
end-member fluids of basalt-hosted vent fields (German and
Von Damm, 2004), except for the two shallower vent fields of
the Mid-Atlantic Ridge. Menez Gwen and Lucky Strike end-
member fluids reach up to 2.6 and 1.0 mmol kg−1, respectively
(Charlou et al., 2002). The discovery of the Lost City vent
field expanded the geographical distribution of hydrogen and
methane-rich hydrothermal systems further from spreading axes,
by revealing the occurrence of hydrothermal circulation on a 1.5-
Myr-old crust in the absence of recent magmatic influence at the
intersection of the Mid-Atlantic Ridge and the Atlantis fracture
zone (Kelley et al., 2001, 2005). Departing from other known
hydrothermal end-member fluids, Lost City alkaline fluids (up to
pH 10) are rich in hydrogen (up to 14 mmol kg−1) and methane
(up to 2 mmol kg−1) with moderately warm temperatures (up to
90◦C), while comparatively low in sulfide (up to 0.5 mmol kg−1)
and depleted in iron and other metals (Kelley and Shank, 2010).
Though the heat source driving the hydrothermal circulation
at Lost City is still debated, the relatively low temperature and
unique composition of end-member fluids point to the dominant
role of serpentinization (Allen and Seyfried, 2004). Additional
examples of this novel class of hydrothermal systems were
discovered at 5550–5900 m-deep site on a steep scarp of the
Mariana trench (Ohara et al., 2012) as well as on the western
flanks of the ultraslow spreading Mid-Cayman Spreading Centre
(Connelly et al., 2012; Hodgkinson et al., 2015).

Owing to the tectonic and volcanic processes driving
hydrothermal circulation, each end-member fluid issuing from a
black smoker edifice is truly unique in both space and time. That
said, some vent fields display remarkable homogeneity, reflecting
a single subsurface source as, for example, the Rainbow vent
field on the MAR (Charlou et al., 2002). However, differences
in end-member fluids compositions among high-temperature
vents within a vent field can result from discontinuous axial
magma chamber fuelling different sub-seafloor plumbing systems
(e.g., at 9◦50′N on the East Pacific Rise, Main Endeavor on the
Juan de Fuca Ridge or Lucky Strike on the Mid-Atlantic Ridge)
(Von Damm, 1995; Wankel et al., 2011; Barreyre et al., 2014).
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FIGURE 1 | Different types of vent fields on Arc and Back-arc systems (ABA), Mid-Ocean Ridges (MOR) of fast-spreading (fast), slow-spreading (slow) and
sedimented accretion centers. Histograms illustrate the variability of dominant electron-donors in end-member fluids and their temperature range (TEMP/100 in ◦C).

Locally, sub-seafloor phase separation, generating two types of
fluids derived from a metal-rich brine phase and a vapor phase
enriched in volatiles, can be a main factor of intra-field variability
(Von Damm, 1995; German and Von Damm, 2004; German and
Seyfried, 2014). Phase-separation can even generate differences
between black smokers at the scale of a single large edifice, as
shown on the 21◦S EPR Napa Nui vent field (Von Damm et al.,
2003).

Thermodynamic Estimates of Chemical
Energy Availability
Linking the energy available for chemolithoautotrophs to
the fluxes of electron donors and acceptors in diverse
hydrothermal contexts remains in its infancy. To this end,
geochemical constraints on the most energy-yielding reactions
have been explored using thermodynamic models. The first
model developed by McCollom and Shock (1997) used a
fluid composition similar to the composition of the first high
temperature fluids found at 21◦N along the East Pacific Rise,
as well as east-Pacific abyssal waters, to calculate the Gibbs free
energy available per 1 kg of end-member vent fluid along a
dilution gradient (and assuming no consumption of electron
donor or acceptor during mixing with seawater). Later, Amend
et al. (2011) applied this model to hydrothermal systems hosted in
different basement rocks and estimated a much higher energetic
potential for aerobes that oxidize hydrogen, methane, sulfide and
iron with oxygen than anaerobes that use hydrogen oxidation
coupled to sulfate reduction and methanogenesis. For example,
at the Rainbow vent field, the energy available from 1 kg of
end-member fluid is estimated to range from 1 to 7 kJ. For the
same amount of fluid, the oxidation of hydrogen with oxygen
at high dilution rates (e.g., where the ratio of seawater to pure
vent fluid is >50) would be 4 times more energetic than with
sulfate at a lower dilution ratio (where the ratio of seawater
to pure vent fluid is <10). The oxidation of hydrogen with
oxygen also yields twice the energy available from methane, and
almost four times the energy available from sulfide at Rainbow
(McCollom, 2007). This author estimated that, even assuming
a 10% efficiency, up to 70 t y−1 (8 kg h−1) of biomass could

be produced at the vent field scale for a discharge flux of
450 L h−1. Similar thermodynamic estimates suggested that iron
oxidation at Loihi seamount in the Hawaiian archipelago could
still support approximately 7.3 t y−1 (20 kg d−1) of biomass
of carbon at vent field scale, despite the low thermodynamic
energy yield of the aerobic oxidation of FeII (Edwards et al.,
2005).

Nakamura and Takai (2014) used a similar approach to
compare potentially predominant energy sources for a series
of 89 vent fields. Their assessment encompasses H2 and CH4-
rich fluids from ultramafic settings, such as Rainbow (Mid-
Atlantic Ridge) and Kairei (Central Indian Ridge), hydrothermal
fluids enriched with reduced sulfur compounds from mafic to
felsic rocks such as Mariner, Brothers Caldera NW and Toto
Caldera and typical fluids of sediment-associated systems with
unusual enrichment in CH4 and NH4

+ from the Guaymas basin,
Iheya North and Yonaguni Knoll IV. Their model identifies
H2S as a predominant energy source for all vent systems,
except at a very low end-member fluid/seawater dilution ratio,
but also showed that variations in H2S concentrations in end-
member fluids had little effect on the energy available for
thiotrophs. Furthermore, they suggested that the available energy
is poorly dependent on the mixing rate, suggesting that H2S
may not be limiting for primary production. The limiting
factor for the calculated energy, instead, is the availability
of oxygen (the only electron acceptor considered in the
model for sulfide oxidation). This study did not consider
the variable oxygen content of bottom seawater and, for this
reason, may not have fully captured the full range of energetic
constraints exerted on microbes. In H2-rich ultramafic rock-
hosted hydrothermal systems, however, anaerobic and aerobic
hydrogenotrophy appears energetically favored compared to
thiotrophy (Nakamura and Takai, 2014). In contrast to sulfide,
variations in H2 concentrations in hydrothermal fluids do
significantly affect the energy available for aerobic and anaerobic
hydrogenotrophs. Similarly, the concentration of methane in
fluids is suggested to have a considerable impact on microbes
with aerobic and anaerobic methanotrophic metabolisms, in
both ultramafic-hosted and sediment-associated hydrothermal
systems.
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The comparison of thermodynamic estimates with the
production of biomass remains critical, as ground-truthing of
these models is particularly difficult. If archaeal cell counts were
shown to correlate positively with the available energy estimate
at one vent (per kilogram of mixed fluids; Takai and Nakamura,
2011), what is observed for anaerobic hyperthermophilic archea
in chimney walls might not hold true for aerobes exposed
to variable flows of electron donors and acceptors that are
expected to dominate the chemosynthetic primary production.
Furthermore, observations of biomass-dominant fauna can
contrast with model estimates. The biomass of invertebrate
assemblages at Rainbow, for instance, is relatively low compared
to basalt-hosted vent fields of this region of the Mid-Atlantic
Ridge (Gebruk et al., 2000; Desbruyères et al., 2001), suggesting
additional constraints on the microbial use of available energy
provided by hydrogen and methane-rich fluids.

Carbon-fixation rate values as high as 80.2 and
3.5 104 gC m−3 y−1 have been reported from incubated fluids and
microbial mats from hydrothermal systems, respectively (Das
et al., 2011; Thomas et al., 2018). A critical need, however, is to
better constrain the energy yields for vent chemolithoautotrophs
in conditions truly representative of vent habitats. Recently, first
empirical estimates for primary production, standing stock, and
turnover of the sub-seafloor biosphere at deep-sea vents were
obtained using incubations conducted at in situ pressure and
temperature, yielding rates as high as 117 gC m−3 y−1 (McNichol
et al., 2018). First quantitative estimates of in situ carbon fixation
rates in different microhabitats of black smoker chimneys
confirmed higher rates of CO2-fixation at low temperature
corresponding to aerobic conditions but did not reveal obvious
correlations with local geochemical conditions (Olins et al.,
2013). Beyond the inventory of geofuels and thermodynamic
estimates, assessments of the chemoautotrophic production
potential still require an in-depth analysis of factors limiting
energy acquisition in vent microhabitats.

The Metabolic and Functional Diversity
of Vent Chemolithoautotrophs
Linking chemoautolithotrophic production rates with biotic and
abiotic factors is particularly challenging, owing to the diversity
of metabolic pathways among vent microbial communities.
A large number of cultivation-dependent and -independent
studies have shed light on the range of metabolic pathways
used by chemoautotrophic bacteria and archaea to fix CO2
(Campbell et al., 2006; Takai et al., 2006; Nakagawa and Takai,
2008; Huber and Holden, 2008; Böhnke and Perner, 2017).
These include: (1) the Calvin-Benson (CBB) cycle, (2) the
reductive or reverse TCA cycle (rTCA), (3) the acetyl CoA-
pathway, (4) the 3-hydroxypropionate bicycle, -chloroflexaceae,
(5) the dicarboxylate/4-hydroxybutyrate cycle and (6) 3-the
hydroxypropionate/4-hydroxybutyrate cycle (Berg, 2011; Hügler
and Sievert, 2011). The higher energy demand and higher
productivity of aerobic metabolisms (CBB cycle, 3-HP bicycle,
3-HP/4-HB cycle) suggest that these pathways would dominate
primary production in well-oxygenated conditions (Hügler and
Sievert, 2011). Conversely microbes using the oxygen-sensitive

enzymes of reductive acetyl-CoA, rTCA, DC/4-HB pathways will
dominate anoxic or microaerophilic conditions. Both enzymatic
and genomic evidence indeed supports the widely distributed use
of rTCA in Aquificales and Epsilonproteobacteria (now classified
as Campylobacteria) (Waite et al., 2017) that are frequently
abundant members of vent microbial communities (Shiba et al.,
1985; Deckert et al., 1998; Hügler et al., 2005, 2007; Takai et al.,
2006; Huber et al., 2007; Nakagawa et al., 2007; Sievert et al., 2008;
Reysenbach et al., 2009; McNichol et al., 2016, 2018). Due to the
vast phylogenetic diversity and as-yet uncultivated status of most
vent microbes, their quantification and the quantification of their
activity in natural settings are still very challenging, although
progress has been made more recently (McNichol et al., 2016).

It is generally considered that the dominant primary
producers in vent habitats harness energy from the oxidation
of major electron donors transported in vent fluids: sulfide,
hydrogen, methane and iron. Sulfide-oxidizing aerobes are
considered key primary producers at vents (Sievert et al., 2008).
Thiosulfate, a product of incomplete abiotic sulfide oxidation that
can reach substantial concentrations in some ABA hydrothermal
habitats (Gartman et al., 2011), is also utilized by metabolically
diverse Campylobacteria and Gammaproteobacteria (Campbell
et al., 2006; Nakagawa and Takai, 2008). Campylobacteria are
dominant microbial community members of the sub-seafloor
biosphere as well as early colonizers in low-temperature
hydrothermal environments and as such play a primary role
in carbon fixation at vents (Alain et al., 2004; Huber et al.,
2007; Gulmann et al., 2015; McNichol et al., 2016; Meier
et al., 2017). Recent studies also point to the capacity of vent
chemolithoautotrophs to derive energy from hydrogen oxidation
(Takai et al., 2004; Petersen et al., 2011; Sanders et al., 2013;
McNichol et al., 2016, 2018). Hydrogen-oxidizers have been
isolated from various deep-sea hydrothermal vent fields, in
association with epibiont-bearing invertebrates or from biofilms
formed in chimney wall, including Aquificales, Campylobacteria
(Epsilonproteobacteria), Desulfurococcales, Methanococcales,
Thermodesulfobacteriales and Deferribacterales (Nakagawa and
Takai, 2008).

Sulfur-cycling microbes at vents are also able to use reduced
sulfur compounds autotrophically with oxygen or nitrate as
electron acceptors (Amend et al., 2004; Takai et al., 2006;
Nakagawa and Takai, 2008; Hügler et al., 2010; Yamamoto and
Takai, 2011; Sievert and Vetriani, 2012; McNichol et al., 2016,
2018). There are basically two sulfide-oxidation pathways: the so-
called SOX pathway, and the reverse-sulfate reduction pathway,
the latter of which involves APS reductase and dissimilatory
sulfide reductase (DSR) (Sievert et al., 2008; Nakagawa and
Takai, 2008; Yamamoto and Takai, 2011). In sulfur-oxidizing
Gammaproteobacteria, the latter may also be combined with an
incomplete SOX system (missing soxCD) to oxidize thiosulfate,
in which case thiosulfate is oxidized to elemental sulfur,
followed by its oxidation to sulfate via the reverse DSR
pathway. Campylobacteria and some gammaproteobacteria like
Thiomicrospira have the complete SOX pathway, which they
use to oxidize reduced sulfur compounds such as elemental
sufur, polysulfide, and thiosulfate and possibly sulfide to sulfate,
while using the sulfide-quinone reductase to oxidize sulfide to
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elemental sulfur (Nakagawa and Takai, 2008; Sievert et al., 2008).
The combination of sulfur oxidation via the SOX pathway and
carbon fixation via the rTCA pathway has been shown to be
ubiquitous in Campylobacteria (Nakagawa and Takai, 2008).

Less is known about the potential importance of
organic carbon production pathways associated with
other chemosynthetic processes, such as methanogenesis,
methane oxidation and iron oxidation in deep-sea vent
habitats. The majority of methanogenic microorganisms
that thrive in hydrothermal vents, like Methanococcales
(e.g., Methanocaldococcus and Methanothermococcus) and
Methanopyrales (i.e., Methanopyrus) use the reductive acetyl-
CoA pathway for carbon fixation (Ragsdale and Pierce, 2008;
Weiss et al., 2016). Methanotrophs are not “autotrophs” in the
strictest sense, but they are primary producers in vent fields
where methane is produced abiotically, e.g., serpentine-hosted
vents, and play a significant role in primary production in
symbiosis with invertebrates forming dense fauna aggregations.
While aerobic methanotrophs are abundantly represented in
bivalve symbionts, the anaerobic free-living methanotrophs, the
so-called ANME I group, have also been described from the
Lost City chimneys in association with sulfate reducing bacteria
(Brazelton et al., 2006), as well as for some vent sites of the Von
Damm complex on the Cayman Rise (Reveillaud et al., 2016). In
iron-rich environments, iron oxidizers like Zetaproteobacteria,
known to use the Calvin-Benson-Bassham cycle, can sustain
significant biomass production. Mariprofundus ferrooxydans
dominates thick iron oxide mats formed around vents on the
flanks of the Loihi Seamount submarine volcano (Emerson
and Moyer, 2002) and flourishes on iron-rich talus and other
rubble at TAG and other hydrothermal vent mounds (Mori et al.,
2017). Nevertheless, next generation sequencing techniques (e.g.,
pyrosequencing and DNA-microarrays) have started to shed
light on the complexity and functional diversity of vent microbes
(He et al., 2007). As an example, the sequences obtained from a
black smoker chimney in the Mothra vent field at the Juan de
Fuca Ridge revealed that sulfur oxidation, putatively coupled to
nitrate reduction, was mainly used to perform inorganic carbon
fixation through the Calvin–Benson–Bassham cycle (Xie et al.,
2011). The high-throughput metagenomics study conducted
by Wang et al. (2009) further revealed differences in microbial
metabolic functions in the inner and outer section of a newly
grown chimney at the Juan de Fuca Ridge. With only around 1%
common microbial functional genes, the microbial communities
are not only metabolically and physiologically highly diverse, but
also appear to undergo dynamic succession and adaptation in
response to the steep temperature and chemical gradients across
the rapidly growing chimney.

More complex interactions than inferred from available
energy budgets and metabolic capabilities are yet suggested
between the activity of microbial communities and the
geochemical conditions of their habitats (Campbell et al., 2013;
Reveillaud et al., 2016; Meier et al., 2017). Metagenomic studies
are just starting to shed light on this aspect, e.g., revealing niche
partitioning between different sulfur-oxidizing Campylobacteria
with distinct patterns of genes involved in reducing oxidative
stress in response to the increased oxygen concentrations in

their microhabitat (Meier et al., 2017). These studies point
to the need for an improved characterization of microscale
environmental gradients and the processes underlying them to
assess the CO2-fixing capacity of free-living microbes developing
at the surface and within porous substrates in vent ecosystems.
The extent of this sub-seafloor biosphere itself remains a major
unknown, despite efforts to sample it by deep-drilling or by
collecting diffuse fluids (Takai et al., 2004; Huber et al., 2007) and
recent work that tried putting constraints on its standing stock
and turnover (Robidart et al., 2013; McNichol et al., 2018).

Versatile and Flexible Symbiotic
Associations
One of the most striking features conserved across vent
ecosystems from MOR and ABA is their epibenthic biomass
dominated by symbiont-containing invertebrates. In contrast
to the vast diversity of free-living chemolithoautotrophs, there
are relatively few chemolithoautotrophic symbionts that form
obligate associations with vent invertebrates (Fisher et al., 2007;
Dubilier et al., 2008). “Holobionts” (i.e., the intact assemblage of
symbionts and their host invertebrates) can be considered major
primary producers of the hydrothermal ecosystem, similar to
corals in tropical reef ecosystems. However, biomass estimates are
still relatively rare for vent populations, owing to the difficulties
to quantitatively collect biological assemblages for a precisely
defined given seafloor area (Govenar et al., 2005). Improvement
of image resolution now offers alternative methods to estimate
minimal biomasses from the visible individuals forming 3D-
assemblages (Juniper et al., 1998; Gebruk et al., 2000; Cuvelier
et al., 2012). Biomass estimates as high as 70 kg m−2 (wet
weight with shells) were reported by Gebruk et al. (2000) for the
Logatchev site, while 44 kg m−2 were estimated for tubeworm
assemblages of the Juan de Fuca Ridge (Juniper et al., 1998). These
values are, however, highly variable among vent fields even for
the same genus. The density of Bathymodiolus azoricus beds at
Menez Gwen has been estimated to vary from 400 to 700 ind m−2

(Colaco et al., 1998), corresponding to biomass values ranging
between 0.71 and 5.3 kg m−2 (wet weight) (Martins et al., 2008).
Husson et al. (2017) reported B. azoricus densities ranging from
2232 to 31,630 ind m−2 for Lucky Strike, corresponding to dry
weight estimates of 0.1 to 3.1 kg m−2 (i.e., 1.5 to 66.8 kg m−2

wet weight with shell), while estimating an equivalent to 4.0 dry
weight kg m−2 for Logatchev from Gebruk et al. (2000). Rimicaris
exoculata shrimp swarms as dense as 2500 ind m−2 have been
described at several vent fields MAR (Van Dover et al., 1988;
Copley et al., 1997), and their biomass could reach 4.0 kg m−2

if a mean wet weight of 1.6 g is accounted (RamirezLlodra et al.,
2000). Kiwa sp. galatheid crab assemblages of up to 2700 ind m−2

on the Scotia Ridge (Marsh et al., 2012) are likely to reach similar
levels of biomass.

Interestingly, these symbioses are found in many vents around
the world but their distribution depicts distinct biogeographical
provinces. Vent fields with similar properties in two distinct
provinces have different symbiotic taxa, dominating their
biomass. So far, there are 11 biogeographic provinces identified,
including the Arctic and Southern oceans (Moalic et al., 2012;
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Rogers et al., 2012). Conversely, vents with strikingly different
geochemistry may host similar taxa within the same province.
Within a given province, the key invertebrate taxa may be
shared among ultramafic, andesitic and basaltic-hosted vent fields
despite striking differences in the “geofuels” contents in the fluids
(e.g., on the Mid-Atlantic Ridge R. exoculata or B. azoricus
(Desbruyères et al., 2001; Schmidt et al., 2008; Le Bris and
Duperron, 2010). Nevertheless, variable densities and size of
these aggregations have been attributed to specific biotic and
abiotic controls on biomass formation by these species at vent
fields hosted in different geological settings (Gebruk et al., 2000;
Desbruyères et al., 2001).

The capacity of some invertebrate taxa to host multiple
symbionts has been posited as an adaptation to benefit from
the diversity of available geofuels. On the mid-Atlantic Ridge,
for instance, the relative abundances of methanotrophic and
thiotrophic symbionts in B. azoricus at Menez Gwen, Lucky
Strike and Rainbow vent fields varies consistently with changes
in the chemical energy available from methane and sulfide in
their habitat (Duperron et al., 2006; Le Bris and Duperron,
2010). As shown for these species and for the Alviniconcha spp.
gastropods from the Lau basin (Beinart et al., 2012), the capacity
for thiotrophic symbionts to use hydrogen as an alternative to
sulfide further expands the metabolic versatility of the symbiotic
association (Petersen et al., 2011). Regional scale differences in
symbiont abundances and gene expression in these multiple
symbioses of Bathymodiolus mussels and provannid gastropods
(Duperron et al., 2006; Dubilier et al., 2008; Duperron, 2010;
Beinart et al., 2012) may further reflect flexible pathways in the
acquisition of energy. For example, from distinct vent fields from
the Eastern Lau basin, Beinart et al. (2012) revealed that four
cryptic species of Alviniconcha snails host three symbionts, two
types of Gammaproteobacteria and one type of Campylobacteria.
Consistently, from North to South along a ∼300 km stretch of
vent fields, the campylobacterial symbionts dominated in the
northernmost vent fields with the higher end-member H2 and
H2S concentrations, while the gammaproteobacterial symbionts
dominated in the southernmost vent fields, with decreasing
concentrations of both electron donors in the end-member fluids.
The striking changes in the association of the host and symbionts
were hypothesized to reflect niche adaptation in a geologically
complex regional environment.

Experimental studies on the MAR mussel B. azoricus
further suggested that sulfide-oxidizing and methane-oxidizing
symbiont abundances can change over hourly timescales (Halary
et al., 2008; Riou et al., 2008) and this capacity was suggested
to explain the variable abundance of the two symbionts
among individuals from a single chimney, as a response to
environmental gradients (Halary et al., 2008). In a recent study of
metabolic activity through combined FISH imagery of ribosomal
and messenger RNA, Wendeberg et al. (2012) showed that the
symbionts modify gene transcription in response to fluctuating
concentrations of methane, reduced sulfur compounds and
oxygen more rapidly than their population change in abundance,
and would thus modulate CO2-fixation rates in response to
short-term changes in habitat conditions. How this plasticity
relates to the capacity to fix carbon is, however, still largely

unconstrained. Estimates of corresponding carbon fixation
rates by chemoautotrophic symbionts is restricted by the
inability to cultivate them, and has mostly been derived by
in vivo experiments on host invertebrates in pressurized aquaria
(Childress and Fisher, 1992; Girguis et al., 2000, 2002; Girguis
and Childress, 2006; Ponsard et al., 2013; Beinart et al., 2015).
Transcriptomic and proteomic studies further shed light on
the activity of the metabolic machinery that allows symbionts
to optimize energy acquisition and their potential limitation
in their natural habitat (Markert et al., 2007; Robidart et al.,
2011; Gardebrecht et al., 2012; Sanders et al., 2013; Watsuji
et al., 2014). The metatranscriptomic analysis of Sanders
et al. (2013) on in situ preserved individuals show distinct
sulfur metabolism pathways among the gammaproteobacterial
and campylobacterial symbionts, and confirms the capacity
of both symbionts to use H2 as an electron donor. Higher
expression of hydrogenases consistently correlates with the
hydrogen concentration in the end-member fluids and suggests
a larger role of this pathway in individuals where the
campylobacterial symbiont dominates (Sanders et al., 2013).
These authors furthermore observed marked differences in
carbon fixation pathways, with the CBB being dominant in
the gammaproteobacterial- and rTCA in the campylobacterial
symbiont. In contrast to earlier studies that considered the
CBB cycle as the only carbon-fixation pathway, proteome
analysis and enzymatic activities revealed that the symbiont of
Riftia pachyptila uses the rTCA in combination with the CBB
cycle (Markert et al., 2007, 2011), supporting metagenomic-
based analyses (Robidart et al., 2008, 2011). Combining the
energetically efficient rTCA anaerobic pathway in the low energy
hypoxic conditions with the less efficient aerobic CBB pathway in
high energy oxygenated conditions, was considered an adaptation
to the high temporal variability of in situ conditions (Markert
et al., 2007). Gardebrecht et al. (2012) revealed very homogeneous
gene expression and enzymatic activity between the symbiont
populations of R. pachyptila and Tevnia jerichonana co-occurring
in a diffuse vent assemblages, but the use of oxygen sensitive
rTCA enzymes is favored in T. jerichonana, which is expected
to live in the less oxygenated part of the habitat. Despite
host regulation, metabolic controls on energy acquisition and
CO2-fixation at vent finally appear to be largely influenced by
fluctuations and ranges in microhabitat conditions, as shown for
the free-living microbes.

HYDROTHERMAL HABITAT
CONSTRAINTS ON PRIMARY
PRODUCERS

The Diffuse-Flow Double-Loop Fuelling
Distinct Biological Assemblages
Although the composition of end-member fluids emitted from
black smokers are commonly used to compare biodiversity
patterns, the flux of electron donors originating from these high-
temperature emissions (i.e., >200◦C) remains mostly unavailable
to seafloor hydrothermal biota. Buoyant black smoker plumes
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reach temperatures suitable for chemolithotrophs only after
significant dilution in abyssal seawater, meters above the seafloor
(reviewed by Dick et al., 2013). The cooling of the hydrothermal
flow prior its emission on the seabed is a prerequisite for energy
transfer to benthic hydrothermal biota, with an upper thermal
limit of ∼122◦C (Kashefi, 2003) for prokaryotes and 50–55◦C
for metazoans (Girguis and Lee, 2006; Ravaux et al., 2013). The
circulation of seawater through networks of cracks and porous
minerals and its interaction with end-member fluids enable heat
dissipation and, hence, structure the distribution of habitats for
free-living microbes and symbiotic invertebrates. The resulting
secondary hydrothermal outflows of low-temperature seawater-
dominated mixed fluids, so-called “diffuse flows,” are known to
dominate the heat budget at vent field scale (Bemis et al., 2012;
Mittelstaedt et al., 2012). Ramondenc et al. (2006) estimated that
the heat output from diffuse flows could reach ten times that of
high-temperature focused flows for an EPR vent field. A similar
estimate was obtained at the scale of a large hydrothermal
edifice (Tour Eiffel) on the Lucky Strike vent field on the MAR
(Mittelstaedt et al., 2012). The supply of electron donors from
diffuse flows is also likely to dominate the energy budget available
to biota at vent field scale, although attempts to quantify the
corresponding chemical fluxes remain rare due to their extensive
chemical and thermal variability.

Accordingly, the activity and abundance of
chemolithoautotrophs may more closely reflect the chemical
properties of these secondary outflows than the properties
of conservatively mixed fluids derived from the end-member
fluids, which underlie thermodynamics assessments. To examine
the factors potentially constraining the hydrothermaly driven
chemoautotrophic production, we propose to revisit these
properties in the light of the conceptual model of diffuse flows
proposed by Lowell et al. (2015) (Figure 2). Often considered
as a continuum of end-member fluid dilution in seawater,
diffuse-flow fluids rather segregate in two types of flows. A first
type of diffuse flows results from the rapid cooling of the
high-temperature hydrothermal discharge, hereafter referred as
“high-temperature diffuse flows” or “HT-diffuse flows.” They
are typically represented by secondary outflows through cracks
in the wall of black and white smokers or diffusing out of
porous minerals. The second type of diffuse flows derives from
seawater convection within the basement rocks (e.g., basalt or
andesite) with no or limited mixing with the high-temperature
discharge whose main conduits are partly insulated by anhydrite
precipitated from seawater as temperature increases (Lowell
et al., 2015). These low-temperature diffuse flows (LT-diffuse
flows) can nevertheless be substantially enriched in volatile
compounds (H2S, H2, methane) by molecular diffusion and
heated by conduction through the mineral layers insulating
the high-temperature fluids. These fluid flows are distributed
through cracks or holes on the seafloor, such as typically formed
on pillow lava, on the walls of large mineral edifices or on inactive
deposits, with a wide range of venting temperatures (i.e., a few
tens of degree to c.a. 30◦C above the seawater background)
and flow velocities (c.a. 5 × 10−4 up to 0.15 m s−1) (Pruis and
Johnson, 2004; Scheirer et al., 2006; Sohn, 2007; Bemis et al.,
2012; Barreyre et al., 2014).

The partitioning of biomass-dominant taxa at vent site scale
on the East Pacific Rise 9◦50′N and 13◦N vent fields illustrates
the distinct properties of habitats formed by the two types of
flows, with foundation species exclusively associated with high-
temperature diffuse flows on chimney walls (e.g., Alvinella spp.)
or with low temperature diffuse flow on basalt (e.g., R. pachyptila
and Bathymodiolus thermophilus) (Fustec et al., 1987; Shank
et al., 1998). On the Juan de Fuca Ridge, Sarrazin et al. (1997)
and Sarrazin and Juniper (1999) distinguished five biological
assemblages, with alvinellid species similarly dominating HT-
diffuse flow habitats on chimney flanks. On north-east Pacific
ridges, the endosymbiotic tubeworm Ridgea piscesae with short-
fat and long-skinny morphotypes are described in relatively high
flow and high sulfide areas on chimneys and low-flow, low
temperature, low sulfide on basalt, respectively (Urcuyo et al.,
2003). The phenotypic plasticity that enables this species to thrive
on habitats associated with the two types of diffuse flows is rather
unique in vent species. The presence of R. pachyptila, coexisting
with an Alvinella pompejana aggregation, on a massive long-
lived chimney of the East Pacific Rise was instead attributed
to distinct types of outflows resulting from entangled plumbing
networks within the mineralized structure, as revealed by the
distinct properties of the local fluid sources (Le Bris et al., 2006b)
(Figure 2). On the MAR, the massive chimney Tour Eiffel also
likely encompass the two types of diffuse flows, as illustrated
by the patchwork of venting zone on porous substrates, cracks
and white smokers with different thermal and chemical ranges,
that host distinct taxa assemblages of vent mussels and shrimps
(Desbruyères et al., 2000; Le Bris et al., 2000; Desbruyères et al.,
2001; Cuvelier et al., 2011; Sarrazin et al., 2014; Husson et al.,
2017). In the Eastern Lau basin, Sen et al. (2013) confirmed
habitat segregation for symbiont-containing fauna between HT-
diffuse flows on anhydrite spires inhabited by Alviniconcha
spp. gastropods and mobiles species such as crabs, shrimp and
polynoids, and LT-diffuse flows inhabited by Bathymodiolus
brevior mussels and Ifremeria nautilei gastropods that occupy
similar temperature, sulfide and oxygen ranges on chimney flanks
than on solidified lava. The segregation of fauna described on
large chimneys and surrounding basalt of the East Scotia Ridge
may similarly reflect the two major types of diffuse flows, though
temperature and chemical measurements have not been reported
to support this conceptual model (Rogers et al., 2012).

On the Juan de Fuca Ridge, Sarrazin and Juniper (1999)
reported lower biomasses in habitats associated with the hottest
flows (<2 kg m−2), compared to low-temperature habitats on
the same hydrothermal edifice where R. piscesae tubeworm
biomasses reached 20 kg m−2. However, experimental studies
have shown that substrates hosting HT-diffuse flows on chimneys
from the 9◦50′N and 13◦N vent fields on the East Pacific Rise
support the rapid growth of free-living chemolithoautotrophic
microbes (Taylor et al., 1999; Alain et al., 2004). Alvinellid-
dominated communities can reach biomass of about 0.5 kg m−2

in 20 to 160 days (Pradillon et al., 2009). In fact, the accumulated
biomass does not necessarily reflects the production rate in
these habitats, as a substantial fraction of the organic matter
produced may be exported as flocs by hydrothermal plumes,
sequestered in the mineral edifice as shown for Alvinella spp.
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FIGURE 2 | Diffuse-flow types and related seafloor habitats properties (adapted from the double-loop model of Lowell et al., 2015). The blue arrows depict the
diffuse fluids issued from the low-temperature recharge convection cell dominated by seawater (LT1 and LT2), the red arrows depict the fluids issued from the
convection cell dominated by the end-member fluid discharge (HT1 and HT2). Electron donor contents and temperatures on LT1 and LT2 can have a minor mixing
component and variable influences of non-conservative processes such as molecular diffusion of volatiles and heat conduction. HT1 and HT2 electron donor
contents and temperatures are dominated by the mixing of the hydrothermal end-member and seawater. Typical assemblages associated with the different diffuse
flow types on basalt, hydrothermal edifices of their periphery (1) Tevnia jerichonana and bacterial mat assemblages on fresh lava one year after a volcanic eruption on
EPR 9◦50′N, (2) Riftia pachyptila and Bathymodiolus thermophilus mussels in the same area five years after the eruption, (3) B. azoricus beds at Menez Gwen (MAR)
surrounding small diffuser structures, (4) B. azoricus beds at Rainbow surrounding small diffusers at the base of a large chimney complex, (5) R. pachyptila
surrounding a small diffusing structures covered with Alvinella spp. (EPR13◦N), (6) B. azoricus beds at Lucky Strike (MAR) on the flank of a large chimney,
(7) R. exoculata on the wall of hydrothermal edifices hosting black smoker outflows at TAG and Rainbow (MAR), (8) and (9) Alvinella spp. colonies colonizing the walls
of black smokers, one year and five years after an eruption (EPR 9◦50′N).

tubes (Le Bris and Gaill, 2010), or deposited at the base of
the chimney under the form of R. exoculata shrimp molts
(Schmidt et al., 2008). In comparison, areas affected by massive
eruptions display extensive LT-diffuse outflows on fresh, highly
porous lava and support rapid production and accumulation of
biomass over years by foundation species such as R. pachyptila
tubeworm and B. thermophilus mussel on EPR fields (Fustec et al.,
1987; Shank et al., 1998; Scheirer et al., 2006); or the tubeworm
R. piscesae on the Juan de Fuca Ridge (Marcus et al., 2009). In
comparison, the later stage of an eruption cycle has a reduced
seafloor porosity that favor the formation of biomass by long-
lasting HT-diffuse flow assemblages on mineralized chimneys as
represented by vent fauna habitats of EPR 13◦N where the last
eruption is supposed to have occurred more than 29 years ago
(Fustec et al., 1987).

Non-conservative Processes Increasing
Diffuse-Flow Geochemical Variability
The physico-chemical properties of diffuse fluids are much
more temporally and spatially variable than that of end-member
fluids (Koschinsky et al., 2002; Von Damm and Lilley, 2004;
Foustoukos et al., 2009; Reeves et al., 2011; Mittelstaedt et al.,

2012; Contreira-Pereira et al., 2013; Ishibashi et al., 2014;
Nakamura and Takai, 2014; Nedoncelle et al., 2015). These
properties can even vary on semi-diurnal tidal scales (Scheirer
et al., 2006; Barreyre et al., 2014) making the assessment of
energy flows at vent field scale very difficult. Notwithstanding
the type of diffuse flow, the prevalent idea is that vent fluids
over a vent field reflect a continuum of mixing ratios of the end-
member fluid and seawater that mix conservatively. However,
since they are issued from different sub-seafloor fluid networks,
several processes leading to non-conservative properties of the
mix (i.e., concentrations are not linearly correlated to the
seawater-end-member mixing ratio) may imprint their signatures
on LT and HT-diffuse flow properties. Mismatch with the
conservative dilution model has been repeatedly reported in
HT-diffuse flow habitats, as a result of consumption/production
of electron donors and conductive heat exchange within the
chimney wall. As an example, much higher sulfide concentrations
and lower pH than predicted from the end-member fluid
dilution model for a given temperature suggested substantial
conductive cooling of HT-diffuse flow fuelling Alvinella spp.
colonies (Le Bris et al., 2001, 2003, 2005; Le Bris and Gaill,
2007). Consistently, outflows diffusing the chimney wall beneath
polychaete tubes at temperatures ranging 105 to 173◦C had
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limited seawater contribution despite the temperature being 2 to
3-fold lower than the end-member fluid temperature (Di Meo-
Savoie et al., 2004). Complex diffusion and advection processes
through porous substrates and cracks of chimney walls are
furthermore likely to generate locally distinct temperature, pH,
and chemical gradients though selective precipitation processes
and consumption of electron donors and acceptors by microbes
(Tivey, 2004; McCollom and Amend, 2005).

LT-diffuse flows similarly display variable concentrations in
electron donors that reflect extensive sub-seafloor seawater
convection in the shallow sub-seafloor, with conductive warming,
mixing with a minor fraction of end-member fluid and molecular
diffusion through porous anhydrite and sulfide precipitates.
Departure from the conservative mixing models was additionally
attributed to microbial activities beneath the seafloor within
this porous interface (Corliss et al., 1979; Cooper et al., 2000;
Von Damm and Lilley, 2004; Waite et al., 2008; Le Bris and
Duperron, 2010; Wankel et al., 2011). Accordingly, substantial
methane consumption in the sub-surface was documented at
Menez Gwen, Lucky Strike and Rainbow on the Mid-Atlantic
Ridge where methane is abundant in fluids, reaching up to 60%
of the end-member contribution at the Rainbow vent field (Le
Bris and Duperron, 2010). Conversely, on basalt-hosted vent
fields like EPR 9◦50′N where the methane concentration in end-
member fluids is low, sub-seafloor methane production can result
in higher methane in diffuse fluids than predicted from the
dilution of end-members (Lilley et al., 2003; Von Damm and
Lilley, 2004). Lowell et al. (2015) yet observed that methane
consumption could also take place in the subsurface for certain
EPR 9◦50′N vent sites.

This phenomenon denotes an effective competition for
electron donors between sub-seafloor primary producers and
those thriving as free-living mats or symbionts on the seafloor
(Johnson et al., 1994; Le Bris et al., 2006a; Waite et al.,
2008). It should be noted, however, that a large fraction of the
electron flux is not utilized by sub-seafloor microorganisms,
possibly due to electron acceptor limitation (McNichol et al.,
2016). The contribution of the sub-seafloor biosphere to the
resources available for the surrounding deep-sea communities
lies beyond the scope of this study and is just beginning
to be quantitatively addressed (e.g., McNichol et al., 2018).
Nevertheless, these microbes also produce electron donors
that are exported by fluids and can support additional
chemoautotrophic growth on the seafloor, as shown for
methane and ammonia (Von Damm and Lilley, 2004). In
some cases, even the microbial production of sulfide can be
significant, as in Lost City fluids where anaerobic methane
oxidation is coupled to sulfate reduction (Brazelton et al.,
2006).

Electron Donor Availability in the
Thermal Niches of Symbiotic
Invertebrates
The boundary layer where diffuse fluids mix with seawater
above the seafloor shapes the limits of the habitable space for
different types of vent invertebrate harboring chemoautotrophic

symbionts (Van Dover, 2000; Desbruyères et al., 2001; Fisher
et al., 2007). The cooler end of the associated thermocline,
at which point the temperature reaches that of background
seawater, expands no further than a few decimeters above the
local outflow (and typically less than a few meters horizontally,
following cracks or porous substrates) and fluctuates both
vertically and horizontally (Johnson et al., 1988a,b; Scheirer
et al., 2006). Johnson et al. (1988a) first described the chemical
gradients across this interface by using a submersible in situ
chemical analyzer. Within tubeworm assemblages colonizing
LT-diffuse flow habitats of Rose Garden (Galapagos Spreading
Center), steep variations in H2S, FeII, MnII, CH4 exhibited quasi-
linear relationships with silica, a conservative tracer of the source
fluid dilution in seawater and were also linearly correlated with
temperature. Further studies confirmed the conservative mixing
of the local fluid source as the main driver of these gradients
in habitats of R. pachyptila and B. thermophilus on the East
Pacific Rise (Le Bris et al., 2006a). Biological consumption in
dense clumps and mussel beds can nevertheless generate large
deviations from this conservative mixing model as revealed by
the comparison of gradients before and after the local fauna had
been removed (Johnson et al., 1988a,b, 1994; Le Bris et al., 2006a).

The ratios of H2S/T, CH4/T and FeII/T can hence be primarily
considered as conserved variables across a vent site, independent
of the degree of dilution of the source fluid fueling secondary
flows (Le Bris et al., 2006a,b; Le Bris and Duperron, 2010; Lowell
et al., 2015) (Table 1 and Supplementary Table S1). H2S/T, in
particular, has been widely used to explore differences in the
habitats of foundation species within a vent field or among vent
fields that hold the imprint of the geological setting (Le Bris et al.,
2006a,b; Podowski et al., 2010; Gartman et al., 2011). On the
Eastern Lau Basin, for instance, Gartman et al. (2011) reported
a decrease in the H2S/T ratio in diffuse-flow habitats from the
northern basalt-hosted vent fields (Kilo Moana and TCaldera)
to the southern ones (ABE and Tu’i). Even though these H2S/T
ratios are much lower than those of end-member fluids on these
vent fields (e.g., 5.6–7.0 versus 16.5–19.9 at Kilo Moana; 1.9–
2.1 versus 6.7–8.7 at Tu’i (Mottl et al., 2011)), the decrease is
consistent with a greater proportion of andesite in the rocks
hosting the hydrothermal circulation closer to the subduction
zone to the South.

Numerous studies of vent habitats also used this proxy to
compare the available energy for distinct assemblages of biomass-
dominant invertebrates over space and time, particularly on
the unstable Galapagos Spreading Center and East Pacific Rise
vent fields (Johnson et al., 1988a,b; Nees et al., 2008; Moore
et al., 2009; Mullineaux et al., 2012) (Table 1). Within different
vent sites of the EPR 9◦50′N vent field, very similar H2S/T
ratios were measured among assemblages of tubeworms, mixed
tubeworm-mussel aggregations or mussel beds suggesting that
the extent of dilution rather than the properties of the fluid
source fueling them was the discriminating factor among the
two colonists (Le Bris et al., 2006a). In contrast, distinct H2S/T
ratios were observed between adjacent areas of HT-diffuse and
LT-diffuse flows within a meter from each other, reflected by
different invertebrate colonies (Alvinella spp. and R. pachyptila)
(Luther et al., 2001; Le Bris et al., 2003, 2006b). Similarly,

Frontiers in Marine Science | www.frontiersin.org 10 January 2019 | Volume 5 | Article 531

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-05-00531 January 16, 2019 Time: 19:28 # 11

Le Bris et al. Hydrothermal Energy and Organic Carbon

TABLE 1 | Ratios of sulfide to temperature anomalies (with respect to background seawater) characterizing diffuse flow habitats at deep-sea hydrothermal vents.

H2S/1T
(µM ◦C−1)

All studied hydrothermal
vent fields

Mid-Ocean Ridges Arcs and back-arc
spreading centers

Excluding post-eruption <3y post-eruption

Mean 12.0 9.2 21.7 11.8

Max 90.5 54.3 90.5 52.9

Min 0 0 0.0 0.0

Median 7.8 5.8 20.4 6.1

Q1 3.1 2.6 11.7 1.8

Q3 16.7 11.8 29.5 15.0

adjacent flows with different H2S/T ratios have been described
on large edifices of the Mid-Atlantic Ridge, as for instance on
segregated patches of Bresiliid shrimps and B. azoricus mussels
on the Tour Eiffel edifice of Lucky Strike vent field (Le Bris
et al., 2000; De Busserolles et al., 2009). Another example can
be given from the Lau Basin where significantly higher ratios
were found in the habitat of the gastropod Alviniconcha spp.,
as compared to the other dominant gastropod species I. nautilei
on hydrothermal edifices from 3 vent fields (Podowski et al.,
2010; Gartman et al., 2011). Interestingly, the H2S/T ratio in the
habitats of these two species are not conserved between vent fields
but the areas with the highest H2S/T ratios were occupied by
Alviniconcha spp. suggesting a competition for habitat (Gartman
et al., 2011).

Significant temporal variations in the H2S/T ratio were
reported as well. From 2004 to 2005, in the years before the
eruption at 9◦50′N EPR, Nees et al. (2008) described an increase
in the H2S/T ratio for the tubeworm habitat at Tica, one of the few
sites that remained active after the eruption. In 2007, this ratio
remained similar to its pre-eruption value in 2005. Marcus et al.
(2009) described a decrease in the H2S/T ratios over three years
combined with a decrease in the temperature and sulfide content
of new vents formed after an eruption at Axial Volcano on the
Juan de Fuca Ridge. In the Lau Basin, four vent fields exhibited
a change in the H2S/T ratio from 2006 to 2009 (Gartman et al.,
2011), with an H2S/T ratio increasing for the three northern sites.
In comparison at the southernmost site, Tu’i Malila, H2S/T varied
by less than 10% over the same period.

Environmental Factors Limiting Energy
Harnessing Processes by Symbiotic
Fauna
Rocky vent habitats do not have a narrow well-defined redoxcline,
as established for sedimentary environments. Since advection
and mixing are the primary mechanisms supplying both electron
donors and acceptors at the seafloor, oxygen often coexists with
sulfide and other electron donors in the cooler region of the
mixing boundary layer (Johnson et al., 1988a,b; Schmidt et al.,
2008; Moore et al., 2009; Zielinski et al., 2011). As the seawater
contribution decreases in the mixed layer, the oxygen content
proportionally decreases. In situ measurements furthermore
show that oxygen is depleted by biological and abiotic processes
and only remains available in the periphery of the mixing
interface. The temperature limit for oxygen availability in the

surrounding of tubeworms and mussels on the East Pacific Rise
and Galapagos Spreading Center was found to be no more than
11–12◦C (Corliss et al., 1979; Johnson et al., 1988b, 1994; Moore
et al., 2009). A large portion of the tubeworm habitat, where
temperature can reach 30◦C at the base of tubes, is thus devoid
of oxygen. At Logatchev on the Mid-Atlantic Ridge, Zielinski
et al. (2011) established a similar thermal boundary for oxygen
in mussel beds, despite a much higher oxygen concentration
in the cooler end of the thermal gradient corresponding to the
Atlantic deep-sea water mass. The O2/T ratio (defined by the
temperature and oxygen content of abyssal waters, on one side,
and the maximum temperature of the oxycline on the other
side of the gradient) therefore appears as another discriminating
variable of vent habitats (Johnson et al., 1988a,b; Luther et al.,
2008; Nees et al., 2008; Moore et al., 2009; Zielinski et al., 2011). In
comparison to LT-diffuse flows, vigorously mixing of HT-diffuse
flow fluids with seawater could enhance oxygen availability in the
mixing zone. Oxygen was reported to be present at temperatures
up to 30 ◦C in the surroundings of Rimicaris shrimp assemblages
on the Rainbow vent field fueled by fluids that emanate from
the walls of large edifices (Schmidt et al., 2008). On the flank of
chimneys in the Lau basin, oxygen did not decrease below 60 µM
at 22◦C, the maximum temperature of the Alviniconcha spp.
habitat, suggesting that this environment is also more oxygenated
than LT-diffuse flows in the area (Podowski et al., 2010). However,
this situation cannot be generalized for chimney flank habitats
on the East Pacific Rise, as the A. pompejana environment is
strongly depleted in oxygen, with concentrations lying below the
detection limit of 5 µM at 13◦C (Di Meo-Savoie et al., 2004). The
differences in oxygen availability in habitats are thus only partly
explained by the type of diffuse venting, by biological oxygen
consumption and by the oxygen content in deep-sea waters.
The later widely varies across ocean basins and depths (Boyer
et al., 2013), with abyssal waters being noticeably much more
oxygenated over the Mid-Atlantic Ridge vent fields (Le Bris et al.,
2000; Schmidt et al., 2008; Zielinski et al., 2011; Perner et al., 2013;
Sarrazin et al., 2015) than on the East Pacific Rise (Johnson et al.,
1988a; Luther et al., 2001; Nees et al., 2008; Moore et al., 2009).

Despite most vent invertebrates have respiratory and
metabolic adaptations that enable them to thrive in relative
hypoxia or intermittent anoxia (Hourdez and Lallier, 2007),
oxygen is likely to be a strong driver of primary production
by symbiotic fauna. Thermodynamic models confirm that the
maximum available energy (per kilogram of mixed fluids) is set
by the availability of oxygen in the thermal niche of symbiotic
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species on the Mid-Atlantic Ridge (Schmidt et al., 2008; Le
Bris and Duperron, 2010). The most energetic conditions for
the R. exoculata epibionts at Rainbow and TAG or B. azoricus
at Menez Gwen, Lucky Strike and Rainbow lie in the 15–
25◦C range. Experimental studies in high-pressure aquaria
furthermore identified oxygen uptake as a limiting factor for
Riftia growth (Girguis and Childress, 2006; Childress and
Girguis, 2011). In situ measurements confirmed that oxygen
availability is effectively limiting in the microenvironment
of their assemblages on the East Pacific Rise (Johnson et al.,
1994; Moore et al., 2009) and suggested that oxygen availability
might act as a discriminative factor between T. jerichonana
and R. pachyptila, the two tubeworm species coexisting in
vent habitats 2 years after a volcanic eruption (Moore et al.,
2009). Since, endosymbiotic invertebrates with O2-binding
hemoglobins have the capacity to bind oxygen and transfer it to
their symbionts, they may take advantage of oxygen and sulfide
fluctuations to meet their energetic requirements (Childress
and Fisher, 1992; Johnson et al., 1994). More generally, tidal
modulations of the mixing plume induced by bottom currents
indeed generate alternative oxic-anoxic conditions in diffuse
flow habitats and impose variable abiotic constraints on biomass-
dominant species (Scheirer et al., 2006; Mittelstaedt et al., 2012;
Barreyre et al., 2014; Nedoncelle et al., 2015; Sarrazin et al., 2015).
So far, such constraints have not been systematically explored,
but first attempts to relate the B. thermophilus growth rate to tidal
cycling confirmed strong relationships between growth and the
hydrodynamic regime (Nedoncelle et al., 2015). pH, oxygen and
sulfide fluctuations modulated by the tidal regime were shown
to favor shell growth, while more stable chemical conditions at
higher hydrothermal flow appear less suitable (Nedoncelle et al.,
2015).

Other abiotic factors that characterize chemical speciation
in the diffuse flow-seawater mixing boundary layer might also
influence the capacity of chemolithoautotroph to meet their
energetic requirements. The proportion of free sulfide forms
(i.e., H2S and HS−) drives the capacity of endosymbiont hosts
to transport sulfide through gill membranes (Goffredi et al.,
1997). The exclusion of Riftia from some HT-diffuse flow areas
inhabited by alvinellids was thus attributed to the formation of
iron sulfide complexes or nanopolymers (Luther et al., 2001).
Fe/H2S in diffuse flows and the relative proportion of free
sulfide is, however, largely variable among HT-diffuse flows, even
within the same vent field (Shank et al., 1998; Le Bris et al.,
2003; Von Damm and Lilley, 2004; Le Bris and Gaill, 2007;
Le Bris and Duperron, 2010). The pH of LT-diffuse flows that
generally lies in the moderately acidic to neutral range (e.g.,
6–7, Sarradin et al., 1998; Le Bris et al., 2001; Le Bris et al.,
2006a; Schmidt et al., 2008) is another potentially significant
factor discriminating suitable habitats for vent species. pH in
vent habitats decreases exponentially from bottom seawater to
the substrate, typically over a few centimeters (Le Bris et al.,
2001, 2003, 2006a). Conductive cooling further enhances this
constraint by generating steep pH gradients (up to 3 units) at
the surface of chimney walls (Le Bris et al., 2001; Le Bris and
Gaill, 2007). While the H2S/HS− ratio is directly governed by
pH, more toxic conditions are expected when pH decreases below

6.5 (i.e., below pKaH2S in seawater at salinity of 35, 2500m and
c.a. 25◦C) (Le Bris et al., 2003, 2006b). Mussels are additionally
sensitive to constraints on the formation of their calcified shell
with particularly extreme conditions expected on ABA where
end-member fluids display pH lower than 1.0 (Tunnicliffe et al.,
2009).

The abiotic oxidation of electron donors is not considered
to be limiting for the energy transfer to vent biota, even when
oxygen is abundant. Based on the laboratory works of Millero
et al. (1987), Johnson et al. (1988a) calculated a lifetime > 100 h
for sulfide in oxygenated seawater at the Galapagos Spreading
Center. On the same empirical basis, Gartman et al. (2011)
estimated an abiotic sulfide oxidation rate as low as 2 to 9
10−4 µmol l−1 min−1 in diffuse flow habitats of the Lau basin.
High-pressure aquaria experiments confirmed that the microbial
symbionts of vent gastropods enhance sulfide oxidation by three
or more orders of magnitude (Luther et al., 2012). Whether
this result can be extrapolated to all vent symbioses still need
to be tested. The catalysis of abiotic sulfide oxidation by FeII

(Zhang and Millero, 1993) was not considered in these kinetic
assessments, although it may enhance the competition between
microbes and the abiotic oxidation of sulfide. Similarly, the
degree of abiotic oxidation of hydrogen by oxygen could be
modulated according to the composition of the fluid and venting
type. In comparison, the abiotic oxidation of iron is rapid and
autocatalytic and the competition between abiotic and microbial
iron oxidation is a well-known constraint for iron oxidizers,
which only thrive in microaerophilic conditions (Emerson and
Moyer, 2002).

THE TEMPORAL DRIVERS OF ORGANIC
CARBON PRODUCTION AT THE VENT
FIELD SCALE

Rise and Decline of Biomass-Dominant
Primary Producers After Volcanic
Eruptions
Shaped by magmatic and tectonic activity cycles, the instability
of venting was noticed as soon as the first discovered vent fields
on the Galapagos Spreading Center and East Pacific Rise were
revisited 1–2 years later (Fustec et al., 1987; Hessler et al., 1988).
In the last 40 years, volcanic eruptions have been reported at
few vent fields on both MOR and ABA (Rubin et al., 2012
for review). Only four of them have been monitored annually
during the recolonization process: Cleft segment, Co-Axial and
Axial Volcano seamounts on the Juan de Fuca Ridge (Tunnicliffe
et al., 1997; Tsurumi and Tunnicliffe, 2001; Marcus et al., 2009)
and 9◦50′N on the East Pacific Rise (Haymon et al., 1993; Lutz
et al., 1994; Shank et al., 1998; Mullineaux et al., 2012). The
monitoring of these areas revealed that large changes in both end-
member fluids and diffuse flow composition associate with the
colonization of new habitats formed by the massive lava flows
that eradicated previously resident communities. Synthesizing
field observations and experimental studies, Mullineaux et al.
(2018) emphasized the complex interaction processes driving the
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dynamics of these communities, which include both regional
controls on larval dispersal and local controls on settlement and
growth by habitat conditions. In the metapopulation framework
proposed by these authors, the turnover of species dominating
the primary production over successive recolonization stages
is not only driven by their capacity to outcompete for habitat
and resources (i.e., electron donors and acceptors) but also by
their dispersal ability. Poor competitors with large dispersal
capacity may hence take advantage of new habitats to settle and
grow, rapidly forming large biomasses, before being outcompeted
by late colonizers. In addition, species that strongly influence
the physico-chemical gradients, increasing the stability of their
habitat, are likely to persist longer as dominant primary
producers. Such marked transitions in the succession of colonists,
from free-living microbes to the symbiotic species that dominate
pioneer and mature communities, have been repeatedly described
and help setting the basis for a primary producer succession
model on representative ecosystem timescales (Figure 3).

On the two fast-spreading ridges, the first year following an
eruption is marked by a peak in sulfide (up to 50 mmol kg−1),
combined with a high iron content (up to 6 mmol kg−1)
of end-member fluids, denoting the direct interaction of dike
and seawater (Butterfield et al., 1997; Von Damm et al., 1997;
Von Damm and Lilley, 2004; Pester et al., 2014). On the
Main Endeavor Field (JdFR), Lilley et al. (2003) highlighted
a steep rise of the concentrations of sulfide and hydrogen in
end-member fluids attributed to the magmatic event. Yet, the

most remarkable characteristics of hydrothermal habitats in the
months following the eruption is that LT-diffuse flows hosting
microbial biofilms spread over large surface of the cooling lava
(Tunnicliffe et al., 1997; Shank et al., 1998; Gulmann et al.,
2015). So far, very limited chemical data are available for these
early LT-diffuse flows but the high H2S/T reported for such
microbial habitats one year after for the last eruption on EPR
9◦50′N exceeds that of mature LT-diffuse flows (Mullineaux
et al., 2012; O’Brien et al., 2015). Early post-eruption conditions
are coupled with high colonization rates of microbial biofilm
formation, as revealed by the formation of sulfur mats on new
basalt surfaces exposed to diffuse flows within days (Gulmann
et al., 2015; O’Brien et al., 2015). Pioneer colonist communities
are composed almost exclusively of Campylobacteria such as
Arcobacter and Sulfurovum. The diversity of diffuse-flow vent
microbial communities evolves over monthly scales (from a
few days to 9 months) to a more diverse assemblage including
Gamma-, Delta-proteobacteria and Bacteroidetes (Gulmann et al.,
2015). Carbon fixation by these early colonizers remain largely
unconstrained owing to the wide diversity of, both, microbial
metabolic capabilities and the spatial and temporal variability of
in situ niche conditions (Sievert and Vetriani, 2012; Campbell
et al., 2013).

One-two years after the opening of new habitats on fresh lava,
few pioneer species of symbiont-bearing invertebrates dominated
the biomass of diffuse-flow habitats and chemosynthetic
primary production (Tunnicliffe et al., 1997; Shank et al.,

FIGURE 3 | Typical temporal and spatial scales of investigation of key processes driving the chemoautotrophic productivity in deep-sea hydrothermal vent systems,
which need to be integrated to address the productivity of these ecosystems.
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1998; Mullineaux et al., 2010, 2012). These early assemblages
transitioned to mature assemblages after about 3 years with the
decline of first colonizers and on-set of symbiotic species that
dominated pre-eruption assemblages. As diverse communities of
invertebrates build 3D-assemblages in the immediate periphery
of diffusing vents, free-living microbial communities can colonize
new habitats formed at their surface (Govenar and Fisher,
2007; Martins et al., 2009; Cuvelier et al., 2012) benefiting
abundant grazer populations (e.g., polychaetes and gastropods)
(Marcus et al., 2009). Though it is unknown how much free-
living chemolithoautotrophic microbes contribute to biomass
production in mature assemblages, strictly autotrophic organisms
related to members of the genera Thioclava, Thiomicrospira, and
Halothiobacillus have been identified in tubeworm and mussel
assemblages at 9◦50′N EPR (Lutz et al., 2008). The contribution
of free-living microbes to the production of organic carbon
might be even more important in the LT-diffuse flow habitats,
where thick microbial mats formed within only a few weeks
on experimental substrates deployed on chimney walls occupied
by alvinellids (Taylor et al., 1999; Alain et al., 2004). Alvinella
worms particularly create energy-rich habitats inside and around
their tube, acting as ecosystem engineers promoting free-living
chemolithoautotroph growth (Le Bris et al., 2005; Le Bris and
Gaill, 2007, 2010).

Optimal conditions for symbiotic invertebrate growth may
represent a narrow temporal window in the life cycle of
a vent on fast-spreading ridges. The pioneer tubeworm
species, T. jerichonana, experience severe oxygen limitations
in post-eruption habitats (Nees et al., 2008). R. pachyptila, as
well, encounter strong environmental constraints to H2S and
bicarbonate uptake for its symbionts (Childress and Fisher,
1992; Girguis and Childress, 2006). The decline of tubeworm
assemblages within respectively two to three years after an
eruption has been associated with a substantial reduction of
venting activity and lower H2S/T in LT-diffuse flows (Shank
et al., 1998). Similarly, Marcus et al. (2009) described the
decline of the sulfide to heat ratio in fluids associated with
Ridgeia piscesae assemblages at eight diffuse flow vents on
the Axial volcano (JdFR) in the three years following a
volcanic eruption. The local depletion of sulfide in dense
aggregations of endosymbiotic invertebrates, as revealed by non-
linear relationships with temperature, furthermore limits the
energy available for their symbionts (Johnson et al., 1988a, 1994;
Le Bris et al., 2006a). Clearance experiments confirmed that
consumption is particularly important in B. thermophilus mussel
beds of the east Pacific (Johnson et al., 1994; Le Bris et al., 2006a;
Lutz et al., 2008) and can locally lead to the complete removal of
sulfide in large assemblages. More generally, much lower sulfide-
to-temperature ratios than expected from conservative mixing
of the outflow denote the efficiency of Bathymodiolus spp. in
assimilating the sulfide flux available in their microenvironment
(Johnson et al., 1988a; Le Bris et al., 2006a; Contreira-Pereira
et al., 2013; Nedoncelle et al., 2015).

Ultimately, the rapid decline of the endosymbiotic populations
has been related to an increase in the iron to sulfide ratio in diffuse
flows (Fustec et al., 1987; Tunnicliffe et al., 1997; Shank et al.,
1998), while end-member fluids transition from vapor-type to

brine-type end-member fluids with the progressive cooling and
phase separation associated with the deepening of the magmatic
lens (Butterfield et al., 1997; Von Damm et al., 1997; Yücel
and Luther, 2013). The formation of iron-sulfide complexes that
prevents tubeworms from assimilating free sulfide (e.g., H2S
and HS−) that is likely to limit the growth and, ultimately, the
survival of tubeworms (Luther et al., 2001; Le Bris et al., 2006a,b).
Using thermodynamic calculations based on end-member fluid
properties, Hentscher and Bach (2012) furthermore suggested
that the late metal-rich stage would favor free-living microbes
using sulfide precipitates and dissolved iron as electron donors
over thiotrophic symbioses. This geochemical sequence occurs
on time-scales of 3 to 10 years for the east-Pacific sites surveyed
at EPR 9◦50′N in 1991–2005 and 2006–2014 (German and
Seyfried, 2014), but could expand over much longer scales on
slow-spreading ridges.

Conversely, ectosymbiotic species are less sensitive to change
in fluid composition. A. pompejana, for instance, dominates the
biomass of producers on chimney walls with a large range in iron-
to-sulfide ratios (Le Bris et al., 2003; Le Bris and Gaill, 2007). The
capacity of alvinellids to sustain their thiotrophic ectosymbionts
in iron rich habitats could rely on specific adaptations allowing
the ventilation of tubes by oxygenated seawater and the diffusion
of free sulfide through tube walls, hence buffering chemical
conditions inside their tubes (Di Meo-Savoie et al., 2004; Le Bris
et al., 2005).

Although they also contribute to this biomass, meiofauna
species harboring symbionts are unlikely to make a major
contribution to this production, except perhaps as early colonists
during early post-eruption stages or in declining and inactive
vent habitats (Zeppilli et al., 2018 and reference therein). Very
little is known, however, about the temporal variability of the
density and biomass of these species, which respond differently
to changing habitat conditions than the large biomass-dominant
taxa (Gollner et al., 2010, 2015).

Production of Chemosynthetic
Resources on Stable and Inactive
Hydrothermal Settings
Among the few areas monitored over the last decades on
MOR, several vent fields exhibit a remarkable chemical stability
of the end-member fluids (German and Von Damm, 2004),
which is consistent with a much longer geological periodicity
in volcanic or tectonic instabilities. Vent fields with stable
end-member fluids compositions have been studied on both
fast-spreading (EPR 21◦S, Guaymas basin, JdFR South Cleft
segment), and slow-spreading ridges (Rainbow, TAG) (Schmidt
et al., 2007; Charlou et al., 2010; German and Seyfried,
2014). Yet, the temporal cyclicity of hydrothermal activity and
related chemosynthetic productivity remains poorly constrained
on slow spreading ridges, where long period of quiescence
may still sustain high macro- and megafauna densities. The
relative stability of mussel populations studied over 14 years
on the Tour Eiffel edifice (Lucky Strike, MAR) (Cuvelier
et al., 2011) indicates that populations can be relatively
stable. If we assume that predation and population turnover
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is limited, then a totally different model than for the fast-
spreading ridge is emerging with more stable productivity
rates over decadal and longer timescales (Martins et al.,
2008).

At geological time scales, volcanic eruptions and their
influence on the iron to sulfide ratio in fluids still impose
strong limits on primary producers shaping the suitability of
habitat at regional scale (Desbruyères et al., 2001; Lartaud
et al., 2011). On slow-spreading ridges, however, B. azoricus
and B. puteoserpentis mussels from ultramafic-hosted vent
fields can use methane or hydrogen when free sulfide is
unavailable due to high iron concentrations in fluids, at late
stages of the vent field cycle, as at Rainbow or Logatchev on
the Mid-Atlantic Ridge (Le Bris and Duperron, 2010). According
to Petersen et al. (2011), the ability to use hydrogen could
be common in vent symbioses and that even at basaltic
sites low hydrogen production could sustain B. puteoserpentis
mussels. Perner et al. (2007) and Perner et al. (2013) further
described the capacity of this species to form dense beds in
either sulfide-rich or hydrogen-rich and methane-rich low-
flow conditions. By revealing functional similarity in trophic
networks from different Mid-Atlantic Ridge vent fields hosting
B. azoricus assemblages, Portail et al. (2018) suggested that
the trophic flexibility of these symbioses would take advantage
of relatively stable conditions, independently of the nature of
available geofuels. The factors that limit the production of
biomass by these invertebrates, and the free-living microbial
communities that grow within the biogenic habitat they form,
however, rely on complex biotic interactions that needs to be
accounted for in addition to abiotic constraints (Perner et al.,
2013).

The temporal variability of end-member fluids and conditions
of related habitats are much less known on ABA where
tectonic and volcanic instability is expected to largely influence
hydrothermal activity, especially at sites undergoing continuous
eruptions (Embley et al., 2006). Very few vent fields have been
repeatedly sampled to document this variability (Herzig et al.,
1998 for Lau Basin, for Mariana Arc, Seewald et al., 2015 for
Manus Basin, Ishibashi et al., 2014 for the Okinawa Trough), yet
the dynamics of ecosystem response to environmental variability
that just begin to be studied denoted unexpected stability in the
structure of some edifices and the vent-associated assemblages
that colonize them (Sen et al., 2014; Du Preez and Fisher,
2018).

The chemosynthetic energy budget of hydrothermal settings
also encompassed mineral deposits and fluid circulations
hosted on relict vent fields. Electron donors stored in the
form of precipitated metal sulfides remain available to
specialized chemolithoautotrophs, potentially contributing
to the hydrothermal energy budget for deep-sea communities
(Figure 3). As these inactive systems are considered for deep-
sea mining activities (Loka Bharathi and Shanta Nair, 2005;
Levin et al., 2009; Van Dover, 2011), the number of studies
investigating the microbial communities colonizing inactive
hydrothermal settings has increased (e.g., Kato et al., 2010;
Sylvan et al., 2012; Li et al., 2017; Kato et al., 2018). While these
studies have revealed the presence of chemolithoautotrophs,

assessing their activities and contribution to overall carbon
production remains a challenge. Compared to active systems,
the involved activities are likely to be low, but due to the
large volume of inactive deposits, their contributions could be
significant over longer time scales. Furthermore, even in the
absence of high-temperature activity, specific hydrothermal
biotopes around fissures in the basement indicated that massive
sulfide deposits host low-temperature emissions that might
persist over geological timescales as described on slow-and
ultra-slow spreading ridges (Rona et al., 1996; Pedersen et al.,
2010). Lalou et al. (1989) first examined the mineralogy and
chronology of the fossil hydrothermal sulfide deposits on
the Galapagos Spreading Centre near 85◦00 W. The sulfide
deposits amounted to some 100000 tons and consisted of
chimney-like formations, hydrothermal crusts and ore bodies.
Dating of minerals established the presence of two hydrothermal
activity periods, the most recent one about 8000 years ago.
Another well-studied example is the Trans-Atlantic Geotraverse
(TAG) hydrothermal mound on the Mid-Atlantic Ridge,
consisting of active low- and high-temperature zones as well
as a number of relict deposits (Rona et al., 1996). Radiometric
dating of sulfides from the TAG mound indicates that the
hydrothermal activity started at this site episodically for over
40000–50000 years, every 4000 to 6000 years over the past
20000 years and is currently in an active phase (Lalou et al., 1993,
1998).

Mineralogical observations support the idea that
microorganisms could be involved in the oxidation of
sulfide minerals (Al-Hanbali and Holm, 2002). Microprobe
investigations on the TAG minerals revealed carbon-based
structures with the morphology of half-spheroids that are 2 to
3 µm in diameter and are mostly arranged in the form of clusters
and long thread-like cellular masses that resemble single-celled
microorganisms. Precipitation of iron oxides in the immediate
vicinity of these microfossils are enriched in both C and P, in
contrast to distal Fe oxides produced by the abiotic oxidation of
mineral sulfides, further suggesting that this phase is of microbial
origin. Hydrothermal deposits would thus have the potential to
sustain both chemoautotrophy and chemoheterotrophy. Iron
oxidizers not only play a role in mineral sulfide alteration, they
also expand the carbon fixation capacity of vent systems long after
hydrothermal circulation has ceased (Glynn et al., 2006; Li et al.,
2017). Chemoautotrophic iron oxidizers have been described
from rocks and sediment samples from inactive areas (Emerson
and Moyer, 2002; Edwards et al., 2003) More recently, Wang et al.
(2017) revealed new insights into the operational mechanism
of the microbial communities associated with Pacmanus and
Desmos hydrothermal sediments. Gammaproteobacteria were
the most abundant bacterial populations. The autotrophic
prokaryotes probably fixed CO2 via the four major pathways,
i.e., Calvin-Benson-Bassham cycle, reductive acetyl-CoA cycle,
rTCA cycle, and 3-hydroxypropionate/4-hydroxybutyrate
cycle.

Such processes may also be significant in young oceanic
crust ridge flanks, along tectonic cracks and faults, where Fe-
Si-Mn hydrothermal deposits form. Benjamin and Haymon
(2006) described hydrothermal mineral deposits and fossil biota
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from a young (0.1 Ma) abyssal hill on the flank of the fast-
spreading East Pacific Rise attributed to pulsed hydrothermal
flow and tectonic tapping of axial heat and fluids. Clusters
of empty worm tubes further indicated that fluid flow waned
only recently (Haymon et al., 2005). Since heat flow data
indicate that most hydrothermal heat loss from ocean lithosphere
occurs on the flanks of the MOR, such off-axis vents might be
more widespread than observed from occasional surveys with
submersibles.

CONCLUSION

Beyond changes in energy availability, as reflected in the
temporal evolution of vent fluids geochemistry, we have now
a clearer picture of various abiotic and biological controls
exerted on the activities of primary producers and biomass
formation in vent habitats. Changes in seafloor permeability
over space and time create discontinuities in the sub-seafloor
plumbing system, with two convection cells that result in
distinct diffuse-flow types, the first one being dominated by
the dilution of the hydrothermal high-temperature fluids with
seawater, while the second is predominantly based on heated
seawater incorporating reduced compounds by diffusion. The
steep variation in the H2S/T ratios of diffuse fluids that can occur
within short distances on large edifices denote marked differences
in the properties of two types of flows. This partitioning
makes temperature alone unsuitable for comparing the available
energy for chemolithoautotrophs among vent assemblages. This
review particularly draws attention to the fact that distinct sets
of geochemical constraints on energy transfer capacities and
competition for resources between sub-seafloor and seafloor
communities are likely to occur for the two types of flows and
should be accounted for.

Critical gaps in the current understanding of ecological and
metabolic regulation that drives the efficiency of the energy
transfer from the geothermal source to ecosystems are also
highlighted. Together with the end-member fluid geochemical
evolution over time, changes in seafloor and chimney wall
porosity govern the available electron donor pools in the
different thermal ranges on the seafloor and set the limits
for the succession of dominant primary-producers. Ultimately,
volcanic and seismic instabilities drive the productivity of the
ecosystem over time as they control the hydrothermal energy
flow and the relative contribution of the two convection cells.
The temporal evolution of interactions between vent organisms
and their environment, however, remains poorly documented
with the exception of a few seafloor observatories or long-
term study sites. The interactions between key players of
chemosynthetic carbon-fixation and their symbiotic invertebrate
hosts in response to the spatial and temporal heterogeneity
of environmental conditions has largely improved thanks
to the development of large-scale seafloor observatories, on
one end, and molecular and analytical tools on the other
end. Despite rapid improvements, the capacity to describe
environmental conditions at scales relevant to carbon-fixation
processes from sampling (minerals and fluids) to in situ

measurement of dissolved electron donors and acceptors and
associated key parameters (i.e., temperature, pH) still faces strong
challenges.

There is a need for the development of a database of
growth efficiencies of dominant microbes under realistic habitat
conditions, accounting for the habitat-building role of dominant
invertebrate species. These data should be better constrained
by investigating natural communities at conditions contributing
to a better understanding of interactions within microbial
consortia characterizing chemosynthetic systems. Downscaling
(single cell, metagenomics and transcriptomic) and upscaling
(enlarging global inventories to allow metadata analyses of
relationships between habitats and biomass-dominant species)
will offer opportunities to better analyze the drivers of microbial
carbon fixation in vent habitats.

Current advances in underwater technologies, tending to be
more cost effective and miniaturized, and recognition of the
need for a global coordinated effort in deep-ocean observation
are paving the way for a new stage in the investigation of
hydrothermal systems in relation to the activity-cycle of a vent
field. Combined in vivo experiments with in situ experiments
and observations still represent the next frontier to improve
quantitative modeling. Expanding these approaches beyond the
areas where large seafloor infrastructures have been established
represents a major challenge if we are to assess the importance of
hydrothermal energy transfer from regional settings to the global
MORs and arc-back-arc systems.
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