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Abstract

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor. Molecular het-

erogeneity is a hallmark of GBM tumors that is a barrier in developing treatment strategies.

In this study, we used the nonsynonymous mutations of GBM tumors deposited in The Can-

cer Genome Atlas (TCGA) and applied a systems level approach based on biophysical

characteristics of mutations and their organization in patient-specific subnetworks to reduce

inter-patient heterogeneity and to gain potential clinically relevant insights. Approximately

10% of the mutations are located in “patches” which are defined as the set of residues spa-

tially in close proximity that are mutated across multiple patients. Grouping mutations as 3D

patches reduces the heterogeneity across patients. There are multiple patches that are rela-

tively small in oncogenes, whereas there are a small number of very large patches in tumor

suppressors. Additionally, different patches in the same protein are often located at different

domains that can mediate different functions. We stratified the patients into five groups

based on their potentially affected pathways that are revealed from the patient-specific sub-

networks. These subnetworks were constructed by integrating mutation profiles of the

patients with the interactome data. Network-guided clustering showed significant associa-

tion between the groups and patient survival (P-value = 0.0408). Also, each group carries a

set of signature 3D mutation patches that affect predominant pathways. We integrated drug

sensitivity data of GBM cell lines with the mutation patches and the patient groups to ana-

lyze the possible therapeutic outcome of these patches. We found that Pazopanib might be

effective in Group 3 by targeting CSF1R. Additionally, inhibiting ATM that is a mediator of

PTEN phosphorylation may be ineffective in Group 2. We believe that from mutations to net-

works and eventually to clinical and therapeutic data, this study provides a novel perspective

in the network-guided precision medicine.
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Author summary

Precision medicine aims to find the best treatment strategy based on the information

about the patient’s tumor. Molecular heterogeneity is the main obstacle in developing

treatment strategies. Therefore, transforming patient specific molecular data into clini-

cally interpretable knowledge is fundamental in precision medicine. In this work, we

tackle the mutation profiles of patients with Glioblastoma Multiform (GBM) which is the

most aggressive type of brain tumors with a poor survival. Our main motivation is that

different mutations, that are spatially in close proximity in the same protein, or function

in the same pathway, may result in phenotypically similar tumors. 3D spatial clustering of

the mutations, that we call “mutation patch”, significantly decreases the heterogeneity.

We additionally identify the affected patient-specific subnetworks and pathways that are

inferred from mutations. Indeed, grouping the patients based on the presence of muta-

tions in close proximity together with network-guided grouping is significantly associated

with their survival. These results also enable us to suggest several therapeutic hypotheses

for each group based on available drug treatment data. We believe that from mutations to

networks and eventually to clinical and therapeutic data, this study provides a novel per-

spective to the analysis of mutation effects towards the network-guided precision

medicine.

Introduction

Cancer mostly occurs when somatic mutations accumulate and eventually change the behav-

ior, structure and properties of the cell. Understanding which mutations cause cancer is of cru-

cial importance. The large-scale cancer genome sequencing projects including The Cancer

Genome Atlas (TCGA) [1], the International Cancer Genome Consortium (ICGC) [2], and

smaller-scale gene/protein focused and genome-wide screenings have enabled us to explore a

large volume of somatic mutations in human cancers. Heterogeneity in mutation profiles

between and within tumors as well as among individuals of the same type of cancer is enor-

mous. However, not every somatic mutation affects pathways involved in cancer. Mutations

are conventionally divided into driver and passenger mutations based on their function in pro-

viding positive growth advantages to cancer cells. The main challenge is to discriminate the

drivers from passengers. Lately, another class of mutations were defined which is called

“latent” or “mini-driver” [3]. Latent mutations have a potential to behave like a driver or are

not yet discovered to be as drivers. Although latent mutations are not significant mutations,

they can be triggered to become driver mutations by the environmental factors or conforma-

tional changes in proteins. Ultimately, proteins of the driver genes are the favored molecular

targets in drug discovery and cancer therapy. Also, having insights about the accumulation of

mutations and their impact at the pathway level is equally important to understand the causes

and mechanisms of cancer development and progression. All these together with epigenetic

and post-translational factors determine the risk of cancer progression and the therapeutic

resistance. One therapy that works in some patients might be ineffective in other patients. It is

challenging even in a single patient for the same tumor type.

Protein-protein interactions (PPIs) have critical role in regulating and performing many

cellular functions. Disease-associated mutations are more likely to affect protein interactions

and eventually the cellular functions [4]. Several studies have focused on the impact of the dis-

ease-associated alterations in protein-protein interaction networks [5–8]. Recently, IMEX con-

sortium [9] started an effort to curate and catalogue the oncogenic and neutral mutations in
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protein interactions [10]. The combination of three-dimensional structural information with

large-scale mutation information may assist clarifying the impacts of cancer mutations [7, 11–

14] as a protein’s biological functions and physical interactions are strongly linked to its struc-

ture. Various mutations in the same protein may result in distinct profiles of interaction and

eventually distinct phenotypes of disease [15–19]. Mutations that destabilize a protein’s global

structure can result in severe alterations in its overall interactions. Additionally, a mutation

may affect only one interface of a multi-face protein and the lost and gained interaction part-

ners through the affected site may give insights about the functional changes. This type of

edgetic perturbations [4] in proteins thus require structurally resolved PPI networks and the

3D spatial position of the mutations in proteins [20–22]. Mutations in cancer have been evalu-

ated in many studies based on their organization in proteins structures [5, 6, 23, 24]. Niu et al

spatially clustered the mutations from 19 different cancer-types and came up with the set of

druggable functional mutations [24]. The functional effects of mutations on protein interac-

tions and signaling networks have been extensively reviewed in [14] which nicely puts forward

that biophysical studies complement omics and clinical data. Additionally, some other studies

focused on patient-specific analysis of the molecular signatures in tumors in a network context

[25–27]. The phosphoproteomic data from eight GBM patients have been previously used to

demonstrate that the network-guided comparison reveals commonalities and differences

across patients [27]. In another network-based approach, mutations, transcriptional and phos-

phoproteomic data were used to model patient-specific pathways in prostate cancer [25]. The

network based stratification (NBS) approach integrated somatic mutation profiles with molec-

ular interactions to divide a heterogeneous set of tumors into clinically similar clusters [28]

which was successfully applied to various TCGA mutation profiles [28, 29]. NBS was earlier

used in conjunction with structural locations of cancer missense mutations to disclose the

impacts of a mutation in the core or interface regions when the rebuilt networks are perturbed

[30]. Network-based analysis was further used to distinguish driver mutations from passenger

mutations in GBM [31].

Computational approaches are crucial for analyzing the effects of mutations on proteins,

protein interactions and functional pathways in a patient-specific way, considering the big

quantity of diverse data including mutations, protein structures, and known PPIs. We

applied a systems level approach to the somatic missense, nonsense and frameshift muta-

tions in 290 Glioblastoma (GBM) patients which is the most aggressive type of brain tumor.

The mutation profiles are rarely common across the patients and they do not track with the

known transcriptional subtypes of GBMs or the known biomarkers such as the IDH1 muta-

tion. Despite this heterogeneity, mutations in different proteins functioning in the same

pathway may result in phenotypically similar tumors. In order to overcome the heterogene-

ity in tumors and develop personalized therapeutic strategies, reverse engineering from

mutations to networks and pathways is a key approach. In this work, we proceeded in two

directions: (i) finding the spatial arrangement of the mutations as patches and (ii) recon-

structing the sub-networks primarily affected by the set of mutations across patients (see

Fig 1). Then, each patient-specific network was reduced into a significantly enriched set of

pathways and patients were grouped to better classify them into clinically similar groups

according to their pathway similarity. Toward the precision medicine, patient groups were

analyzed based on their predominant patches and pathways, and were associated with their

survival profiles. Eventually, drug sensitivity data in GBM cell lines were integrated with the

signatures of patient groups and hypothetical therapeutic strategies for each patient group

were inferred.

3D spatial organization and network-guided comparison of GBM mutations
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Results

Heterogeneity decreases with the 3D grouping of GBM mutations

The missense, nonsense and frameshift mutations from 290 GBM tumors were first analyzed

at the sequence level. There are 15,399 unique mutations and 14,308 of them match at least to

one canonical protein whereas the rest matches to alternative isoforms of the proteins. The

average number of mutations per patient is 50.43. The mutations are rarely common across

different GBM tumors where only 44 mutations are present in at least three patients and 213

mutations are present in at least two patients. The most frequent mutations with 13 patients

are EGFR mutation A289V and IDH1 mutation R132H.

Next, we mapped the GBM mutations on to protein structures and found that 4702 muta-

tions were aligned to at least one protein structure either from PDB [33] or from ModBase

[34]. The local organization of mutations in 3D was determined by their spatial proximity to

each other which we call “patches”. A patch is a set of mutated residues that are either in physi-

cal contact with another mutated residue (that is, at least one pair of atoms within 5Å dis-

tance), or there is another intermediate residue in close proximity connecting the two mutated

residues. The term “patch” was used in previous studies, however we have to indicate that our

patch definition is different from those [11, 24]. We looked for continuous residue contacts

instead of using a mutated residue as the center of the patch. The 3D spatial grouping of 4702

mutations resulted in 220 patches composed of 580 mutations and 4122 singletons (a mutation

that is not involved in a patch). We then split patches as intra- and inter- which represents

patches that do not include any interface mutations and patches that have at least one interface

mutation, respectively. The interpatch can consist of residues of a single protein or two partner

proteins. In total, there are 160 intra-, 60 inter-patches in our dataset.

Fig 1. Overview of the method. Patient specific GBM tumor mutation profiles were obtained from TCGA. The spatial proximity

of each mutation is searched and mutation patches were obtained. Simultaneously, each cancer related driver protein having at

least one mutation in each patient was used to reconstruct patient-specific sub-networks. Red dots and stars in the middle panel

correspond to mutations mapped to the sequence, structure and PPI network. Finally, the sub-networks were used to classify the

patients, to find signature patches in each patient groups and to demonstrate the help of 3D patches in overcoming heterogeneity.

Lastly, we investigated the patient groups to find an association with the clinical outcome by using cell line drug sensitivity data.

The brain and human icons in the first panel are retrieved from Reactome Icon Library [32].

https://doi.org/10.1371/journal.pcbi.1006789.g001
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A patch is present in a patient if the patient has at least one patch mutation. While each

individual mutation is shared between 1.13 patients on average, each patch is present in 3.5

patients on average, which partially reveals some common patterns across patients. In Fig 2A,

patches are sorted based on their frequency across patients. The patches in TP53 and PTEN

Fig 2. The 3D patch profile and survival curve of the patients having at least one patch mutation. (A) Grouping patients based on 3D patches. Each column

represents a patient and each row represents patches that are present in at least 2% of patients. (B) Kaplan-Meier survival curves of the patient groups. (C) Mapping

patches of frequently mutated hub proteins to their domains. Red colors represent the presence of patches in the corresponding domains.

https://doi.org/10.1371/journal.pcbi.1006789.g002
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are common among 20% of the patients, and the patches in EGFR are common in 8% of the

patients, that yields slightly better detection of commonalities across patients.

Then, we divided the patients into mutually exclusive groups based on their most common

patches. We linked patient survival data to assess the advantage of patches (3D spatial group-

ing) in overcoming heterogeneity. The 3D spatial grouping of patients is significantly associ-

ated with survival data (P-value = 0.0001 for 162 patients having at least one mutation in

patches). We found no significant association of individual mutations between survival and

patient groups. (P-value = 0.5115- S1 Fig). Previous studies suggested that 3D clustering of the

mutations led to a better classification of different cancer types, driver mutations or novel can-

cer genes [5, 11, 24, 35]. Our initial results suggest that patient-grouping is also possible with

3D patches. The strong association between the patient groups and their survival indicates that

patients with similar 3D spatial organization in their proteins may have similar disease pheno-

types which may represent similar affected functions and pathways in the tumor cells.

In order to understand the possible functional effects of spatial organization, we mapped

the patches on protein domains. We found that different patches are located in different func-

tional protein domains. For example, PIK3R1 gene encodes the P85 which have two patches:

Patch1 is on the inter-SH2 domain that has the inhibitory function on PIK3CA by binding the

catalytic domain p110, on the other hand Patch2 is on the SH2 domain where the protein

binds to phosphorylated residues. Additionally, PTEN has two patches and one patch is on the

phosphatase domain, the other on membrane binding domain of the protein. Mutations on

PTEN Patch1 disrupts the phosphatase function which results in accumulation of PIP3 [36,

37] in cell and thereby activation of the AKT pathway that leads to tumor growth. PIK3CA

protein consists of four different domains where Patch1 is only in the region in which the cata-

lytic domain of PIK3CA, p110 binds the P85 subunit which is the p110 inhibitor. In Fig 2C, we

showed the domains where the patches are mainly located.

So far, our analysis did not differentiate driver mutations from passenger mutations. Driver

genes can, when mutated, play a causal role in tumorigenesis and should be enriched for driver

mutations. In our analysis, we wanted to eliminate the noise from passenger mutations, there-

fore a list of putative driver genes was assembled from various literature sources and databases

including The Network of Cancer Genes [38], Cancer Genome Interpreter [39], COSMIC [40]

and the Firehose data using CHASM [41], MutSig [42] and Mutations Assessor [43] for GBM

and the analysis focused on those genes. In total, we obtained 6270 driver mutations from

3789 driver genes. We then found the intersection between the TCGA GBM mutation dataset

and the collected driver genes and driver mutations. Of all the mapped mutations, 6278 are

located in a driver gene of which 2072 mutations map to at least one protein structure. When

we filtered out our 3D patch dataset based on the driver genes, we obtained 112 intra-, 32

inter-patches. There are numerous patches which only contain two or three residues (Fig 3A).

These small patches tend to be intra-patches without any interface mutations. On the other

hand, the larger patches happen to be inter-patches (with at least one interface residue) and

the largest ones are found in the central proteins (TP53 with 41, PTEN with 43 residues as

shown in Fig 3A). An example of a large patch in PTEN is illustrated in Fig 3B. Some proteins

have various patches of comparatively small size such as EGFR (its three patches are shown in

Fig 3C). An example of inter-patches is in the PIK3R1-PIK3CA complex where both partner

proteins have at least one mutation (Fig 3D).

We further compared the differences in 3D spatial organization of their mutations between

tumor suppressors and oncogenes. Interestingly, we found that driver mutations of the tumor

suppressors have a tendency to be located in patches whereas driver mutations of the onco-

genes mostly remain as singletons (P-value = 8.33x10-6/ Fisher’s Exact Test). These results may

explain the reason why PTEN (43 and 2 residues in two different patches) and TP53 (41

3D spatial organization and network-guided comparison of GBM mutations
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residues in only one patch), which are tumor suppressors, have relatively larger patches. On

the other hand, PIK3CA (10, 3, 2, 2 residues in four different patches of PIK3CA) and EGFR

(11, 14, 5 residues in three different patches) oncogenes have smaller patches and also many

singletons. These results agree that it is more difficult to make a protein more active or effi-

cient, therefore mutations in oncogenes tend to pile up at very specific sites, i.e. all cancer-

related Ras mutations are around the GTP binding site. Whereas tumor suppressors can be

functionally impaired in a variety of ways and thus mutations could be more broadly distrib-

uted in large patches. Additionally, we further compared oncogenes and tumor suppressors

based on the frequency of non-synonymous mutations and found that frameshift and non-

sense mutations are significantly more frequent in tumor suppressors (P-value = 1.84x10-15).

These types of mutations may disrupt functionality of tumor suppressors making cells more

vulnerable to cancer.

Fig 3. (A) Histogram of the patch sizes for intra- and inter- patches. While frequently mutated hub proteins have relatively large

patches, most patches are small in size. (B) PTEN Patch 1—patch size—43 residues—an example of mutations forming a residue

network from the surface to the core. (C) EGFR—three patches with different sizes: 11, 14 and 5 residues, respectively. (D)

PIK3R1-PIK3CA—three inter-patches—each patch has at least one mutation in each partner protein.

https://doi.org/10.1371/journal.pcbi.1006789.g003
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Structural mapping of GBM mutations and physicochemical organization in proteins

and protein interactions. From the chemical and structural perspectives, we evaluated the

characteristics of GBM mutations at the molecular level. Mapping mutations onto protein

structures enabled us to find their locations in proteins. Knowledge of the locations and physi-

cochemical properties of mutated residues enhances our understanding of their functional

impact in the cell. Therefore, we divided the mutations into three classes based on their loca-

tion in protein structure, namely, interface (physically contacting to a partner protein), core

(no solvent accessibility) and surface (having solvent accessibility excluding interface residues)

mutations. Most of the mutations are located in the surface region of these proteins (see

Table 1 for the summary of all numbers). Binding site information was retrieved from PDB (if

there exist complex structures), or from models of Interactome3D [7], Interactome Insider

[12], and PRISM [44] as shown in Table 1. While most mutations are found as singletons,

approximately 10% of the mutations are in close proximity to each other and form spatial

patches. Additionally, 121 of 757 interface mutations are located in patches (~16% of all inter-

face mutations). Therefore, interface mutations are more populated in patches compared to

non-interface mutations (odds ratio = 2.09, Fisher’s Exact Test P-value < 0.0001).

We analyzed whether a mutated residue on a driver protein preserves its wild type chemical

class or switches to another chemical class. (Fig 4A). Chemical classes were defined as hydro-

phobic, charged and polar. Most core mutations are hydrophobic and their chemical classes

are preserved. Proteins with a large core region are generally robust to the effect of mutations.

[45]. However, compared to the surface region, the core region is relatively less robust to non-

hydrophobic alterations. Substitution to polar residues, for instance, significantly affects pro-

tein packing and folding. [46, 47]. Therefore, the set of mutations that change their chemical

class in the core region is expected to have significant functional effects. Our analysis shows

that chemical class profiles of interface and surface mutations are very similar to each other

and substantially different from core mutations. Surface and interface residues are more likely

to change their chemical class (P-value = 1.81x10-11). When we focused only on the driver

gene mutations, the results did not change. The most prominent changes in surface and inter-

face mutations are charged-to-charged and charged-to-polar shifts. Other shifts, such as

changes from hydrophobic-to-polar and from hydrophobic-to-charged, are less frequent.

Although the fraction of hydrophobic-to-hydrophobic is also high in interface and surface

regions, this is less than the expected fraction according to the Chi-square test (P-

value = 2.29x10-42). Nishi et al. found that GBM missense mutations on protein-protein inter-

faces have overall destabilizing effect and mostly alter the electrostatic component of binding

energy [13]. They also showed that mutations on interfaces resulted in more drastic changes in

physicochemical properties of amino acids than mutations that are located outside the inter-

faces. David and Sternberg showed that there are differences in polarity, hydrophobicity and

charge changes between polymorphisms and disease causing mutations [48]. The distribution

Table 1. Number of mutations mapped to protein structural regions.

Number of mutations from TCGA: 15399

Structural Region All PDB Models

Core 861 372 ModBase: 489

Surface 3084 1153 ModBase: 1931

Interface 757 340 Interactome3D: 74

PRISM: 60

ECLAIR: 283

Total 4702 1865 2837

https://doi.org/10.1371/journal.pcbi.1006789.t001
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of physicochemical changes was significantly different between disease-causing SAVs and

polymorphisms and in different protein regions. We also found similar results that the most

frequent changes are in charged interface residues. Together with the chemical class shifts in

the core region, this kind of changes are expected to be functionally critical and alter the pro-

tein binding or solubility characteristics.

Fig 4. The characteristics of the mutations. (A) Changes in the chemical properties of the driver protein mutations according to their physical locations (B)

Distribution of mutations according to their disease association (EVmutation score) in different locations. The more negative EVmutation score implies the more

damaging mutation. (C) Fraction of mutations according to their disease association (PolyPhen-2 status: benign, possibly damaging, probably damaging) in different

locations. (D) Fraction of patch mutations and singletons according to their locations.

https://doi.org/10.1371/journal.pcbi.1006789.g004
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Another interesting observation is that some positions are mutated differently in patients.

There are 70 unique positions representing such cases. For example, Proline appeared to be

mutated to Arginine at 596th position of EGFR in one patient while it is mutated to Leucine or

Serine in other patients. We also checked their chemical properties and found that 63% of all

these 70 positions were originally charged amino acids. The most frequent alterations in these

positions are either preserving charged class or changing from charged to polar. These are

mostly found in interfaces and surfaces. Alterations to hydrophobic amino acids are very rare

in these positions.

3D mutation patches and disease association. The impact of mutations on the proteins

and their interactions is not uniform. Therefore, we further assessed the effect of mutations on

their disease-causing potential using two different methods and analyzed those effects accord-

ing to the location of the mutations. The first, EVmutation [49] utilizes an unsupervised statis-

tical method that considers mutations with co-evolution of the neighboring residues while the

second, PolyPhen-2 [50] uses a learning-based approach that incorporates sequence- and

structure-based features such as sequence conservation, domain information, buried surface

area. Both methods are based on multi-cellular phenotypes such as disease association or evo-

lutionary conservation to classify the mutations as damaging or neutral. The more negative the

value of the EVmutation score the more damaging is the mutation. PolyPhen-2 on the other

hand classifies mutations as benign, possibly damaging and probably damaging. Although

these methods are not trained on cancer mutations, they still classify the mutations on driver

genes as more damaging compared to the mutations on passenger genes (P-value according to

EVMutation = 6 x10-44, P-value according to Polyphen2 = 2 x10-64). Additionally, we found

that mutations on tumor suppressor genes are slightly more damaging than oncogenes (P-

value = 0.015). Both methods gave similar results that core and interface mutations are more

damaging compared to surface mutations (Fig 4B and 4C), whereas the damage is more severe

in the core region based on PolyPhen2 (P-value = 0.004). The results also show that interface

mutations in patches are more damaging compared to singleton ones (P-value = 0.002). Simi-

lar results were also obtained from EVmutation analysis.

We obtained PolyPhen-2 results for 703 interface mutations of which 487 are located on

driver genes as detailed in Table 2. 81% and 93% of singletons and patch mutations are damag-

ing (possibly or probably), respectively. The impact of mutations in hub proteins and the rest,

however, is distinct from each other. We note that hub proteins are frequently mutated while

other proteins have rare mutations. We observed that patch mutations are more damaging in

hub proteins (PTEN, TP53, EGFR, PIK3CA, RB1 and PIK3R1, P-value = 0.00028/Chi Square

Test). However, singletons are more damaging in the rest (P-value = 0.00029/Chi Square

Test). We showed in a previous study that energetically important hot spots can be found as

singlets or clustered in hot regions. Most of the disease causing single amino acid variations in

that dataset -restricted to human proteins only but not limited to cancer variations- were

found as singletons rather than in hot-regions [17]. Compared to the hot spot organization of

the disease variations, our new results add another layer of information (hub proteins vs. the

Table 2. Disease association of singleton and patch mutations in the interface region of the hubs and the rest.

Frequently mutated proteins Rest Total

Patch Singleton Patch Singleton Patch Singleton

Benign 1 5 7 67 8 72

Possibly Damaging 11 0 2 63 13 63

Probably Damaging 69 1 21 240 90 241

Total 81 6 30 370 111 376

https://doi.org/10.1371/journal.pcbi.1006789.t002
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rest) that cancer mutations in interfaces of hub proteins are frequently located in 3D patches

while interface mutations in other proteins stay as singletons.

Characteristics of interface mutations. Interface mutations cover a small portion of the

complete set of mutations, but these residues may affect 6144 interactions (See S1 File for

detailed list for interface mutations and related interactions). This effect might result from

either a single interface or multiple interfaces. We observed that some proteins have multiple

interfaces, each having at least one mutation. These mutations belong to the class of “multiple

interfaces used by different subsets of partners”. In Fig 5A on the left panel, we illustrated an

example of this class of interfaces with their corresponding mutations. PTPN11 interacts with

GRB2 and ERBB2 proteins through different interfaces. Two mutations Q510L and E69K are

located on two distinct interfaces.

On the other hand, some mutations affect multiple interactions through the same interface.

We call this interface class ‘one interface, shared by different partners’ and the mutations in

these interfaces are ‘shared’ mutations. For instance, TP53 binds to its partner proteins

TP53BP2 and BCL2L1 through overlapping regions and the mutation H178Q, located in these

interfaces, is shared and may affect both interactions (see Fig 5A right panel).

Interface mutations can be better summarized with a network representation (Fig 5B). The

edges between mutations represent that these mutations are located in the same or overlapping

interfaces. The edges between proteins and mutations represents the interface. There are two

interfaces and many mutations in the RB1 protein. There are three interfaces having multiple

mutations in PIK3CA. None of the mutations in PIK3CA and RB1 is used exclusively for bind-

ing to a single partner.

The third class of interfaces are those that have only one mutation and interacts with only

one partner. The table in Fig 5C represents the corresponding numbers in each class, namely

‘one interface, one partner’, ‘one interface, shared by multiple partners’ and ‘multiple inter-

faces, used by different subsets of partners’. A large portion of interface mutations have poten-

tial to affect multiple interactions. Interface mutations in proteins having multiple interfaces

are mostly found in patches, but interface mutations in proteins with a single interface mostly

remain as a singleton (P-value = 5.32x10-43).

Interface mutations are likely to disrupt protein interactions that have been shown in

Autism disorder [51], cancer [52]. Therefore, integrative analysis of mutations with protein

networks can enhance our our knowledge of the functional effect of disease mutations [4].

When we checked the GBM mutations after mapping to the protein structures, we also found

that GBM mutations are significantly more frequent in the interface region than the rest

(OR = 1.1996 with P-value < 0.0001). Additionally, the number of potentially affected hub

protein interactions in our analysis is 1263 through 87 highly connected proteins (on average

14.5 interactions per hub protein). The rest (4413 interactions) can be potentially affected by

3013 proteins (on average 1.47 interactions per protein). The results indicate that highly con-

nected hub proteins tend to have multiple patches in the interface regions and interface muta-

tions are mostly located in the patches of the hubs. Proteins with multiple patches in their

interface regions are interactome hubs and are TP53, EGFR, PTEN, PIK3CA as shown in Fig

6A and 6B.

Patient-specific sub-networks inferred from mutation profiles group

tumors based on pathway similarities

As mentioned in the previous sections, mutations are rarely common in patients with GBM.

Mutations may be on distinct proteins but they may alter the same pathway. Therefore, we

first reconstructed patient-specific subnetworks from mutation profiles and then reduced each

3D spatial organization and network-guided comparison of GBM mutations
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Fig 5. Representation of the proteins that have multiple interfaces used by different subsets of partners and one interface shared by multiple partners. (A)

The left part represents an example for proteins having multiple interfaces (PTPN11) with different subset of partners and the right part represents an example
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network into enriched pathways. We detail the outcomes of the network reconstruction and

grouping patients based on network similarities in the coming section.

Network guided grouping of the patients and linking to clinical outcome. We used

Omics Integrator software [53] to reconstruct each patients’ mutation subnetwork. Omics

Integrator searches for the optimal network that connects the mutated proteins either directly

or by adding intermediate nodes through high probability protein-protein interactions. The

intermediate proteins are important to connect the mutated proteins and behave as a comple-

menting component of the pathways. As a result, a sub-network was found for each patient.

Reconstructed networks consist of both mutated driver genes/proteins and also intermediate

proteins that link mutated proteins with high confidence edges. Networks were reconstructed

and analyzed for 205 patient out of 290 patients (we lost 85 patients’ subnetworks during

reconstruction and pathway enrichment steps).

A comparison of the sub-networks is essential to understand the commonalities and differ-

ences across the patients. Despite the heterogeneity, this comparison can bring out the patient

groups that are similar in the network level. In general, a direct comparison of the presence of

proteins and their interactions across patient subnetworks does not yield meaningful com-

monalities. However, many common pathways are present in these reconstructed networks

and revealing these pathways is very important for a deep comparison beyond individual pro-

teins and interactions. Therefore, we first reduced the reconstructed patient-specific networks

into KEGG pathways. To focus only on pathways that are not assigned to a disease, we elimi-

nated infections, cancers and addiction pathways. At the end, we came up with a union of 137

pathways.

for proteins having one interface (TP53) shared by different partners. (B) The organization of RB1 and PIK3CA interface mutations are represented as a network

where the nodes are mutations and proteins and the edges between mutations represents at least one shared partners between two mutations. The edges between

proteins and mutations represents the interface (C) The table for numbers of mutations in each interface type.

https://doi.org/10.1371/journal.pcbi.1006789.g005

Fig 6. Proteins having mutations in their interfaces and the spatial arrangement of the mutations. (A) The degree distribution of the proteins in the interactome

having at least one mutation in the interface region are classified based on the 3D patch organization. Three classes, namely, proteins having multiple patches, single

patch and without any patch but only singleton are on the x-axis and log10 of the degree of each protein is on the y-axis. High degree proteins (hubs) in interactome

have tendency to include multiple patches on their interface regions. (B) The hub proteins have more interface mutations locating inside the patches. Only the proteins

having at least one patch on their interface regions are shown.

https://doi.org/10.1371/journal.pcbi.1006789.g006
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We grouped patients based on similarities of the pathways inferred from networks (see

Methods for the details of clustering). In Fig 7A, the consensus clustering matrix for each

Fig 7. Clustering the tumors based on pathway similarities. (A) Consensus clustering of the network inferred disease signatures. Each entry in the matrix shows the

co-occurence of each pair of patients. (B) Kaplan-Meier survival plots of the patient groups. Each curve represents one group. (C) Enrichment of KEGG pathways across

the patient groups. Reds indicate that KEGG pathways are mainly enriched in patients of specific groups except Group 4 which does not have any KEGG pathway

dominantly enriched in its patients.

https://doi.org/10.1371/journal.pcbi.1006789.g007
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group is shown where the patients are consistently clustered together based on their pathway

similarities. As a result, we found five groups of GBM patients containing 25, 39, 34, 8 and 99

patients, respectively.

To demonstrate the merit of network-guided analysis, we performed a similar enrichment

analysis using only the mutated proteins without reconstructing patient-specific networks. We

obtained significant enrichment only for 11 patients instead of 205. Only six pathways are

enriched and include EGFR signaling and Glioma pathways which does not allow any further

analysis to compare the patients and group them. These results also indicate that the network

reconstruction from mutation profiles reveals the affected pathways more extensively.

Next, we conducted a survival analysis for each group to gain an insight into the association

with the clinical outcome. Each patient’s survival status is obtained from TCGA. We searched

for whether the survival curve of each group differs from each other. As shown in Fig 7B, five

patient groups that are obtained by comparing enriched pathways in mutated subnetworks,

significantly differ in the survival plots (log-rank test P-value = 0.0408). Among the groups,

Group 4 shows the worst survival with an average of 259.75 days and Group 5 shows the best

survival with an average of 450.09 days. Compared to the survival analysis obtained from the

mutation profiles and mutation patches (Fig 2B), the network-guided grouping increases the

coverage of the patients (162 to 206) while maintaining a substantial difference in survival

across groups.

Many pathways are significantly enriched in each patient. While some pathways are signifi-

cantly active in all groups of patients, many others are specific to a subset of groups. For exam-

ple, mTOR signaling, Jak-Stat, and Ras signaling pathways tend to act together while the TGF-

beta signaling pathway shows presence in a single group of patients. We also extracted the pre-

dominant pathways in each group of patients (Fig 7C) and found that Rap1, EGFR, and TNF

signaling pathways are common in all groups. Jak-Stat pathway is present in all except Group

5. While mTOR and Hif-1 signaling pathways are present in Groups 2 and 3, TGF-beta signal-

ing is predominant in Groups 5. Hippo signaling is only present in Group 2. We compared the

three GBM subtypes (classical, preneural, mesenchymal) derived from transcriptomic data

[54] with our network-based grouping. Each group is a mixture of these transcriptomic sub-

types. Only Group 2 is enriched in classical subtype (P-value = 0.016/Hypergeometric Test).

Mutations in each patient are mostly located on the surface (on average 65%) and the rest is

in the core and interfaces. The same trend is also observed for patient groups.

Although mTOR is mutated only in three patients in Group 5, it is present in the subnet-

works of nine other patients and connects mutated proteins in the mTOR signaling pathway.

Interface mutations affect 23 interactions in Group 1, 82 interactions in Group 2, 36 inter-

actions in Group 3, 8 interactions in Group 4 and 223 interactions in Group 5 patients. In

total, interface mutations are in 318 interactions in patient networks. Out of all patients, the

interactions between EGFR and MAPK8IP1, EGFR and CAV1, EGFR and RIN1 and EGFR

and SHC1 proteins are the most common in 34 patients.

We illustrated a sample merged network of Group 1 in S2 Fig. The pie chart in each node

represents the ratio of being mutated (red portion) or not (blue portion). The size of a node

represents its frequency in Group 1. The edge thickness represents the frequency of that edge

in Group 1. It is important to note that in this network there are intermediate proteins that

connect mutated ones although they are not mutated. NFKBIA is an example of intermediate

proteins that do not have a mutation in any patient in Group 1; however, it links many

mutated proteins including IKBKB, TP53, NFKB1. Another example is CTNNB1, that is

found in Group 3 as an intermediate protein to connect many mutated proteins such as

PIK3R1, AKT1, LRP2. In this way, the missing parts at the pathway level can be completed

3D spatial organization and network-guided comparison of GBM mutations
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and in the former example the NFKB signaling pathway, in the latter one the AKT signaling

pathway can be detected in the patient groups.

There are in total of 971 proteins in the union network of patient groups. The majority of

proteins are unique to patient groups. Very few (17 proteins) are common in all groups,

whereas many of them (685 proteins) are present in only one patient group (Group 4 was

excluded because it was very small). One of the common proteins is TP53 which is also a hub

protein (node centrality). We ranked the proteins in each merged network of patient groups

based on the node centrality. However, some central proteins are specific to a patient group;

such as IKBKG in Group 1, or MDM2, which is a central protein only in Group 2.

Connecting the patient groups to drug sensitivity

The significant association between patient groups and survival led us to further analyze the

possible therapeutic targets in each group. The therapeutic information is very sparse in

TCGA; therefore, we collected drug sensitivity data of the GBM cell lines treated with different

drugs from CancerRxGene [55]. We also retrieved the target proteins and the target pathways

of each drug. As a result, we collected 37 GBM Cell Lines having the mutation profile informa-

tion in the Cell Model Passports database [56]. In total, there were 13243 mutations. We got

the intersection of these mutations with the set of GBM mutations we used in our study and

found that 23 mutations are common of which 16 are located in patches. These enriched

patches are on PTEN, TP53, EGFR, BRAF and RB1 proteins. As a result, we obtained 17 cell

lines treated with 73 drugs that target 18 pathways.

To link the patient groups to the drug response data of each cell line, we used the signature

3D patches. We found that 44 patches tend to be significantly present in one or multiple

patient groups including PTEN, TP53, EGFR, BRAF and RB1 patches which are also present

in cell lines (S3 Fig). According to our results, all patches of PIK3R1, PTEN, TP53 and one

patch of PIK3CA and BRAF have a strong tendency to be present in Group 5. While RB1,

TP53, PTEN, patches are enriched in Group 2; TP53, PTEN patches without EGFR and RB1

have a bias to be in Group 1. EGFR has 3 patches, and PTEN has two patches which are present

in distinct groups. While all patches of EGFR are found only in Group 5, Groups 4 and 3 only

have one of the patches of EGFR. Patch 1, 3 and 4 of PIK3CA are only found in Group 3, Patch

2 of PIK3CA is found in Groups 2, 3 and 5. One of the very well characterized biomarkers in

GBM is BRAF. BRAF mutations V600E and G596D form a 3D patch in only Group 5.

Group1 is linked to the cell lines having at least one mutation in TP53 Patch and PTEN

Patch1, Group 2 is linked to the cell lines having TP53 Patch and PTEN Patch1 and also RB1

Patch. Group 4 has the PTEN Patch and Group 5 has EGFR Patch2, TP53 Patch, PTEN Patch1

together with the BRAF Patch (Fig 8A).

Our first therapeutic hypothesis is based on Pazopanib which is a multi-targeted receptor

tyrosine kinase inhibitor. Pazopanib is linked to our patient groups through its targets CSF1R

and PDGFRB that are significantly enriched in Group 3 and Group 5, respectively (Fig 8B).

GBM cell line GI-1 is sensitive to Pazopanib. GI-1 has at least one mutation in TP53 patch

which is predominantly available in Group 3 and Group 5. CSF1 (colony stimulating factor 1)

binds to CSF1R and activates several signaling pathways, including Ras/Raf/MAPK, phospha-

tidylinositol 3-kinase (PI3-kinase) and JAK/STAT pathways. When we refer to the pathway

enrichment results in Group 3, Phosphatidylinositol and JAK-STAT pathways were enriched.

Additionally, CSF1R is also on tumor-associated macrophages and microglia (TAMs) which

are highly available in glioma microenvironment. CSF1, the ligand of CSF1R, is responsible

for the differentiation of TAMs to pro-tumorigenic. The inhibition of CSF1R results in the dif-

ferentiation of the macrophages and makes them more anti-tumorigenic. Another target of
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Pazopanib is PDGFRB protein is a receptor tyrosine kinase and functions as a cell surface

receptor. It activates cell proliferation and survival. Moreover, it is proven that PDGFRB is

overexpressed in GBM cells and very important for self-renewal [57]. Therefore, we suggest

that Group 3 and Group 5 might be sensitive to a treatment based on Pazopanib.

Another example of a significant target is ATM, which is a target of ATM-inhibitor

(CP466722). ATM is present in the network of Group 2 where PTEN Patch 1 is enriched (Fig

8C). Two GBM cell lines (KALS-1, GMS-10) are resistant to this drug molecule. ATM is a

mediator of PTEN phosphorylation and ATM targeting drugs are used to make a patient more

sensitive to radiotherapy. In our therapeutic hypotheses, we suggest that Group 2 might be

resistant to ATM-dependent therapy.

Our last example is SRC protein as a target in Group 5 which is a non-receptor protein tyro-

sine kinase and plays an important role in many cellular processes such as growth, adhesion,

and differentiation. It is also a component of several cell signaling pathways including EGFR,

ERBB, and Rap1 signaling pathways. Group 5 is associated with the GBM cell line D-452MG

through TP53 and PTEN patches. The kinase-inhibitor WZ3105, that targets SRC, is resistant

in D-452MG and we suggest that Group 5 might be possibly resistant to WZ3105 according to

our therapeutic hypothesis (Fig 8D).

Discussion

The mutation landscape of GBM tumors is very heterogeneous and not discriminative to clas-

sify disease progression and subtypes. Given the impact of mutations in protein interactions

and eventually cellular signaling pathways, reverse engineering from mutation profiles to

patient-specific subnetworks can shed light on network-level changes to observe hidden com-

monalities. Therefore, we applied a systems-level strategy to the patient-derived information

of 290 GBM tumors to gather knowledge about their commonalities. We first started with an

in-depth analysis of individual mutations such as their spatial organization, physicochemical

characteristics, and their effects in binding. Our results show that out of 15399 mutations,

4702 mutations have structural information and 10% of these mutations are spatially grouped

into patches, while most mutations are spatially distant to other mutations, namely, singletons.

Interestingly, distinct patches of a protein are located in distinct domains that could have dis-

tinct functional consequences. Despite a small portion of all mutations, 3D patches reduce the

heterogeneity across patients and more commonalities can be identified. To show the success

of the patches in overcoming heterogeneity, we associated them with the survival data. Indeed,

grouping patients based on the patch information significantly discriminates the survival

curves. For example, tumors in patients with at least one mutation in PI3K patches are more

aggressive compared to the tumors with at least one mutation in TP53 patch. These results are

a proof of concept that 3D spatial grouping of mutations can be related to clinical outcome

and is useful in overcoming heterogeneity.

In our follow-up analyses, we found that GBM mutations are significantly more frequent in

interface regions than the rest. Although a small portion of all mutations is located in the core

Fig 8. Linking the network-guided patient groups to drug treatments through 3D spatial patches. (A) Nodes represent group identifiers, patch names,

cell line names, drugs and their targets, respectively. Edges between group Ids and patch names imply the presence of the presence of the corresponding

patch in the group. Edges between patch names and cell line Ids represent that at least one mutation in the corresponding patch is present in the connected

cell line. Edges between cell lines and drug names imply that the cell line is treated with the corresponding drug. If the cell line is sensitive to the drug then

the edge color is red, if resistant the edge color is blue. Edges between drugs and target proteins are to show that proteins targeted by the corresponding

drugs that are significantly present in the linked group. (B,C,D) Three submodules are retrieved from the network to show some therapeutic hypotheses

where the first one is Pazopanib (targeting CSF1R and PDGFRB) for Group 5, the second is the possible resistance of Group 2 to ATM inhibition and the

last one is WZ3105 (targeting SRC) for Group 5.

https://doi.org/10.1371/journal.pcbi.1006789.g008
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region; they may affect the function more severely. Mutations in the core tend to preserve

their chemical classes while interface and surface mutations are significantly more prone to

changes. Mutated residues are mostly populated on the surface and their functional effects are

less severe than the rest (interface and core). When we limit our analysis to only the mutations

on cancer-driver genes, we still have the same results. Furthermore, tumor suppressors have

large patches while oncogenes have multiple and relatively smaller patches. Having the muta-

tions on very specific sites of oncogenes agrees with the known observation that making a pro-

tein more active is harder. On the other hand, tumor suppressors can be functionally damaged

in several ways thus their mutations could be distributed in large regions. Also, nonsense and

frameshift mutations are more frequent in tumor suppressors.

Mutations in hub proteins are organized into very large patches that connect mutations in

multiple binding sites through the core of the protein (observed in tumor suppressors). Addi-

tionally, the organization of multiple 3D patches in hub proteins implies the importance of 3D

patches in cancer vulnerability (observed in oncogenes). 3D spatial organization of mutations

in hub proteins may provide a fitness advantage to tumor cells. Not all mutations are equally

damaging. Some mutations are neutral and some mutations cause damage in protein stability

or protein binding. Our results suggest that hub proteins’ patch mutations are more disease-

causing, whereas other proteins’ singleton mutations are more disease-causing.

Some proteins repeatedly use a single interface to interact with their partners while some

proteins have multiple interfaces. The characteristics of the mutations are also different in

these interfaces. Interface mutations in proteins with a single interface stay distant from other

mutations and are usually present as singletons; however, interface mutations in proteins hav-

ing multiple interfaces are mostly located in patches.

When we analyzed the patient-specific networks and the consensus network of these

patients, we observed that although mutation profiles are very heterogeneous across patients

and their pathway-level representation is very limited, the network-based analysis groups the

patients better and reveals predominant pathways in each group. Additionally, the network-

based similarity analysis shows that each group of patients carries a set of signature 3D muta-

tion patches. For example, EGFR, TP53, PIK3CA, PIK3R1 patches are frequently found in

Group 3, TP53, RB1, PTEN patches in Group 2. Beyond the list of mutations, the network-

guided analysis also reveals similarities across patients and overcomes the heterogeneity in

mutation profiles by completing the interaction components that mutated proteins potentially

affect. We found that there are significant differences across the patient groups in their sur-

vival. Additionally, several pathways are common in each patient group, such as the Jak-Stat

pathway being enriched in three groups, the TGF-beta signaling pathway being present in only

one patient group. This pathway-level outcome led us to link the available drug treatment data

to our patient groups. Because the drug treatment data is very sparse in TCGA, we used the

GBM cell lines for this purpose. Each group of patients is linked to each GBM cell line through

its predominant patches. For example, we found that PDGFRB, the target of Pazopanib, is sig-

nificantly present in the subnetworks of Group 5 which has the TP53 patch as the marker.

GBM cell lines having a mutation in the TP53 patch and treated with Pazopanib are sensitive

to this drug. We therefore proposed that Pazopanib may be efficient in Group 5. This sort of

therapeutic hypotheses was found and suggested for each group of patients as provided in Figs

8 and S4.

Overall, these results show that network-guided interpretation of mutations and their 3D

organizations give a deeper insight into their impact and useful in overcoming the inter-tumor

heterogeneity that is the main barrier in finding optimal treatment strategies. Despite the

apparent diversity in the mutation profiles of GBM tumors, the 3D spatial grouping of muta-

tions and network-guided clustering of tumors reveal several commonalities and enable us to
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link the gathered information to clinical outcomes and therapeutic data. Our approach from

mutations to protein interactions and eventually to signaling networks and pathways trans-

forms the tumor information into clinically interpretable knowledge. We believe that this

study represents a good example of how networks can be used efficiently in precision

medicine.

Methods

Data collection and preprocessing

The missense, nonsense and frameshift mutations in Glioblastoma were retrieved from TCGA

which has been published in [58] for 290 patients. First, all proteins that have at least one

mutation was searched in PDB [33]. If a structure was not available, we made use of ModBase

[34] homology models. The structural information of the protein interactions was collected

from PDB, Interactome3D [7], PRISM [44] and Interactome Insider [12]. PDB deposits pro-

tein complexes that are crystallized together. Interactome3D predicts the protein complexes

through structure and domain similarity with a template structure. PRISM uses known inter-

faces to predict new protein interactions. We used the pre-runned PRISM results for a subset

of the proteome, rather than the whole proteome. The other source for structural protein inter-

actions was the Interactome Insider. It produces the binding sites on each partner of the pro-

tein interaction. Different than PRISM and Interactome3D, it does not give the structure or

the pose of the predicted protein complex. We also downloaded the human proteome from

UniProt [59] for cross-referencing from one data source to another. Additionally, the residue

positions in sequence are not consistent with the residue positions in protein structures. A

PDB entry or a homology model of a UniProt sequence may represent only a fragment of the

given protein and the residue numbering may not be the same with the sequence positions.

Therefore, we performed UniProt sequence to the sequence in the protein structure alignment

to find the exact position of each residue.

Moreover, we retrieved the known cancer genes from The Network of Cancer Genes [38],

cancer-related genes from Cancer Gene Census of The Catalogue of Somatic Mutations in

Cancer (COSMIC) [40], validated oncogenic mutations from Cancer Genome Interpreter

[39]. The Network of Cancer Genes is a repository for predicted or known cancer driver genes

that have been manually curated. In this analysis, we only used the known cancer genes. Simi-

larly, Cancer Gene Census of COSMIC includes the manually curated cancer genes that

behave as driver effect for human cancer. We included these genes into our analysis. On the

other hand, dataset of Cancer Genome Interpreter gives the oncogenic mutations by using the

information from DoCM, ClinVar, OncoKB, and IARC. We also took these cancer driver

mutations. Additionally we obtained the mutation information for GBM from Broad Institute

FireBrowser which includes MutSig2CV v3.1 [42], Mutation Assessor [43], CHASM 1.0.5 [41].

Mutation Assessor only considers the missense mutations and gives the gene names which

missense mutations on and their functional impacts. In our analysis, we only considered the

high and medium functional impact genes as significant genes. Secondly, MutSig2CV gives

the gene significance according to mutations on the gene. In this project, we took the genes

whose P-value is smaller than 0.05 as significant genes. Lastly, CHASM uses the missense

mutations and gives the probability for each mutation due to the selective survival advantage

that is provided to the cancer cells by the mutation. In this analysis, we only considered the

mutations that have P-value smaller than 0.05. To reach the gene name for the mutation in

CHASM, we also needed Ensembl BioMart [60] for the conversion between RefSeq mRNA ID

to Ensembl Transcript ID to reach the official gene symbol. Finally, the confidence weighted

interactome deposited in iRefWeb has been downloaded for the reconstruction of patient-
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specific sub-networks inferred from mutation profiles of each patient. Afterward, the interac-

tions having structural information also retrieved for constructing structural interactome for

Omics Integrator analysis.

Identification of the spatial clusters and grouping the patients

Each cancer-related driver protein structure and protein complexes were converted into a net-

work of residue-residue interactions. If any atom in a residue is in close proximity to any atom

in another residue, then these two residues were considered to interact. The proximity was

defined as the distance of less than 5Å between any atoms. We constructed a residue contact

graph R(v, e) for each structure where v is the set of residues and e is the set of edges between

these residues. We searched for all shortest paths between each mutated residue pairs with a

length of less than 3 to identify the spatial clusters, which means that if two mutated residues

are either directly connected or only one residue is in between them. Then all the extracted

shortest paths merged to create a subgraph P(v’,e’) representing one spatial cluster, namely

“patch” where v’�v and e’�e. Mutations that are not assigned to a patch were labelled as sin-

gletons, meaning that these residues are distant to other mutations in the same protein.

Patients are grouped based on the presence of each patch. This grouping is performed itera-

tively. The first group is formed by the patient having at least one mutation in the most fre-

quent patch. The second group is the patients having at least one mutation in the second most

frequent patch, and having not any mutation in the most frequent patch. This iteration contin-

ues until each group has at least ten patients. In this way, each group is mutually exclusive,

where there are no common patients across the groups.

Identification of protein regions and the effect of the mutations

Proteins can be divided into three regions, namely, the core, surface and interface regions. The

conventional approach for identifying these regions is to calculate solvent-accessible surface

areas of each residue in the protein. FreeSASA [61] is a software designed for calculation of sol-

vent accessible surface area at both residue level and molecule level. In general, if the relative

solvent accessible surface area of a residue in its monomer state is greater than or equal to 5%,

then this residue is labelled as the surface residue. Interface residues that are collected from

structural interactome are excluded from the surface residue set. The rest is identified as core

residues. However, we only considered the structure files whose length greater than 50 residues

for this analysis.

We used EVmutation and PolyPhen-2 web servers to calculate the effect of mutations if

they are damaging or neutral. The EVmutation data provided the information for a limited

number of proteins in text format where each position in a UniProt entry is substituted by the

remaining 19 amino acid and the damage score is calculated. The more negative values of the

calculated score means the more damaging mutation. The details of the calculation steps of

EVmutation scores are in reference [49]. On the other hand, Polyphen2 gives the results as

being probably damaging, possibly damaging or benign. We used mutation effect data to com-

pare the damage of the mutations based on their localization and their role in the cancer pro-

gression (tumor suppressors or oncogenes).

Sub-network reconstruction for each patient

In our setup, we focused on driver genes to reduce the noise caused by passenger mutations.

We added each protein having at least one nonsynonymous mutation (missense, nonsense

and frameshift) on a driver gene/protein in a tumor sample to the list as the base for network

reconstruction and weighted each protein with their number of mutations. We used the
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probability-weighted protein-protein interactions in iRefWeb [62] as the reference interac-

tome. This reference interactome further is filtered by the interactions having structural infor-

mation. Additionally, Omics Integrator has a unique feature to avoid biasing the dominance of

well-studied proteins or hubs in the final network. We used hub-penalizing parameters set to

reveal more specific pathways for a better comparison of the patient-specific networks. Two

different values of the scaling factor of hub proteins (μ parameter, described in Methods) were

used for this purpose and resulting optimal networks were merged. Omics Integrator software

was used to reconstruct patient-specific sub-networks. Given a reference graph G(V, E, w)

where V is the node set {v|v 2V}, E is the edge set {e|e 2 E} and w is the edge weights, the For-

est module of Omics Integrator solves the prize-collecting Steiner forest problem for a given

set of nodes with predefined prizes. In our case, the terminal nodes were the mutated cancer

proteins for each patient and the prizes were given according to the significance of the muta-

tions included in each protein. If the mutation on the terminal node was significant, we added

1 as a prize to the terminal node and if it was not significant, the added prize was 0.5. There-

fore, the prize list composed of the proteins from cancer genes having at least one mutation.

We retrieved the iRefWeb v8.0 interactome and filtered the interactions if they have structural

information or not. Therefore, we used structural iRefWeb interactome as the weighted refer-

ence interactome in our modeling. To have a stringent setup, we filtered out interactions hav-

ing a score less than 0.4 and also the proteins such as UBC, APP, ELAVL1, SUMO2, CUL3 and

the proteins huge in size (TTN, MUC16, SYNE1, NEB, MUC19, CCDC168, FSIP2, OBSCN,

GPR98) to limit the noise coming from random mutations in these proteins as in [63]. The

parameter set ω (omega) = 10.0, depth (D) = 6 and β (beta) = 10 was used for the reconstruc-

tion. Omega (ω) parameter was used for tuning the number of trees in the final network,

depth is the number of edges from the root to the leaf nodes and beta (β) is a scaling factor to

force more prize nodes to enter the final network. Finally, mu (μ) is another scaling factor to

tune the dominance of hub proteins in the final network. We used two mu (μ) values (0.005.

0.01) to recover the canonical pathways and more specific ones and merged the node and edge

set of the reconstructed networks to come up with a single network for each patient.

Network-guided grouping of the patients

WebgestaltR [64] package evaluated each patient’s subnetwork to obtain the overrepresented

KEGG pathways in each network. Pathways were assumed to be enriched in the sub-network

if the False Discovery Rate (FDR) is less than 0.1. In the resulting list of pathways, we elimi-

nated disease pathways including infections, cancer, addiction related pathways. Then we pre-

pared a matrix where rows are union set of enriched pathways, columns are patient barcodes

and entries are the enrichment score (ES) of a pathway in the corresponding barcode’s sub-

network. If the pathway is not enriched, 0 is inserted into that entry. We used this matrix for

implementing the non negative matrix factorization without a network regularizer and then

consensus clustering from pyNBS package which is a Python implementation of NBS [65].

The identified groups were searched for if any identified spatial patch tends to represent a

group using hypergeometric testing.

Linking the patient groups to drug response

We linked each patient group to the GBM cell lines retrieved from Cell Model Passports

through the mutation information. If at least one mutation belonging to a predominant patch

in a group is also present in the GBM cell line then the patient group is connected with that

cell line. The drug treatment data is obtained from CancerRxGene [55] where the sensitivity of
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the drugs to the cell lines are deposited. For each drug, target proteins and target pathways are

also obtained.

Supporting information

S1 File. Interface mutations and the interactions that are related for each mutation. For

each 757 interface mutations, corresponding interactions that are related by the mutation are

listed in tab separated format.

(TXT)

S1 Fig. (A) Grouping patients based on individual mutations. Each column represents a

patient and each row represents a mutation. (B) Association between Kaplan-Meier survival

curves and patient groups by the most frequent individual mutations.

(TIF)

S2 Fig. The merged network of Group 1. The nodes are labelled with a pie chart colored in

red and/or blue color. The fraction of the red color represents the count of being a mutated

protein in the patient network. The fraction of the blue color represents the count of being an

intermediate protein connecting mutated ones in the patient network. Cytoscape is used for

network visualization.

(TIF)

S3 Fig. Predominant 3D patches in each patient group. Columns are patches and rows are

patient groups. Red color represents the presence of the corresponding patch in the patient

group.

(TIF)

S4 Fig. (A, B) Additional therapeutic hypotheses where the first one is RO-3306 (targeting

CDK1) for Group 2, the second is the possible resistance of Group 2 and Group 5 to CHEK2

inhibition by AZD7762.

(TIF)
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