
ar
X

iv
:1

40
3.

26
89

v1
 [

m
at

h.
PR

]
 1

1
M

ar
 2

01
4

Analysis of Push-type Epidemic Data

Dissemination in Fully Connected Networks

Mine Çağlar1, Ali Devin Sezer2,3

1 Department of Mathematics

Koç University,

Istanbul, Turkey

2 Laboratoire Analyse et Probabilités

Université d’Évry Val d’Essonne

91025 Évry Cedex, France

3 Institute of Applied Mathematics,

Middle East Technical University,

Ankara, Turkey

August 17, 2018

Abstract

Consider a fully connected network of nodes, some of which have a
piece of data to be disseminated to the whole network. We analyze the
following push-type epidemic algorithm: in each push round, every
node that has the data, i.e., every infected node, randomly chooses
c ∈ Z+ other nodes in the network and transmits, i.e., pushes, the
data to them. We write this round as a random walk whose each step
corresponds to a random selection of one of the infected nodes; this
gives recursive formulas for the distribution and the moments of the
number of newly infected nodes in a push round. We use the formula
for the distribution to compute the expected number of rounds so that
a given percentage of the network is infected and continue a numerical
comparison of the push algorithm and the pull algorithm (where the
susceptible nodes randomly choose peers) initiated in an earlier work.
We then derive the fluid and diffusion limits of the random walk as the
network size goes to ∞ and deduce a number of properties of the push
algorithm: 1) the number of newly infected nodes in a push round,
and the number of random selections needed so that a given percent
of the network is infected, are both asymptotically normal 2) for large
networks, starting with a nonzero proportion of infected nodes, a pull
round infects slightly more nodes on average 3) the number of rounds

1

http://arxiv.org/abs/1403.2689v1

until a given proportion λ of the network is infected converges to a
constant for almost all λ ∈ (0, 1). Numerical examples for theoretical
results are provided.

Keywords: peer to peer; pull; push; epidemics ; epidemic algorithm ;
diffusion ; fluid ; approximation ; asymptotic ; analysis ; data dissemination
; fully connected ; network ; graph

1 Introduction

Epidemic algorithms mimic spread of infectious diseases to disseminate data
in large networks [8, 18, 12, 17, 20, 21, 25]. As is common in the literature,
let us call a node of a network infected if it holds the piece of data to be
disseminated and susceptible otherwise. Two of the main types of epidemic
algorithms are push and pull. Both of these progress in discrete stages called
rounds; in a push round, each infected node randomly selects c > 0 nodes
uniformly and without repetition among the rest of the nodes and uploads,
i.e, pushes, the data to these nodes; in a pull round, each susceptible node
randomly selects c nodes and if any of these nodes is infected, the selecting
node downloads, i.e., pulls, the data from the infected node to which it has
connected. The parameter c is called the fanout.

One calls a network fully connected if each of its nodes can directly
connect to any other node in the network. If the network is represented as
a graph, the network is fully connected if and only if its graph is complete.
Analysis over fully connected networks is a natural first step in the study
of algorithms on networks. [17, 21, 13, 5] study epidemic algorithms on
fully connected networks and [15, 4, 9] study a range of other stochastic
algorithms on them; see Section 5 for more on fully connectedness and for
comments on other topologies. The aim of the present work is a thorough
analysis of the push algorithm over fully connected networks; the following
paragraphs explain the elements of this analysis.

A key random variable in epidemic algorithms is the number Y of newly
infected nodes after an epidemic round. The paper [19] studies this random
variable for fully connected networks and observes that it is binomial for
the pull1 round when conditioned on the number of infected nodes in the
network right before the round begins. For the distribution of Y in the
push round, [19] assumes c = 1 and derives the formula (2.1) by counting all
digraphs which correspond to each realization of Y . The direct computation
of (2.1) requires high precision and lengthy arithmetic and this restricts its
use to small networks (n ≤ 200). In Section 2 we take a different route

1[19], following [5], reverses the roles of the words “pull” and “push”; what is called
“pull” here is called “push” in these works. We always use these words in the sense
explained in the first paragraph. One should keep this reversal in mind when comparing
the results of the present paper with those in [19, 5].

2

and represent Y for general c using a random walk S with linear and state
dependent dynamics. Recall that within a push round each infected node
randomly selects c peers and transmits its data to these peers. Each step
of the walk S corresponds to one of these random selections; see (2.2), (2.3)
and (2.6) for the exact dynamics. The position Sk of the walk at its kth step
(k being the number of infected nodes before the round begins) is our desired
representation of Y . Subsection 2.1 explains how S can be used as a model
for the whole push algorithm when it is allowed to take an unlimited number
of steps. The next subsection computes the first and second moments of S,
which gives, in particular, those of Y .

The random walk S is also a discrete time Markov chain and its dynamics
therefore can be expressed as its one step transition matrix P . Thus, one
can write (for all n, k and c) the distribution of Y as the first row of P k.
This gives a fast algorithm to compute Y ’s distribution for small c, because
P is sparse when c is small. Section 3 uses this algorithm to compute for
n = 500, and c ∈ {1, 7}, the expected number of push rounds needed so
that the proportion of the infected nodes in the network reaches λ ∈ (0, 1).
This expectation is simple to compute for the pull algorithm, because Y of
that algorithm is binomial. Figures 2 and 3 compare the aforementioned
expectation for the push and the pull algorithms.

Section 4 contains the main results of our analysis: here we compute
the diffusion and fluid limits of the random walk S and derive a number
of properties of the push epidemic algorithm from these limits. For the
asymptotic analysis to make sense we set the initial number of infected
nodes to kn such that limn kn/n = (1−µ) ∈ (0, 1). Theorem 1 shows that as
n goes to ∞, the scaled random walk S/n behaves like t → Γt+

1√
n
Xt where

Γ is the deterministic process t → µ(1 − e−ct) and X is a time discounted
Wiener integral of a function of Γ (see (4.23)). The t variable here is the
continuous scaled time and t = (1 − µ) = limn kn/n corresponds to the
kn ≈ (1 − µ)nth step of the random walk and hence to the end of the first
push round. This establishes that

√
n(Y/n−Γ1−µ) converges to a zero mean

normal random variable whose variance is given by the quadratic variation
of X ((4.26) and (4.27)). Subsection 4.1 uses Theorem 1 to compare the pull
and the push algorithms for large fully connected networks. In particular,
(4.29) says that a pull round always infects slightly more nodes on average,
for large networks and starting with a nonzero proportion of infected nodes.
The difference disappears as c increases. When the network is initially half
infected, for c > 15 a single round of push or pull suffices to infect almost
all of the nodes.

The last observation suggests that one study more carefully what hap-
pens in a single round. The random walk representation and its limits allow
exactly this. In subsection 4.2 we use the asymptotic limit of S derived in
Theorem 1 to compute the asymptotics of the number τnλ of random selec-

3

tions needed so that the proportion of infected nodes in the network reaches
λ ∈ (0, 1). Theorems 2 and 3 say that this quantity is also asymptotically
normal and provide its mean and variance. τnλ is not a function of the value
of S at a particular deterministic point in time but of its whole path. Thus,
a stochastic process level analysis of S is inevitable in the study of τnλ .

Subsection 4.3 uses Γ to derive the fluid limit of a sequence of push
rounds. Let us denote by νnλ the (random) number of push rounds needed
so that the proportion of the network is above λ ∈ (0, 1). The final result of
our analysis is Theorem 4, which says that as the network size increases to
∞, νnλ converges to a constant integer, if λ is not one of the deterministic
levels derived in subsection 4.3 that the fluid limit of the rounds go through.

Although we have not seen in the prior literature the diffusion analysis
of the random walk S, the proof of Theorem 1 is based on results and ideas
in [11] and is relegated to the appendix. We have not been able to find
in the prior literature analyses and proofs similar to the ones we give in
subsections 4.2 and 4.4 and therefore the proofs in these subsections follow
the statements of the theorems.

The problems we treat and their solution have connections to a vast
literature in communication systems, databases, applied probability, queue-
ing theory, stochastic biological models among others. The following review
only touches a small subset of this literature which directly relates to our
analysis and of which we happen to be aware of. [17] studies a number of
epidemic algorithms in a fully connected network. The one most related to
the current paper is an algorithm in which all nodes randomly connect to
peers rather than only infected or only susceptible and all connections use
both pull and push. The paper uses Chernoff’s bound to derive bounds on
the tail probabilities on the number of rounds this algorithm needs to spread
a piece of data to the whole network with high probability. [21] studies the
effect of dividing the data to be transferred into pieces on the performance of
the epidemic algorithms in a fully connected network and derives asymptotic
bounds on the tail probabilities of the number of rounds to disseminate the
data to the whole network. As with [17], in [21] the rounds are considered
atomic and during each round all nodes randomly connect to peers. The
main mathematical tool is again large deviation bounds on independent and
identically distributed (iid) sums, similar to Chernoff’s bound. [13] studies
a continuous time Markov process model similar to actual epidemic models
and uses a coupling argument to find bounds on the expected time to total
dissemination in terms of the largest eigenvalue of the adjacency matrix of
the network graph and applies its results to a number of graph structures,
including complete graphs. [25] studies epidemic algorithms as a model for
the spread of computer viruses; in this context it makes sense to allow nodes
to “recover.” Then a natural quantity of interest is the time limit of the
probability of each node being infected or susceptible. [25] proves the exis-
tence of these limits and derives conditions under which convergence occurs

4

exponentially fast. [1] compares pull, push and and a “pull-push” algorithm
in the context of sensor networks using software that is used in actual sen-
sors and a simulation environment which can run this software. This allows
its authors to study several aspects of the performance of these algorithms
in practical systems.

To the best of our knowledge the present paper is the first to use diffusion
limits in the study of epidemic algorithms in networks. However, in the
biologic epidemics literature diffusion limits are a basic tool; the classical
reference on this subject is [11, Chapter 11]; a recent review is [7]. In
all biological epidemic models that we are aware of, the network graph is
implicitly taken to be fully connected by assuming that all members of the
population somehow are able to interact with each other similar to chemicals
interacting in a liquid mixture. There are two classes of epidemic models:
continuous time and discrete time [10]. The continuous time assumption
of the first class leads to a limit process (see [11, Theorem 2.3, page 458])
which is different from the asymptotics of the push algorithm. Among the
works which assume a discrete time, the analysis of [22] is closest to this
work. The authors of [22] study a discrete time epidemic process which
allows recovery. Infection mechanism of the model corresponds to the pull
algorithm (susceptibles randomly choose peers). Besides allowing recovery
the novelty of [22] is that it allows a random fanout for each individual. [22,
Section 3.2] derives a diffusion limit for this model for constant fanout and
no recovery.

Another branch of research related to epidemic algorithms is urn models
in applied probability. The paper [8] uses this connection in finding asymp-
totic bounds on the tail distribution of the the number of rounds until most
nodes are infected, for the pull, push and a “push-pull” algorithms over
graphs defined by the classical preferential attachment model [6]. After our
analysis we have noticed that [14] treats an urn model that corresponds to
the push algorithm over fully connected networks. In particular, it derives
the asymptotic limit of the random variable Y using a different set of tools
from the ones used in this work (namely, probability generating functions
(pgfs) and a result of [23] which characterizes pgfs arising from a Bernoulli
sequence). [14] notes that a recursive characterization of Y , similar to the
one we give in Section 2 goes all the way back to [24], which casts the
problem in terms of a sequence of trials of an event “presuming that the
probability of the event on a given trial depends only on the number of the
previous successes.”

Further comments on our results and future research are in Section 5.

5

2 Random Walk Representation

We will begin our analysis by considering a single push round on a network
with n total nodes and k infected nodes. Let Y (n, k) denote the number
of the number of newly infected nodes after the round is over. The paper
[19], which only considers the case c = 1, finds the following formula for the
distribution of Y (n, k)

P(Y (n, k) = i) =

(

n−k
i

)

i!
∑k

k1=i

(

k
k1

)

(k − 1)k−k1s(k1, i)

(n− 1)k
, (2.1)

where s denotes the Stirling numbers of the second kind. This formula comes
from representing the result of a round as a graph and counting those graphs
that give Y (n, k) = i. The use of (2.1) raises two issues: 1) it is valid only
for c = 1 and 2) the expressions that appear in it can be computed exactly
for only small values of n (i.e., n ≤ 200) , see [19] for more on these. In this
section we derive a new dynamic representation of this round as a random
walk with state dependent increments, whose each step corresponds to a
random selection made by one of the infected nodes during the round.

Let us first consider the case c = 1; the extension to c > 1 will be
straightforward. The random walk representation of the push round begins
with thinking that the nodes do their random selection of a peer from the
rest of the network one by one. The Bernoulli random variable X1 denotes
the result of the first selection (X1 = 1 if the selected node is susceptible, 0
otherwise), X2 the result of the second selection, and so on. Now define

Sl+1 = Sl +Xl+1 l = 0, 1, 2, . . . (2.2)

where the conditional distribution of Xl+1 given Sl = i ≤ n− k is Bernoulli
with success probability

P(Xl+1 = 1| Sl = i) = (n− k − i)/(n − 1), (2.3)

for l = 1, . . . , k−1 and S0 = 0. Sl is the number of newly infected nodes after
the lth random selection; Y (n, k), then, is Sk. The conditional distribution
(2.3) is written by noting that the only way for the l + 1st selection to
increase the infected count is by choosing a susceptible node that has not
been touched by the first l random selections. We also note P(Xl+1 =
i|S0, S1, ..., Sl) = P(Xl+1 = i|Sl) which makes S a Markov process and
ensures that (2.3) determines the entire distribution of S.

Subsection 2.1 will explain how S can serve as a model of the whole push
algorithm when it runs for an unlimited number of steps.

The dynamics (2.3) imply that S is a Markov chain with one step tran-
sition matrix

Pi,i+j = P(Xl+1 = j|Sl = i). (2.4)

6

The probability distribution of Y (n, k) (i.e., the position of the chain at its
kth step) is the first row of P k, i.e.,

P(Y (n, k) = i) = P k
0,i i = 0, 1, 2, . . . ,min(k, n− k). (2.5)

P k can be computed quickly for relatively large values of n, because P is
sparse.

For c > 1, one only generalizes the conditional distribution of Xl+1 given
Sl = i ≤ n− k from (2.3) to

P(Xl+1 = j| Sl = i) =

(

k − 1 + i

c− j

)(

n− k − i

j

)

/

(

n− 1

c

)

, (2.6)

which is a hypergeometric distribution on {j : max(0, c− (k + i− 1)) ≤ j ≤
min(c, n − (k + i))}. With this generalization, the formulas (2.4) and (2.5)
continue to work for c > 1.

(2.6), (2.4) and (2.5) imply that Y can take values from max(0, c+1−k)
to min(k, n− k) with positive probability.

2.1 S as a model of the whole push algorithm

Now suppose that we would like to model a second round which follows the
first round also with a random walk. Let us temporarily call this random
walk S(2). (2.2) and (2.3) continue to describe the dynamics of S(2) if we
only replace the k in (2.3) with Sk + k, which is the number of infected
nodes in the network at the end of the first round. This and the Markov
property of S imply that we don’t actually need a second process S(2) to
describe the second round and it suffices to simply run the original process
S indefinitely; its first I0 = k steps will model the random selections of the
infected nodes in the first round, its next I1

.
= k + Sk steps will model the

random selections in the second round, the next I2
.
= k+SI0+I1 steps in the

third round, the next I3
.
= k + SI0+I1+I2 steps in the fourth round and so

on. The sequence (I0, I1, I2, ..) itself represents the number of infected nodes
after the 0th round, the 1st round, the 2nd round and so on. Thus we see
that the single random walk S, when ran indefinitely, is another model for
the entire push algorithm. The key difference from the traditional model of
a sequence of push rounds is that S takes the random selections that occur
in the rounds as the atomic operation of the push algorithm and not the
rounds; the rounds are then expressed as recursive random increments of this
walk as above. We will use this observation repeatedly in subsections 4.2 and
4.4 when we want to use results about S to get results on a sequence of push
rounds and hence on the entire push algorithm. In the rest of the paper we
will always assume that Sl is defined for all l, following the dynamics (2.2)
and (2.3) or (2.6) (for c ≥ 1).

7

2.2 Expectation and second moment of S and Y

By taking the expectation of both sides of (2.2) and of its square and using
(2.3) one can find linear recursions for E[Sl] and E[S2

l]; setting l = k gives
E[Y] and E[Y 2]. The results of this subsection will also be useful in the
fluid and diffusion limit analysis of Section 4. Let us start with fanout
c = 1. Take the conditional expectation given Sl of both sides of (2.2) to
get E[Sl+1|Sl] = E[Sl|Sl] + E[Xl+1|Sl]. The conditional distribution (2.3) of
Xl+1 given Sl implies that E[Xl+1|Sl] = (n − k − Sl)/(n − 1). Substituting
this in the last display and taking now the ordinary expectation of both
sides give

γl+1 = a1γl + a0 (2.7)

where γl
.
= E[Sl], and

a1
.
= (n− 2)/(n − 1), a0

.
= (n− k)/(n − 1). (2.8)

By definition we set γ0
.
= 0. (2.7) is a linear recursion and its solution is

γl = (n− k)(1 − al1). (2.9)

Y , the number of infected nodes at the end of the push round, equals Sk

and therefore
E[Y] = E [Sk] = (n− k)(1 − ak1). (2.10)

The second moment of Sl is computed similarly. Let αl
.
= E[S2

l]; αl =
E[S2

l] = E
[

(Sl−1 +Xl)
2
]

= E[S2
l−1] + 2E[Sl−1Xl] + E[X2

l]. The middle term
can be written in terms of αl−1 and γl−1 as follows:

E[Sl−1Xl] = E[E[Sl−1Xl|Sl−1]] = E[Sl−1E[Xl|Sl−1]]

= E

[

Sl−1
n− k − Sl−1

n− 1

]

=
n− k

n− 1
γl−1 −

αl−1

n− 1
,

where we have again used the conditional distribution (2.3). Then, we have
the following recursion for αl:

αl = αl−1 + 2

(

n− k

n− 1
γl−1 −

αl−1

n− 1

)

+
n− k − γl−1

n− 1

= b2αl−1 + b1γl−1 + b0 (2.11)

where

b2
.
=

n− 3

n− 1
, b1

.
=

2(n− k)− 1

n− 1
, b0

.
=

n− k

n − 1
. (2.12)

This and (2.9) imply

αl =
(

1− bl2

)

b0 + b1

l−1
∑

i=0

γib
l−1−i
2 . (2.13)

8

The second moment of Y is

E[Y 2] = E[S2
k] = αk. (2.14)

(2.9) implies liml γl = (n − k). Hence, the last sum in (2.13) converges
to (n − k)

∑∞
i=0 b

i
2 = (n − k)(n − 1)/2 and this implies αl → (n − k)2.

Therefore, for n and k fixed, var(Sl) → 0 as l → ∞ and Sl → (n − k),
i.e., if the random selections of the nodes continue indefinitely all nodes will
eventually be infected almost surely. The graph of the variance var(Sl) is
shown in Figure 1.

0

2

4

6

8

10

0 100 200 300 400 500

v
a
r
(
S
l
)

l

Figure 1: Graph of var(Sl) for n = 100, k = 20

The case c > 1 works the same way except that one uses the conditional
distribution (2.6) rather than (2.3) in computing E[Xq

l+1|Sl], q = 1, 2; all
of the equations (2.7), (2.9), (2.11) and (2.13) remain as before except that
one generalizes the definitions of the coefficients {ai} (2.8) and {bi} (2.12)
to

a0
.
= c(n− k)/(n − 1), a1

.
= (n− 1− c)/(n − 1), (2.15)

b0
.
=

c((n− (c+ 1)) + (n− k)(c − 1))(n − k)

(n− 2)(n − 1)
,

b1
.
=

c(n− (c+ 1))(2(n − k)− 1)

(n− 2)(n− 1)
, b2

.
= 1− 2c

n− 1
+

c(c− 1)

(n− 1)(n − 2)
.

Note that these reduce to (2.8) and (2.12) for c = 1. We summarize the
formulas derived about the distribution of Y (n, k) in Table 1.

3 A numerical comparison of push and pull

Let us now use the results so far to numerically compare the push and the
pull algorithms. The observations made in this section will also motivate the

9

Distribution Expectation Second moment

c = 1 (2.4), (2.5) (2.10) (2.14)

change for c ≥ 1 (2.3)→ (2.6) (2.8) → (2.15) (2.12) → (2.15)

Table 1: Equation numbers for the distribution and moments of Y (n, k)

theoretical results of the next chapter. As in subsection 2.1, let Im denote
the number of infected nodes after the mth round. We have shown in that
subsection how to write Im in terms of S. The Markov property of S implies
that one can also write the same sequence as

Im = Im−1 + Ym, (3.16)

where Ym, conditioned on Im−1 = j, is independent of (I0, I1, ..., Im−2) and
has the same distribution as Y (n, j). One of the key questions about the
process (I0, I1, I2, ...), and hence about the push algorithm is this: how many
rounds is required so that a given proportion of the network is infected? This
is the quantity that all of [19, 17, 21, 8] analyze. The answer to this question
is expressed as the following stopping time of I:

νnλ
.
= inf{m : Im/n ≥ λ}, λ ∈ (0, 1). (3.17)

We compute the weak limit of νnλ as the network size goes to ∞ in subsection
4.4. In the numerical study of the present section, we compute N(λ, k)

.
=

Ek [ν
n
λ], for n = 500 and c ∈ {1, 7}; the k in the subscript of the expectation

operator denotes that we condition on I0 = k, i.e., the infected number of
nodes in the network before the first round is k. N(1, k) is called the mean
total dissemination time. Because n is fixed (i.e., we are not taking any
limits) throughout this section, there is no harm in assuming λ ∈ {j/n, 0 <
j < n}, which is the set of all possible proportions of infected nodes for a
finite network with n nodes. The dynamics (3.16) implies that for λ > k/n

N(λ, k) = 1 +N(λ, k)P(Y (n, k) = 0) +

nλ−k−1
∑

i=1

N(λ, k + i)P(Y (n, k) = i).

(3.18)
The 1 on the right means that going from k infected nodes to j = nλ infected
nodes will take at least one round, the second term handles the case where
no infections occur in the first round and the sum handles the cases where
the first round infects at least 1 node but less than the j − k needed to get
a total of j infected nodes. Furthermore

N(λ, k) = 0 (3.19)

when λ ≤ k/n because if there are k infected nodes initially then obviously
j = λn ≤ k of them are also infected already and we need no rounds.

10

(3.19), (3.18) and (2.5) can be used to compute N(j/n, k) for all j and k.
Note that (3.18) and (3.19) are the same for the pull algorithm as well,
the only change is in the distribution of Y (n, k), which is binomial for the
pull. Figure 2 shows λ → N(λ, k) for the push and the pull algorithms for
k = 50, n = 500 and c ∈ {1, 7}. These values of k and n correspond to
k/n = 50/500 = 0.1 initial proportion of infected nodes.

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

N
(

λ,
5
0
)

λ

Figure 2: Graphs of λ → N(λ, k) for the push and the pull algorithms; the
dotted curves are pull, the solid curves are push; n = 500, k = 50, c ∈ {1, 7},
the top couple is c = 1 and the bottom couple is c = 7

Figure 2 suggests that, for both push and pull, λ → N(λ, k) alternates
between phases of constancy and rapid growth and that this behavior gets
more marked as c increases. One of the goals of the next section is to explain
this behavior. For now, let us briefly comment that both of these algorithms
have deterministic fluid limits (derived for the push algorithm in Theorem
1 and in subsection 4.3) and as the network size grows each round infects
an almost deterministic proportion of the nodes. This can be used to prove
that, in the limit, νnλ becomes almost deterministic and as a function of λ it
becomes a step function, increasing only at the levels of infection attained by
the rounds of the fluid limit; the exact result on this is Theorem 4, proved
in subsection 4.4. The more pronounced nature of the growth phases for
greater values of c will again be explained by Theorem 1 which implies that
the deviations from the fluid limit has a lower variance as c grows.

The N of the pull algorithm in Figure 2 lies on or below that of push.
This suggests, for a large network with a nonzero initial proportion of in-
fected nodes, on average, the pull reaches a given level in less or equal
number of rounds than the push. However, note that the difference between
the algorithms in Figure 2 is not that great and grows only as the network
nears complete infection. The theoretical result which explains these ob-

11

servations is Proposition 1 in subsection 4.1, which compares the expected
number of infected nodes in a pull and a push round.

[19, Section 6] uses the binomial distribution of Y under the pull algo-
rithm to compute the dependence on the fanout c of the mean total dissemi-
nation time N(1, 1) starting with a single infected node for a network of 500
nodes. With (2.5) we are able to do the same also for the push algorithm.
N(1, 1) as a function of c for n = 500 is given in Figure 3 for both algo-
rithms. Although N(1, 1) is larger in the push algorithm for smaller fanout
values, this value for both algorithm seem to converge for c ≥ 8. Corollary
1 below partially explains this phenomenon.

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

fanout

di
ss

em
in

at
io

n
tim

e

Push
Pull

Figure 3: Expected total dissemination time in rounds versus fanout for
n = 500, and k = 1

4 Fluid and Diffusion Limits

A great deal can be understood about the push algorithm by computing
the fluid and diffusion limits of S as the network size n goes to ∞. To get
meaningful limits, we allow the initial number of infected nodes k to depend
on n in such a way that

0 < µ = lim
n→∞

n− kn
n

< 1 (4.20)

holds. The limits we talk of here are known as weak limits in probability
theory and is almost always shown with the sign ⇒, which we will also do
below. The quintessential weak convergence result is the central limit theo-
rem and “diffusion approximations” are central limit theorems for the entire

12

sample paths of processes. Two of the basic references on weak convergence
are [3, 11].

To get the fluid and diffusion limits, we scale and center S and time as
follows:

Xn
t

.
=

√
n

(

S⌊nt⌋
n

− Γn
t

)

, Γn
t

.
=

γ⌊nt⌋
n

. (4.21)

The time variable t of the scaled processes Γn and Xn correspond to the
⌊nt⌋th step of S; Γn is the expected proportion of newly infected nodes at
time t and Xn is

√
n times the deviation of the actual proportion from the

expected proportion, again at time t. This is the standard scaling in all dif-
fusion analyses of Markovian random walks with finite variance increments.
Just as in the central limit theorem, the scaling by

√
n puts the difference

between the actual and the expected proportions at a scale that ensures
weak convergence to a nontrivial (i.e., neither 0 nor ∞) limit.

The process (Xn,Γn) takes values in DR2 [0,∞), the vector space of right
continuous functions with left limits from [0,∞) to R

2. Define

Γt
.
= (Γ0 − µ)e−ct + µ, σt

.
=

√

c(µ − Γt)(1 − (µ− Γt)). (4.22)

The next theorem gives the fluid and diffusion limits of S.

Theorem 1. Let (Xn,Γn) be defined as in (4.21) and Γ as in (4.22). Let
X be given by

Xt
.
= X0e

−ct + e−ct

∫ t

0
ecsσsdWs, (4.23)

where c ∈ Z+ and σ is as in (4.22). Then (Xn,Γn) ⇒ (X,Γ).

The proof, given in the appendix, is based on representing Markov pro-
cesses and their weak convergence in terms of the semigroups that the pro-
cesses define and the generators of these semigroups [11].

Theorem 1 implies that the random walk {Sl} behaves more like
{

n
(

Γl/n + 1√
n
Xl/n

)}

as n, the network size, increases. The left part of Fig-

ure 4 shows {nΓl/n} and a sample path of {Sl} and its right part shows their
difference. The random path of Sl in this figure has been simulated using
(2.3). Theorem 1 implies that the pathwise distribution of this difference
gets closer to that of {√nXl/n} as n increases.

Remember that Y (n, kn) can be represented as the value Skn of S at
step kn, which corresponds to time 1 − µ in the scaled continuous time.
Theorem 1 then implies in particular that nΓ1−µ +

√
nX1−µ is the normal

approximation of Y (n, kn). Let us write this as

Y (n, kn) ≈ nΓ1−µ +
√
nX1−µ. (4.24)

13

The random variable on the right is normally distributed with mean nΓ1−µ.
To compute its variance we only need the second moment of X1−µ, which
we derive now. It will be simpler to write everything in terms of

X̄t
.
=

∫ t

0
ecsσsdWs. (4.25)

The second moment of Xt is

var(Xt)
.
= e−2ct

E[X̄2
t]. (4.26)

X̄t is a stochastic integral with respect to a Brownian motion, and therefore
t → X̄t is a continuous martingale whose quadratic variation equals [16,
page 139]

〈X̄〉t =
∫ t

0
e2csσ2

sds = µ
(

ect − 1− µct
)

, (4.27)

which is a deterministic process. This implies E[X̄2
t] = 〈X̄〉t (see again [16,

page 137]). This and setting t = (1− µ) in (4.26) gives

nµe−2c(1−µ)
(

ec(1−µ) − 1− µ(1− µ)c
)

(4.28)

as our approximation of the variance of Y (n, kn).

0

20

40

60

80

100

120

140

0 50 100 150 200

S
l
,

n

Γ l
/
n

l

-6

-4

-2

0

2

4

6

8

0 50 100 150 200 250

S
l

-

n

Γ l
/
n

l

Figure 4: A sample path of Sl, nΓl/n and their difference; n = 500, kn = 200
and c = 1

4.1 Comparison of push and pull for large networks

Theorem 1 allows a simple comparison of the push and the pull algorithms
when n is large. In this subsection it will be easier to use a separate symbol to
denote the number of newly infected nodes in a pull round; let us use Ỹ (n, k)
for this purpose. It is well known (see [19]) and simple to see that Ỹ (n, k)
is Binomial(1 − pn, n− k) with failure probability pn =

(n−k−1
c

)

/
(n−1

c

)

.

14

Proposition 1. Let µ and kn be as in (4.20). Then E[Ỹ (n, kn)] > E[Y (n, kn)]
for n large.

Proof. Theorem 1 says that the average proportion of newly infected nodes
after a push round converges to Γ1−µ = µ(1 − e−c(1−µ)). The expected
proportion of newly infected nodes in a pull round will be E[Ỹ (n, kn)/n] =
(1−pn)(n−kn)/n, the mean of Binomial(1−pn, n−kn) divided by n. Since
c is fixed, pn → µc. This and (n − kn)/n → µ imply limn E[Ỹ (n, kn)/n] =
µ(1− µc). The inequality

µ(1− µc) > µ
(

1− e−c(1−µ)
)

(4.29)

for all µ and c implies the statement of the proposition.

Corollary 1. For all µ, if c is taken large enough, a single round of pull or
push is enough to infect the whole network.

Proof. Both sides of (4.29) converge to µ, the initial proportion of suscepti-
ble nodes as c → ∞.

Several comments on these results and possible research directions that
they suggest are as follows. While the inequality (4.29) holds, the differ-
ence between the two sides is at most 0.06 for c = 1 and decreases as c
increases (simple calculus shows the truth of these statements). Thus, the
performance of these rounds are on average similar, which explains the near
performance of the pull and the push in the numerical example given in
Figure 2.

There is an important caveat to Proposition 1, which we would like
explain with an example. As with all values of µ, for µ close to 1, i.e., when
initially most of the nodes are susceptible, a pull round infects on average
more nodes than push, as indeed claimed by Proposition 1. But a push round
takes merely (1−µ)n random selections whereas the pull takes µn; for large
µ, a push round is a very small operation whereas a pull round involves
almost the whole network. Thus, for a fairer comparison we think that it
would be a good idea to take into account the sizes of these operations. Such
a comparison can be undertaken in future work.

An interesting comparison is when µ = 0.5 and the initial number of
the infected nodes equal the number of the susceptible ones. In this case
push and pull will involve the same number of random selections. For c = 1,
(4.29) implies that the pull round infects on average fifty percent of the
susceptible nodes whereas the push approach infects around forty percent.
For increasing values of c the difference quickly disappears and for c ≥ 15 a
single round of either algorithm is enough to infect the whole network.

The foregoing discussion suggests the following heuristic: in a network
with few infected nodes, initially set c to a relatively high value (say between

15

10 and 15, if possible) use push until half the network is infected and then
switch to pull and gradually decrease c. For smaller values of c, it will be
more advantageous to switch to pull earlier. Obviously, to turn these ideas
into a full fledged algorithm requires more work including a specification of
how the nodes detect the infection level in the network to do the switch.
The design of such an algorithm and its analysis can also be the subject of
future work.

4.2 First time to hit nΓ1−µ

We have seen in the previous subsection that for µ = 1/2 and c ≥ 15
one expects a single round to be enough to infect the whole network. In
such cases, the number of rounds before the proportion of infected nodes
hits a certain level becomes trivial (i.e. just 1), and “the number of ran-
dom selections” before the same event becomes more useful and interesting.
(4.24) implies that, under (4.20), the ratio of the number of newly infected
nodes to the number of nodes in the whole network at the end of the first
round has expectation approximately Γ1−µ. The number of random selec-
tions needed to hit this level corresponds to the following stopping time of
S: τn

.
= inf{l : Sl ≥ nΓ1−µ}. The goal of this subsection is to derive ap-

proximations to the distribution of τn using the diffusion approximation of
Theorem 1. The results we obtain will also be useful in subsection 4.4 in
finding the limits of νnλ , the number of rounds needed before the infection
level of the network is λ. We would like to point out that τn cannot be stud-
ied if one represents the result of a push round as a single random variable,
the ensuing analysis requires the use of the random walk representation.

Choose tn so that it solves

Γ1−µ − Γtn = C

√

var(X1−µ)

n
, (4.30)

where C > 0 is a large constant. (4.26) and (4.27) imply

tn
.
= −1

c
log

(

1

µ

(

µ− Γ1−µ +
C√
n

√

var(X1−µ)

))

. (4.31)

Taylor expanding log in the last display around 1− Γ1−µ/µ gives

tn = 1− µ− C
√

var(X1−µ)

c(µ − Γ1−µ)
√
n
+O(1/n). (4.32)

Proposition 2.

P(τn ≤ ntn) ≤
√

2

π

∫ ∞

C
e

−x2

2 dx, (4.33)

for n large enough.

16

We refer the reader to the appendix for the proof. Proposition 2 implies
that, once we choose C large enough, with very high probability τn > ntn
and, by (4.32), ntn is only O(

√
n) steps away from n(1 − µ) = kn. We will

use this in the proof of the next theorem to focus our attention on a small
neighborhood around kn.

Theorem 2. (τn−kn)/
√
n ⇒ N(0, v) where v

.
= var(X1−µ)/(c(µ−Γ1−µ))

2.

Proof. Fix a finite interval (a, b); our goal is to show

lim
n

P

(

τn − kn√
n

∈ (a, b)

)

=
1√
2πv

∫ b

a
e−x2/2vdx. (4.34)

Choose C in (4.30) so that

C >
c(µ − Γ1−µ)
√

var(X1−µ)
max(|a|, |b|)

and define tn
.
= kn/n − tn. Partition the event E

.
= {(τn − n(1− µ))/

√
n ∈

(a, b)} as (E ∩ {τn < ntn}) ∪ (E ∩ {τn ≥ ntn}). Proposition 2 implies that,
by increasing C, if necessary, the probability of the first of these sets can be
made arbitrarily small. Furthermore, on the set E the greatest value that τn
can take is kn + b

√
n; by the choice of C this is bounded above by kn +ntn.

These imply that we can replace τn = inf{l : Sl ≥ nΓ1−µ} in (4.34) with
τ ′n

.
= inf{l ∈ In : Sl ≥ nΓ1−µ}, where In .

= kn+ntn(−1, 1). Thus in the rest
of this argument we will prove

lim
n

P

(

τ ′n − kn√
n

∈ (a, b)

)

=
1√
2πv

∫ b

a
e−x2/2vdx. (4.35)

For this, it is enough to study the asymptotics of the dynamics of S in the
interval In. To do so, define the scaled process

X̂n
t̂

.
=

1√
n

(

S⌊kn+t̂
√
n⌋ − nΓ1−µ

)

.

The scaled time τ̂n
.
= τ ′n−kn√

n
of (4.35) is the first time the process X̂n hits 0.

Thus to find its limit distribution it is enough to compute the weak limit of
X̂n, which we will now do.

The time interval Jn
.
= [−θn, θn] =

√
ntn[−1, 1] for the process X̂n

corresponds exactly to the time interval In for S and therefore, we will be
studying X̂n on Jn. Note that t = 0 is the middle of Jn and corresponds to
time kn of S, which is the last step of the first push round. The end of Jn
is the time point θn =

√
ntn. kn/n → (1− µ) and (4.32) imply

θn → θ
.
=

C
√

var(X1−µ)

c(µ− Γ1−µ)
.

17

Jn = [−θn, θn] is symmetric around 0 and its starting point −θn converges to
−θ. Then the limit process X̂ of X̂n will be running on the interval [−θ, θ].
Note that the initial point of X̂n is X̂n

−θn
= 1√

n
(Stn − nΓ1−µ). Theorem

1, tn/n → (1 − µ), and (4.30) imply that this random variable converges
weakly to a normal random variable with mean −C

√

var(X1−µ) < 0 and

variance var(X1−µ). Hence, this is the distribution of the limit X̂(−θ).
To compute the dynamics of X̂ one proceeds parallel to the proof of

Theorem 1. Fix (x̂, t̂) ∈ R× [−θ, θ] and define

T̂n
.
= E(x̂,t̂)

[

f
(

X̂n
t̂+1/

√
n

)]

, Ân
.
=

√
n(T̂n − I),

where f is a smooth function on R with compact support. The subscript
(x̂, t̂) of the expectation means that we are conditioning of X̂n

t = x̂. It
remains to compute Ân. This computation is parallel to the arguments
given in the proof of Theorem 1 with one important difference: now time
is scaled by 1/

√
n rather than 1/n. Thus, we omit the details and directly

write down the limit: limn→∞Anf = f ′(x̂)c(µ−Γ1−µ). The right side of the
last display is the generator of the process

X̂t̂
.
= X̂−θ + c(µ − Γ1−µ)(t̂+ θ) (4.36)

whose randomness is completely determined by its initial position X̂−θ. Ex-
actly the same line of arguments as in the proof of Theorem 1 now imply
X̂n ⇒ X̂. We are interested in the limit of P(τ̂n ∈ (a, b)), the probability
that X̂n hits 0 between time points a and b. The weak limit we have just
established implies that this limit equals P(τ̂ ∈ (a, b)) where τ̂ is the first
time when the limit process X̂ hits 0. (4.36) implies that it will take X̂

−X̂−θ

c(µ−Γ1−µ)
unit of time to hit 0. We subtract from this θ to convert it to

the time unit of the limit time interval [−θ, θ]: τ ′ = −X̂−θ/c(µ−Γ1−µ)− θ.
But this is a random variable with mean 0 and variance v. Hence we have
(4.35).

Here is a numerical example for Theorem 2. Suppose we have a network
with n = 5000 nodes of which k = 200 are initially infected, i.e., µ = 0.96.
Suppose that fanout is c = 5. For this network, the v that appears in
Theorem 2 is v ≈ 0.0012. We know from Theorem 1 that on average at
the end of the first push round the total number of infected nodes will be
200 + nΓ1−µ ≈ 1070. Now Theorem 2 says that the first push round will
attain this infection level with probability approximately equal to 1/2: and
if it does, this will almost certainly happen in the last 4

√
5000v ≈ 10 steps of

the push round (which lasts a total of k = 200 steps); this network hitting
1070 infected nodes before the last 10 random selections is as likely as a
normal random variable being 4 standard deviations below its mean. The

18

same theorem implies that with probability 1/2 this level will be attained
approximately in the first 10 steps of the next round.

For 0 < λ < µ, define τnλ
.
= inf{l : Sl ≥ nλ}. τnλ is the number of random

selections before the proportion of newly infected nodes has reached λ; in
terms of the random walk S, it is the first time S reaches the level nλ.

Define

τ̄λ(µ)
.
= −1

c
log

(

1− λ

µ

)

(4.37)

τ̄ , as a function of λ, is the inverse function of the fluid limit Γt(µ) =
µ(1−e−ct) with respect to t. Dynamically, τ̄λ is the first time Γ hits the level
λ. Because Γ is deterministic, so is this hitting time. A quick examination
of the proof of Theorem 2 reveals that if one replaces 1−µ with τ̄λ and Γ1−µ

with λ, the proof continues to work exactly as is. This gives us the following
generalization of Theorem 2:

Theorem 3. Let τnλ and τ̄λ be as above. (τnλ − nτ̄λ)/
√
n ⇒ N(0, v) with

v = var(Xτ̄λ)/(c(µ − λ))2.

4.3 Fluid limit of the whole push algorithm

As suggested in the beginning of this section, instead of the number of newly
infected nodes, one can keep track of their proportion in the network. This
amounts to dividing S by n. Theorem 1 gives us the following approximation
for the proportion process: Sl/n ≈ Γl/n+

1√
n
Xl/n Thus as n goes to infinity,

the proportion process S/n converges to its fluid limit Γ. In subsection 2.1
we have argued that the random walk S, when ran indefinitely, is a model
for the whole push algorithm. This implies that t → Γt for t ∈ (0,∞) is
a representation of the fluid limit of the whole push algorithm. To break
it into rounds, we proceed as follows. Define ϕ0

.
= (1 − µ), this is the

initial proportion of infected nodes in the fluid limit. The first round in
the prelimit lasts kn steps; in the scaled limit time, this corresponds to the
time point limn kn/n = 1− µ, thus the first round of the fluid limit ends at
time 1 − µ and the total proportion of infected nodes after the first round
is ϕ1

.
= ϕ0 + Γϕ0

. The next fluid round will last a time interval of length
ϕ1 and will add an additional Γϕ0+ϕ1

− Γϕ0
proportion of infected nodes,

bringing the total proportion of infected nodes at the end of the second
round to ϕ2

.
= ϕ0 + Γϕ1+ϕ0

In general, the proportion of infected nodes at
the end of the ith round of the fluid limit will be

ϕi = ϕ0 + Γci−1
, (4.38)

with ci−1
.
=

∑i−1
j=0 ϕj . The construction of {ϕ0, ϕ1, ϕ2, ...} is the fluid limit

version of that of the sequence (I0, I1, I2, ...) given in subsection 2.1; and
indeed, Theorem 1 implies Ii/n ⇒ ϕi. The sequence {ϕi} is increasing and
deterministic; in the fluid limit, each round infects a deterministic proportion

19

of the network. In the next subsection we will use the sequence {ϕi} to
compute the weak limit of νnλ , the number of push rounds in a network with
n nodes before the proportion of the infected nodes in the network hits λ.

4.4 Weak limit of νn
λ

Recall that νnλ , defined in (3.17), is the number of push rounds needed
before the proportion of the infected nodes in the network reaches λ ∈ (0, 1).
Section 3 presents numerical computations of the expectation of this random
variable for a network with 500 nodes and for different fanout values and
makes several observations about the results. Here, we derive the weak limit
of this random variable using the sequence {ϕi} of (4.38) and Theorems 1
and 3.

Define ν̄λ
.
= inf{i : ϕi ≥ λ}; ν̄ is the number of rounds that the fluid limit

network needs so that its proportion of infected nodes equals λ. Because ϕ
is an increasing deterministic sequence, ν̄λ can be characterized as follows:
ν̄λ = i for λ ∈ [ϕi, ϕi+1). Hence, as function of λ, ν̄ is right continuous,
piecewise constant and it jumps precisely by 1 at the points {ϕ1, ϕ2, ϕ3, ...}.
As the final step of our analysis of the push algorithm we prove

Theorem 4. νnλ ⇒ ν̄λ for λ ∈ (0, 1) − {ϕ0, ϕ1, ϕ2, ...}.

Proof. νλ = ν̄λ = 0 for λ ≤ ϕ0 = 1 − µ; i.e., if λ is less than 1 − µ (the
initial proportion of infected nodes), the network already has more than λ
proportion of infected nodes before any round begins.

To keep the proof short, we will treat the first two rounds; an argument
that covers all rounds will involve the same ideas. Fix a λ ∈ (ϕ0, ϕ1); we
would like to show that νnα ⇒ ν̄λ = 1, i.e., as n goes to ∞, the infection level
λ is attained in the first round with probability approaching 1. λ < ϕ1, and
the definitions (4.38) and (4.37) of ϕ1 and τ̄λ imply

τ̄λ < 1− µ; (4.39)

this last inequality can also be expressed as follows: at time 1 − µ the
proportion of infected nodes in the fluid limit is ϕ1; λ being strictly less
than ϕ1 and the fluid limit Γ being strictly increasing and deterministic, it
must be that the first time the fluid limit has reached the infection level λ
must be before time 1− µ.

νnα = 1 if and only if τnλ ≤ kn, which is the same inequality as

1√
n

(

1√
n
(τnλ − nτ̄λ)

)

≤ kn/n− τ̄λ. (4.40)

The first term on the left is a constant and converges to 0; Theorem 3 says
that the second term on the left converges weakly to a finite random variable.
Thus, their product converges weakly to 0. (4.39) and kn/n → (1−µ) imply,

20

on the other hand, that the limit of the right side is strictly greater than
0. Thus, the probability of the event expressed in this display, that is, the
probability that νλ = 1, indeed converges to 1.

For λ ∈ (ϕ1, ϕ2), we would like to show νnλ converges weakly to ν̄λ = 2,
i.e., we want to show that the probability of the event kn < τλ < kn + Skn

converges to 1 (kn is the total number of random selections in the first
round and kn + Skn is the same total after the second round). A rescaling
and centering similar to (4.40) and Theorems 1, 3 imply this.

An interesting question is the weak limit of νnϕi
. We have already cov-

ered the case i = 1 in the argument given in the numerical example following
Theorem 2: νnϕ1

⇒ T1 where T1 ∈ {1, 2} and takes these value with equal
probability. The weak limit of the whole sequence

{

νnϕi
, i = 1, 2, 3, ...

}

re-
quires a longer analysis and we leave it to future work.

Figure 5 shows two graphs: first is that of ν̄λ for an initial infection rate

of µ = 0.01 and fanout c = 3; the second is N(λ, 5 = 500µ) = E5[ν
(500)
λ]; the

graph of N(λ, 50) for c ∈ {1, 7} has been given earlier in Figure 2. Clearly,

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

N
(

λ,
5
)
,

ν λ

λ

Figure 5: The graphs of ν̄λ (the thicker curve) and N(λ, 5); both for c = 3

as Theorem 4 implies, these graphs overlap except around {ϕi}; at ϕi, ν̄
jumps by 1 while N rapidly goes from i − 1 to i. Theorem 4 also implies
that the λ interval over which this transition occurs shrinks to the single
point ϕi as the network size grows to ∞.

5 Conclusion

The starting point of the analysis of the present paper is taking the random
selections in a push round as the atomic operation of the push algorithm and

21

defining a random walk whose each step corresponds to a random selection.
The main body of the analysis consists of computing weak limits of this
random walk and its various functions. We expect these ideas to be directly
applicable to other epidemic algorithms (such as those considered in [17, 21])
over fully connected networks.

Fully connectedness is one of the natural limits of the collection of possi-
ble topologies over a given collection of nodes. As the topology of a network
approaches full connectivity one expects the results for the latter to be good
approximations for the former. One can further use results on quantities in
fully connected networks as upper and lower bounds on the same quantities
in other network topologies. After a detailed analysis of this basic case, an
interesting and important direction is the generalization to more complex
network topologies and structures, such as those considered in [8, 13, 2].

To the best of our understanding, most of the literature on the asymp-
totic analysis of epidemic algorithms focus on obtaining upperbounds on the
tail probabilities of the total dissemination time, νn1 in our notation. For
this, authors often use large deviations results such as Chernoff’s bound.
However, the underlying processes in these models may have fluid and dif-
fusion limits and these limits can give more precise information about the
distribution of key random variables, such as the total dissemination time.
We hope that the present work provides an example of how this path can
be followed in the context of a simple model.

Acknowledgement

Ali Devin Sezer’s work on this article has been supported by the Rbuce-up
European Marie Curie project, http://www.rbuce-up.eu/.

A Proofs

Proof of Theorem 1. To avoid confusion between discrete and continuous
time parameters, we will show continuous time parameters in parentheses,
e.g., we will write Xn(t) instead of Xn

t . We begin by assuming that c = 1,
the modifications for c > 1 will be straightforward. kn is assumed to grow
with n so that limn(n − kn)/n = µ ∈ (0, 1). Let Cb(R

2) denote the set of
bounded and continuous functions on R

2; and C2
0 (R

2) the set of twice differ-
entiable functions with compact support with continuous Hessians. Define
Tn : Cb(R

2) → Cb(R
2) as

[Tn(f)](x) = Ex[f(X
n(1/n),Γn(1/n))], x ∈ R

2, (A.41)

where the subscript x of Ex denotes conditioning on (Xn(0),Γn(0)) = x =
(x1, x2).

22

http://www.rbuce-up.eu/

Define
An

.
= n(Tn − I), (A.42)

where I denotes the identity operator on Cb(R
2). Let us compute An explic-

itly for f ∈ C2
0 (R

2). The expectation in (A.41) is conditioned on
(Xn(0),Γn(0)) = (x1, x2), i.e., on

S0 − γ0√
n

= x1,
γ0
n

= x2. (A.43)

This, (2.2), (2.7) and the definition of Xn imply

Xn(1/n) =
S1 − γ1√

n
=

S0 − γ0√
n

+
S1 − S0√

n
− γ1 − γ0√

n

= x1 +

(

X1 −
(

n− kn
n− 1

− n

n− 1
x2

))

/
√
n

Γn(1/n) =
γ1
n

=
1

n

(

γ0
n− 2

n− 1
+

n− kn
n− 1

)

= x2 −
x2

n− 1
+

n− kn
n(n− 1)

.

Define

Y1
.
= X1 −

(

n− kn
n− 1

− n

n− 1
x2

)

, (A.44)

y2
.
= − x2

n− 1
+

n− kn
n(n− 1)

, ∆
.
= (Y1/

√
n, y2)

where X1 refers to the random variable given in (2.3). Ex[Y1] and Ex[Y
2
1]

will be useful in what follows, so let us compute them first. Equations (A.43)
and (2.3) give

Ex[X1] =
n− kn
n− 1

− n

n− 1
x2 −

√
n

n− 1
x1, (A.45)

which gives

Ex[Y1] = Ex[X1]−
(

n− kn
n− 1

− n

n− 1
x2

)

= −
√
n

n− 1
x1. (A.46)

On the other hand Ex[X1] = Ex[X
2
1] = (n− kn − nx2)/(n − 1) implies

Ex[Y
2
1] = Ex[X

2
1] + 2Ex[Y1]dn − d2n (A.47)

= (n − kn − nx2)/(n − 1)−
√
n

n− 1
x1dn − d2n

where dn refers to the constant (−(n− kn)+nx2)/(n− 1) in Y1’s definition.

23

The expectation that occurs in the definition (A.41) of Tn written in
terms of the vector ∆ is Ex[f(X

n(1/n),Γn(1/n))] = Ex[f(x +∆)]. Let Df
denote the gradient of c and Hf its Hessian; and let ∆2 denote the tensor
product ∆⊗∆. Using f ’s Taylor’s expansion in the last display gives

Ex[f(X
n(1/n),Γn(1/n))] = Ex

[

f(x) + 〈Df(x),∆〉+ 1

2
〈Hf(x+ θn),∆

2〉
]

(A.48)
where θn is a random vector that lies on the line segment connecting 0 to ∆.
Let us deal with each of the terms that appear in (A.48) one by one. The
function f(x) is not random and so it comes out of the expectation. The
first order term is 〈Df(x),∆〉 = fx1

(x)Y1/
√
n + fx2

(x) y2. That the second
term is deterministic and (A.46) give

Ex [〈Df(x),∆〉] = −fx1
(x)

x1
n − 1

+ fx2
(x) y2. (A.49)

Ex

[

〈Hf(θn),∆
2〉
]

is

1

n
Ex

[

fx1,x1
(x+ θn)Y

2
1

]

+ 2y2
1√
n
Ex [fx1,x2

(x+ θn)Y1]

+ (y2)
2fx2,x2

(x+ θn).

Substituting these in (A.42) yields

Anf = −fx1

n

n− 1
x1 + fx2

(x)(ny2) +
1

2
Ex

[

fx1,x1
(x+ θn)Y

2
1

]

(A.50)

+ y2
√
nEx [fx1,x2

(x+ θn)Y1] +
1

2
n(y2)

2fx2,x2
(x+ θn)

Now let us compute the limits of each of the terms in the last sum as n → ∞.
The first term converges to −fx1

x1. The definition of y2 and (4.20) imply

lim
n→∞

fx2
(x)(ny2) = fx2

(µ − x2). (A.51)

Note that
θn → 0 (A.52)

uniformly, because ∆ is bounded. This and the continuity of Hf imply

lim
n→∞

1

2
Ex

[

fx1,x1
(x+ θn)Y

2
1

]

=
1

2
fx1,x1

(x) lim
n→∞

Ex

[

Y 2
1

]

. (A.53)

The observation (A.52), continuity of Hf and |(y2)2| = O(1/n2) imply

lim
n→0

1

2
n(y2)

2fx2,x2
(x+ θn) = 0. (A.54)

Boundedness of Y1, (A.46), (A.52), continuity of Hf an |y2| = O(1/n) imply

lim
n→∞

y2
√
nEx [fx1,x2

(x+ θn)Y1] = 0. (A.55)

24

Letting n → ∞ in (A.47) gives

lim
n→∞

Ex

[

Y 2
1

]

= (µ− x2)(1 − (µ− x2)). (A.56)

The equations (A.50), along with (A.51), (A.53), (A.54), (A.55) and
(A.56) yield limn→∞Anf = Af where Af

.
= 〈Df, (−x1, µ − x2)〉 + 1

2(µ −
x2)(1 − (µ − x2))fx1,x1

. One can check directly that A is the infinitesimal
generator of the semigroup T (·) defined by the process (Xt,Γt). It follows
from its definition that T (·) is a Feller semigroup on Cb(R

2). Furthermore,
[11, Proposition 3.2, page 17] imply that C∞(R2) forms a core for the gen-
erator A. Thus, [11, Theorem 1.2, page 31] and [11, Theorem 2.6, page 168]
imply (Xn,Γn) ⇒ (X,Γ).

Modifications for c > 1 are as follows. The variables Y1 and y2 are now
defined as

Y1
.
= X1 − c

(

n− kn
n− 1

− n

n− 1
x2

)

, y2
.
= − x2 c

n− 1
+

(n− kn) c

n(n− 1)
;

where X1 has the hypergeometric distribution (2.6). Then

Ex[Y1] = −c

√
n

n− 1
x1. (A.57)

(A.47) becomes Ex[Y
2
1] = Ex[X

2
1]+2Ex[Y1]dn−d2n = Ex[X

2
1]−

c
√
n

n−1x1dn−d2n
where dn is now c(−(n − kn) + nx2)/(n − 1). For the asymptotic analysis,
we only need the limit of the last display as n → ∞. For n large, one can
approximate the hypergeometric X1 as Binomial(p∗, c) with success prob-
ability p∗ = (kn − nx2)/n, whose second moment is cp∗ + c(c − 1)(p∗)2.
Substituting this in the last display and letting n → ∞ we get

lim
n→∞

Ex[Y
2
1] = c (µ − x2)(1− (µ − x2)) (A.58)

which generalizes (A.56) to c > 1. On the other hand, we have
Ex [〈Df(x),∆〉] = −fx1

(x) c x1

n−1 + fx2
(x) y2 (generalization of (A.49)). It

follows that

Anf = −fx1
c

n

n− 1
x1 + fx2

(x)(ny2) +
1

2
Ex

[

fx1,x1
(x+ θn)Y

2
1

]

+ y2
√
nEx [fx1,x2

(x+ θn)Y1] +
1

2
n(y2)

2fx2,x2
(x+ θn).

Same arguments as in the c = 1 case give limn→∞ fx2
(x)(ny2) = fx2

c (µ −
x2). The last two displays (A.57) and (A.58) imply limn→∞Anf = Af where
Af

.
= 〈Df, c (−x1, µ−x2)〉+ 1

2 c (µ−x2)(1− (µ−x2))fx1,x1
. The rest of the

proof is the same as in the case of c = 1.

25

Proof of Proposition 2. Define the stopping time

τ ′n
.
= inf

{

l :
1√
n
(Sl − γl) ≥

nΓ1−µ − γ⌊ntn⌋√
n

}

.

Sl ≥ nΓ1−µ is the same as (Sl − γl)/
√
n ≥ (nΓ1−µ − γl)/

√
n. That γl is

increasing in l implies that the right side of this inequality is decreasing in
l. This implies

{τn ≤ ntn} ⊂ {τ ′n ≤ ntn}. (A.59)

We know from Theorem 1 that γ⌊ntn⌋/n → Γt. This and (4.30) imply

limn(nΓ1−µ − γ⌊ntn⌋)/
√
n → C

√

var(X1−µ). Now define τ ′
.
= inf {t : X̄t ≥

C
√

var(X̄1−µ)}. The last two displays, that t → ect is monotone increas-

ing, tn → (1 − µ) (see (4.32)) and Theorem 1 imply limn→∞ P({τ ′n ≤ ntn})
≤ P(τ ′ ≤ (1 − µ)). X̄ is a stochastic integral against a Brownian motion.
Therefore, if we measure time using its quadratic variation it will be a stan-
dard Brownian motion [16, Theorem 4.6, page 174]. This and [16, Equation

(6.3), page 80] give P(τ ′ ≤ (1−µ)) =
√

2
π

∫∞
C e

−x2

2 dx. The last equality and

(A.59) imply (4.33).

References

[1] Mert Akdere, Cemal Çagatay Bilgin, Ozan Gerdaneri, Ibrahim Kor-
peoglu, Özgür Ulusoy, and Ugur Cetintemel. A comparison of epidemic
algorithms in wireless sensor networks. Computer Communications,
29(13):2450–2457, 2006.

[2] Christos Anagnostopoulos, Stathes Hadjiefthymiades, and Evangelos
Zervas. Information dissemination between mobile nodes for collabo-
rative context awareness. Mobile Computing, IEEE Transactions on,
10(12):1710–1725, 2011.

[3] Patrick Billingsley. Convergence of Probability Measures, Second Edi-
tion. Wiley, 1999.

[4] Alexander Birman. Computing approximate blocking probabilities for a
class of all-optical networks. Selected Areas in Communications, IEEE
Journal on, 14(5):852–857, 1996.

[5] Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai
Budiu, and Yaron Minsky. Bimodal multicast. ACM Transactions on
Computer Systems (TOCS), 17(2):41–88, 1999.

[6] Béla Bollobás, Oliver Riordan, Joel Spencer, and Gábor Tusnády. The
degree sequence of a scale-free random graph process. Random Struc-
tures & Algorithms, 18(3):279–290, 2001.

26

[7] Tom Britton. Stochastic epidemic models: a survey. Mathematical
biosciences, 225(1):24–35, 2010.

[8] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Ru-
mor spreading in social networks. Theoretical Computer Science,
412(24):2602–2610, 2011.

[9] Edward G. Coffman Jr, Zihui Ge, Vishal Misra, and Don Towsley.
Network resilience: exploring cascading failures within bgp. In Proc.
40th Annual Allerton Conference on Communications, Computing and
Control, 2002.

[10] Daryl J. Daley and Joseph Mark Gani. Epidemic modelling: an intro-
duction, volume 15. Cambridge University Press, 2001.

[11] Stewart Ethier and Thomas G. Kurtz. Markov processes. characteriza-
tion and convergence. NY: John Willey and Sons, 9, 1986.

[12] Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and
Laurent Massoulié. Epidemic information dissemination in distributed
systems. Computer, 37(5):60–67, 2004.

[13] Ayalvadi Ganesh, Laurent Massoulié, and Don Towsley. The effect of
network topology on the spread of epidemics. In INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, volume 2, pages 1455–1466. IEEE, 2005.

[14] Joe Gani. Random-allocation and urn models. Journal of Applied
Probability, 41:313–320, 2004.

[15] Richard Gibbens and Frank P. Kelly. Dynamic routing in fully con-
nected networks. IMA Journal of Mathematical Control and Informa-
tion, 7(1):77–111, 1990.

[16] Ioannis Karatzas and Steven Eugene Shreve. Brownian motion and
stochastic calculus, volume 113. Springer, 1991.

[17] Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold
Vocking. Randomized rumor spreading. In Foundations of Computer
Science, 2000. Proceedings. 41st Annual Symposium on, pages 565–574.
IEEE, 2000.

[18] Jochen Mundinger, Richard Weber, and Gideon Weiss. Optimal
scheduling of peer-to-peer file dissemination. Journal of Scheduling,
11(2):105–120, 2008.

[19] Öznur Özkasap, Mine Çağlar, Şule Yazıcı, and Selda Küçükçifçi. An
analytical framework for self-organizing peer-to-peer anti-entropy algo-
rithms. Performance Evaluation, 67(3):141–159, 2010.

27

[20] Dongyu Qiu and Rayadurgam Srikant. Modeling and performance anal-
ysis of bittorrent-like peer-to-peer networks. ACM SIGCOMM Com-
puter Communication Review, 34(4):367–378, 2004.

[21] Sujay Sanghavi, Bruce Hajek, and Laurent Massoulié. Gossiping
with multiple messages. Information Theory, IEEE Transactions on,
53(12):4640–4654, 2007.

[22] Henry C. Tuckwell and Ruth J. Williams. Some properties of a sim-
ple stochastic epidemic model of sir type. Mathematical biosciences,
208(1):76–97, 2007.

[23] Di Warren and Eugene Seneta. Peaks and eulerian numbers in a random
sequence. Journal of applied probability, pages 101–114, 1996.

[24] Max A. Woodbury. On a probability distribution. The Annals of Math-
ematical Statistics, 20(2):311–313, 1949.

[25] Shouhuai Xu, Wenlian Lu, and Li Xu. Push-and pull-based epidemic
spreading in networks: Thresholds and deeper insights. ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS), 7(3):32, 2012.

28

	1 Introduction
	2 Random Walk Representation
	2.1 S as a model of the whole push algorithm
	2.2 Expectation and second moment of S and Y

	3 A numerical comparison of push and pull
	4 Fluid and Diffusion Limits
	4.1 Comparison of push and pull for large networks
	4.2 First time to hit n1-
	4.3 Fluid limit of the whole push algorithm
	4.4 Weak limit of n

	5 Conclusion
	A Proofs

