
1

On the Arithmetic Complexity of

Strassen-Like Matrix Multiplications
Murat Cenk and M. Anwar Hasan

Abstract

The Strassen algorithm for multiplying 2× 2 matrices requires seven multiplications and 18 additions. The

recursive use of this algorithm for matrices of dimension n yields a total arithmetic complexity of (7n2.81− 6n2)

for n = 2k. Winograd showed that using seven multiplications for this kind of multiplications is optimal, so any

algorithm for multiplying 2 × 2 matrices with seven multiplications is therefore called a Strassen-like algorithm.

Winograd also discovered an additively optimal Strassen-like algorithm with 15 additions. This algorithm is

called the Winograd’s variant, whose arithmetic complexity is (6n2.81 − 5n2) for n = 2k and (3.73n2.81 − 5n2)

for n = 8 · 2k, which is the best-known bound for Strassen-like multiplications. This paper proposes a method

that reduces the complexity of Winograd’s variant to (5n2.81 + 0.5n2.59 + 2n2.32 − 6.5n2) for n = 2k. It is also

shown that the total arithmetic complexity can be improved to (3.55n2.81 + 0.148n2.59 + 1.02n2.32 − 6.5n2)

for n = 8 · 2k, which, to the best of our knowledge, improves the best-known bound for a Strassen-like matrix

multiplication algorithm.

Index Terms

Fast matrix multiplication, Strassen-like matrix multiplication, computational complexity, cryptographic

computations, computer algebra.

F

1 INTRODUCTION

Let O(nω) be the complexity of multiplying two n × n matrices. An ordinary matrix multiplication

algorithm requires n3 multiplications and (n3 − n2) additions, which means that, ω ≤ 3 for the ordinary

method. In 1969, Strassen [15] showed that two 2×2 matrices can be multiplied with seven multiplications

rather than eight. The recursive use of this algorithm yields ω ≤ 2.81. In 1978 and 1980, Pan [9], [10], [11]

used his trilinear aggregating techniques to obtain ω ≤ 2.795 and ω ≤ 2.781, respectively. In other work,

in 1979, Bini et al. [1] presented approximation algorithms and produced one with ω ≤ 2.7799. Schönhage

[13] introduced the concept of disjoint matrix multiplication in 1981 and was able to obtain ω ≤ 2.5479. In

• Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L

3G1 {mcenk,ahasan@uwaterloo.ca}

2

1986, Strassen [16] obtained ω ≤ 2.4785 by introducing a new method called the laser method, which was

used by Coppersmith and Winograd [4] in 1987 in order to determine the well known bound ω ≤ 2.376.

This upper bound has recently been reduced to w ≤ 2.374 by Stothers [14] and to w ≤ 2.373 by Williams

[18] through the use of constructions similar to those of Coppersmith and Winograd. On the other hand,

in 2003, Cohn and Umans [3] approached this problem by introducing a new group-theoretic approach.

Cohn et al. [2] also proposed several multiplication algorithms using this approach, but the bounds were

no better than the Coppersmith-Winograd’s results.

One of the algorithms most widely employed for practical applications is the algorithm that uses

seven multiplications for multiplying 2× 2 matrices, as proposed by Strassen [15] in 1969. Winograd [19]

proved that number of multiplications is optimal, so the algorithms using seven multiplications for 2× 2

matrix multiplications are thus called Strassen-like algorithms. In [12], it was shown that the optimal

number of additions in a Strassen-like algorithm is 15, and Winograd proposed such an algorithm that

uses seven multiplications and 15 additions. This algorithm is called Winograd’s variant. Strassen-like

algorithms provide grater efficiency for sizes in practical use than other algorithms that have better

matrix exponent because of the hidden factor in big-O notation. It should be noted that Pan’s trilinear

aggregation techniques [9], [10] also yield practical algorithms. For example, Kaporin [8] worked on

Pan’s techniques and compared their complexities with that of the Winograd’s variant. He reported that

Pan’s techniques yield an arithmetic complexity of (4.894n2.7760 − 16.16n2) for n = 18 · 48k and that this

complexity provides a computational time comparable to that produced by Strassen-like algorithms for

matrices of medium-large size, 2000 ≤ n ≤ 10000.

The work presented in this paper deals with the arithmetic complexity of widely used Strassen-like

algorithms such as ones found in cryptographic computations [7], [17], in which the matrices are generally

over finite fields and no stability problems exist. For this study, the-best known Strassen-like arithmetic

complexities have been decreased from (6n2.81−5n2) to (5n2.81 + 0.5n2.59 + 2n2.32−6.5n2) for n = 2k and

from (3.73n2.81− 5n2) to (3.55n2.81 + 0.148n2.59 + 1.02n2.32− 6.5n2) for n = 8 · 2k, i.e., when the algorithm

is stopped at the point when the size of matrices becomes eight and then the ordinary method is applied.

Notation and model of computation: The matrices that appear throughout the paper are over an arbitrary

ring R. The dimension of matrices is shown by n and n = 2k is assumed for a positive integer k.

M⊗(n) and M⊕(n) denote the number of multiplications and additions/subtractions in R needed for

multiplying n×n matrices overR, respectively. The total arithmetic cost, i.e. the sum of multiplications and

additions/subtractions is denoted by M(n). SA and WV represent the Strassen algorithm and Winograd’s

variant of the Strassan algorithm, respectively. The operations ⊕,	 and ⊗ are used for componentwise

vector addition, subtraction and multiplication, respectively. The other notations employed in this paper

are CMF , CM , CA and R, which represent component matrix formation, component multiplication,

component addition and reconstruction, respectively. Let X be any of CMF , CM , CA or R. MX
⊗ (n) and

MX
⊕ (n) denote the number of multiplications and additions/subtractions in R needed for computing

3

the X , respectively. In the work presented in this paper, the arithmetic complexity of the algorithms is

computed for the multiplication of matrices over an arbitrary ring R, i.e. we compute the number of

multiplications and additions/subtractions in R required for multiplying two matrices. Other problems,

such as memory usage or the numerical stability of matrix multiplications, are beyond the scope of this

work.

The remainder of the paper is organized as follows: The algorithms SA and WV are introduced in the

next section, followed by the presentation of the block decomposition of SA and WV in section 3. The

proposed improved complexities of WV are explained in section 4 and an analysis of the complexities

obtained by stopping the recursion early is provided in section 5. Section 6 includes a discussion of further

improvements using a block recombination method and the final two sections of the paper provide a

comparison of all of the complexities as well as conclusions that can be drawn.

2 MATRIX MULTIPLICATION

This section introduces the algorithms SA and WV, together with their arithmetic complexities. For all of

the work presented in this paper, the following theorem is useful for solving the recursive equations of

the algorithms as a means of determining the asymptotical bounds. Its proof can be found in [5].

Theorem 1. [5] (Master theorem) Let a ≥ 1 and b > 1 be constants, f(n) be a function, and M(n) be defined

on nonnegative integers by the recurrence

M(n) = aM(n/b) + f(n),

where if n is not divisible by b, use dn/be. Then M(n) can be bounded asymptotically as follows:

1) If f(n) = O(nlogb a−ε) for some constant ε > 0, then M(n) = Θ(nlogb a).

2) If f(n) = Θ(nlogb a), then M(n) = Θ(nlogb a logb(n))

3) If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and if af(n/b) ≤ cf(n) for some constant c < 1 and all

sufficiently large n, then M(n) = Θ(f(n)).

Strassen algorithm (SA): The ordinary matrix multiplication method for two n × n matrices requires

O(n3) operations, more specifically n3 multiplications and (n3−n2) additions. In [15], Strassen proposed

an algorithm for multiplying matrices faster than with the ordinary algorithm. In SA, two 2× 2 matrices

are multiplied with seven multiplications and 18 additions. The recursive use of this algorithm reduces

the arithmetic complexity to O(nlog2 7). The explicit algorithm is as follows: Let A and B be matrices of

size n = 2k for a positive integer k, and C = AB be their product. These matrices can be written as

A =

 A11 A12

A21 A22

 , B =

 B11 B12

B21 B22

 , C = AB =

 C11 C12

C21 C22

 , (1)

4

where Aij , Bij and Cij for 1 ≤ i, j ≤ 2 are 2k−1 × 2k−1 matrices. SA is the following:
P1 = (A11 +A22)(B11 +B22), P2 = (A21 +A22)B11, P3 = A11(B12 −B22), P4 = A22(−B11 +B21),

P5 = (A11 +A12)B22, P6 = (−A11 +A21)(B11 +B12), P7 = (A12 −A22)(B21 +B22)

C11 = P1 + P4 − P5 + P7, C12 = P3 + P5, C21 = P2 + P4, C22 = P1 − P2 + P3 + P6.

(2)

Based on Theorem 1, the complexities of SA are as follows:
M⊗(n) ≤ 7M⊗(n2), M⊗(1) = 1 =⇒M⊗(n) = nlog2 7,

M⊕(n) ≤ 7M⊕(n2) + 18(n2)2, M⊕(1) = 0, =⇒M⊕(n) = 6nlog2 7 − 6n2,

M(n) ≤ 7M(n2) + 18(n2)2, M(1) = 1, =⇒M⊕(n) = 7nlog2 7 − 6n2.

(3)

Winograd’s variant (WV): WV uses seven multiplications and 15 additions for multiplying 2×2 matrices.

Let A,B and C be as in (1). WV is then the following:

P1 = A11B11, P2 = A12B21, P3 = A22(B11 −B12 −B21 +B22),

P4 = (A11 −A21)(−B12 +B22), P5 = (A21 +A22)(−B11 +B12),

P6 = (A11 +A12 −A21 −A22)B22, P7 = (A11 −A21 −A22)(B11 −B12 +B22),

C11 = P1 + P2, C12 = P1 + P5 + P6 − P7, C21 = P1 − P3 + P4 − P7, C22 = P1 + P4 + P5 − P7.

(4)

It should be noted that (A11 − A21) in P4 is also used in P7 and (A11 − A21 − A22) in P7 is also used in

P6. Similarly, (−B12 +B22) in P4 is also used in P7 and (B11 −B12 +B22) in P7 is also used in P3. Eight

additions are therefore needed for computing Pi’s. On the other hand, (P1 − P7) is a common sum in

C12, C21, and C22, and (P1 + P5 − P7) is a common sum in C12 and C22. Seven additions are required

for the computations of each of Cij . As a result, based on Theorem 1, the complexities of WV can be

computed as follows:
M⊗(n) ≤ 7M⊗(n2), M⊗(1) = 1, =⇒M⊗(n) = nlog2 7

M⊕(n) ≤ 7M⊕(n2) + 15(n2)2, M⊕(1) = 0, =⇒M⊕(n) = 5nlog2 7 − 5n2,

M(n) ≤ 7M(n2) + 15(n2)2, M(1) = 1, =⇒M(n) = 6nlog2 7 − 5n2.

(5)

3 BLOCK DECOMPOSITION OF MATRIX MULTIPLICATION

To demonstrate the use of SA and WV recursively, this section describes the decomposition of SA and

WV into three main blocks as shown in Figure 1: component matrix formation (CMF), component

multiplication (CM) and reconstruction (R) [6]. To multiply matrices A and B of sizes n×n, the first step

is to compute all of the linear combinations of Aij ’s and Bij ’s for 1 ≤ i, j ≤ 2, which correspond to the left

hand and right hand factors of the multiplications in SA or WV. This step is called CMF (Figure 1), and

the CMF which applied to A is called CMF1, and the CMF which is applied to B is called CMF2. The

size of CMF s is nlog2 7 = 7k, because the CMF entries are split into seven parts in each recursion. Those

linear combinations are then multiplied componentwise in order to construct the products P1, . . . , P7; this

step is called CM . Since CMF1(A) and CMF2(B) are multiplied component by component, the size of

5

this step is nlog2 7 = 7k. Finally, linear combinations of these products are computed in order to obtain

the result, which is R, with a size of n2 = 4k. The following sections include details of these blocks for

SA and WV.

Remark 1. It should be noted that the operations ⊕,	 and ⊗ are used for componentwise vector

addition, subtraction and multiplication, respectively. For example, CMF1(A1) ⊕ CMF1(A2) represents

the componentwise addition of vectors CMF1(A1) and CMF1(A2) for matrices A1 and A2.

Fig. 1. Data flow of matrix multiplication with block decomposition

3.1 Block decomposition of the Strassen algorithm

The three blocks of SA and their complexities are given below.

3.1.1 Component matrix formation (CMF).

For an n× n matrix A, CMF1 is defined for SA as follows:

R1 = A11 +A22, R2 = A21 +A22, R3 = A11 +A12, R4 = −A11 +A21, R5 = A12 −A22.

CMF1(A) = A11 for n = 1,

CMF1(A) = (CMF1(R1), CMF1(R2), CMF1(A11), CMF1(A22), CMF1(R3), CMF1(R4),

CMF1(R5)) for n ≥ 2,

(6)

For B, it is defined as

R6 = B11 +B22, R7 = B12 −B22, R8 = −B11 +B21, R9 = B11 +B12, R10 = B21 +B22.

CMF2(B) = B11 for n = 1,

CMF2(B) = (CMF2(R6), CMF2(B11), CMF2(R7), CMF2(R8), CMF2(B22), CMF2(R9),

CMF2(R10)) for n ≥ 2.

(7)

It should be noted that the sizes of CMF1(A) and CMF2(B) are nlog2 7 = 7k each and that their

complexities are identical, requiring seven CMF s which applied to n/2×n/2 matrices plus five additions

of n/2× n/2 matrices. The CMF s of SA therefore has the following complexity:

MCMF
⊕ (n) ≤ 7MCMF

⊕ (n/2) + 5(n/2)2, MCMF
⊕ (1) = 0 =⇒MCMF

⊕ (n) = (5/3)nlog2 7 − (5/3)n2.

6

3.1.2 Component Multiplication (CM).

For CM , two vectors of dimension nlog2 7 = 7k are multiplied component by component so that the size

of it is nlog2 7 = 7k and we have

MCM
⊗ (n) ≤ 7MCM

⊗ (
n

2
), MCM

⊗ (1) = 1 =⇒MCM
⊗ (n) = nlog2 7.

3.1.3 Reconstruction (R).

Let C be a vector of length nlog2 7. Assume that C = (C1) for n = 1 where the length of C1 is one , and

C = (C1, C2, . . . , C7) for n ≥ 2 where the lengths of Ci’s for i = 1, . . . , 7 are nlog2 7/7. The reconstruction

R(C) is then computed recursively as follows:
R(C) = C1 for n = 1,

R(C) = (R(C1)⊕R(C4)	R(C5)⊕R(C7), R(C3)⊕R(C5), R(C2)⊕R(C4),

R(C1)	R(C2)⊕R(C3)⊕R(C6)) for n ≥ 2.

(8)

It should be noted that the size of R(C) is n2 = 4k, and the complexity of this block is

MR
⊕ (n) ≤ 7MR

⊕ (n/2) + 8(n/2)2, MR
⊕ (1) = 0 =⇒MR

⊕ (n) = (8/3)nlog2 7 − (8/3)n2.

The complexities of the different sub-blocks of SA are listed in Table 1. As can be seen clearly in Figure

1, the complexity of SA requires Q1 = CMF1(A), Q2 = CMF2(B), Q3 = CM(Q1, Q2) and Q4 = R(Q3).

The complexity of SA is therefore computed using the complexities of those blocks given in Table 1, as

follows:

2MCMF
⊕ (n) +MCM

⊗ (n) +MR
⊕ (n) = 7nlog2 7 − 6n2.

The CMF s, CM and R of SA for n = 2 are shown in the following example:

Example 1. Consider the case of n = 2. Let

A =

 a11 a12

a21 a22

 , B =

 b11 b12

b21 b22

 .
The CMF s, CM and R for the Strassen algorithm are then the followings:

CMF1(A) = (a11 + a22, a21 + a22, a11, a22, a11 + a12,−a11 + a21, a12 − a22),

CMF2(B) = (b11 + b22, b11, b12 − b22,−b11 + b21, b22, b11 + b12, b21 + b22).

On the other hand, CM of CMF1(A) and CMF2(B) are as follows:

CM(CMF1(A), CMF2(B)) = ((a11 + a22)(b11 + b22), . . . , (a12 − a22)(b21 + b22)) = (P1, P2, . . . , P7) = P,

where Pi’s are the same with in (2). Finally the reconstruction block is given by

R(P) = (P1 + P4 − P5 + P7, P3 + P5, P2 + P4, P1 − P2 + P3 + P6).

7

3.2 Block decomposition of Winograd’s variant

The three blocks of Winograd’s variant and their complexities are presented below.

3.2.1 Component matrix formation (CMF).

For A, define

R1 = A11 −A21, R2 = A21 +A22, R3 = R1 −A22, R4 = R3 +A12

CMF1(A) = A11 for n = 1,

CMF1(A) = (CMF1(A11), CMF1(A12), CMF1(A22), CMF1(R1), CMF1(R2), CMF1(R4),

CMF1(R3)), for n ≥ 2,

(9)

and for B, define

R5 = −B12 +B22, R6 = −B11 +B12, R7 = −R6 +B22, R8 = R7 −B21

CMF2(B) = B11 for n = 1,

CMF2(B) = (CMF2(B11), CMF2(B21), CMF2(R8), CMF2(R5), CMF2(R6), CMF2(B22),

CMF2(R7)) for n ≥ 2.

(10)

The complexity of these operations is identical:

MCMF
⊕ (n) ≤ 7MCMF

⊕ (n/2) + 4(n/2)2, MCMF
⊕ (1) = 0 =⇒MCMF

⊕ (n) = (4/3)nlog2 7 − (4/3)n2.

Example 2. This example is an explicit demonstration of the CMF1 operation for n = 4. To save space,

only the CMF1 operation is presented. Let four sub-matrices of dimension 2×2 be constructed as follows:

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 =

 A11 A12

A21 A22

 ,

A11 =

 a11 a12

a21 a22

 , A12 =

 a13 a14

a23 a24

 , A21 =

 a31 a32

a41 a42

 , A22 =

 a33 a34

a43 a44

 .
The original CMF1 of A is now computed. From (9), we find that:

CMF1(A) = (CMF1(A11), CMF1(A12), CMF1(A22), CMF1(R1), CMF1(R2), CMF1(R4), CMF1(R3)),

where R1 = A11 −A21, R2 = A21 +A22, R3 = R1 −A22, and R4 = R3 +A12. Therefore,

R1 =


(a11 − a31)︸ ︷︷ ︸

s1

(a12 − a32)︸ ︷︷ ︸
s2

(a21 − a41)︸ ︷︷ ︸
s3

(a22 − a42)︸ ︷︷ ︸
s4

 , R3 =


(s1 − a33)︸ ︷︷ ︸

s9

(s2 − a34)︸ ︷︷ ︸
s10

(s3 − a43)︸ ︷︷ ︸
s11

(s4 − a44)︸ ︷︷ ︸
s12

 ,

8

R2 =


(a31 + a33)︸ ︷︷ ︸

s5

(a32 + a34)︸ ︷︷ ︸
s6

(a41 + a43)︸ ︷︷ ︸
s7

(a42 + a44)︸ ︷︷ ︸
s8

 , R4 =


(s9 + a13)︸ ︷︷ ︸

s13

(s10 + a14)︸ ︷︷ ︸
s14

(s11 + a23)︸ ︷︷ ︸
s15

s12 + a24)︸ ︷︷ ︸
s16

 .
It should be noted that the cost of computing Ri’s for i = 1, . . . , 4 is 16 additions. On the other hand, the

computation of CMF s applied to 2× 2 matrices are the following:

CMF1(A11) = (a11, a12, a22, a11 − a21︸ ︷︷ ︸
r1

, a21 + a22︸ ︷︷ ︸
r2

, r3 + a12︸ ︷︷ ︸
r4

, r1 − a22︸ ︷︷ ︸
r3

),

CMF1(A12) = (a13, a14, a24, a13 − a23︸ ︷︷ ︸
r5

, a23 + a24︸ ︷︷ ︸
r6

, r7 + a14︸ ︷︷ ︸
r8

, r5 − a24︸ ︷︷ ︸
r7

),

CMF1(A22) = (a33, a34, a44, a33 − a43︸ ︷︷ ︸
r9

, a43 + a44︸ ︷︷ ︸
r10

, r11 + a34︸ ︷︷ ︸
r12

, r9 − a44︸ ︷︷ ︸
r11

],

CMF1(R1) = (s1, s2, s4, s1 − s3︸ ︷︷ ︸
r13

, s3 + s4︸ ︷︷ ︸
r14

, r15 + s2︸ ︷︷ ︸
r16

, r13 − s4︸ ︷︷ ︸
r15

),

CMF1(R2) = (s5, s6, s8, s5 − s7︸ ︷︷ ︸
r17

, s7 + s8︸ ︷︷ ︸
r18

, r19 + s6︸ ︷︷ ︸
r20

, r17 − s8︸ ︷︷ ︸
r19

),

CMF1(R4) = (s13, s14, s16, s13 − s15︸ ︷︷ ︸
r21

, s15 + s16︸ ︷︷ ︸
r22

, r23 + s14︸ ︷︷ ︸
r24

, r21 − s16︸ ︷︷ ︸
r23

),

CMF1(R3) = (s9, s10, s12, s9 − s11︸ ︷︷ ︸
r25

, s11 + s12︸ ︷︷ ︸
r26

, r27 + s10︸ ︷︷ ︸
r28

, r25 − s12︸ ︷︷ ︸
r27

).

It should be noted that 28 additions/subtractions are needed for the computation of ri’s where i =

1, . . . , 28. The computation of the original CMF1(A) thus requires a total of 44 additions/subtractions.

3.2.2 Component Multiplication (CM).

After CMF (A) and CMF (B) are computed, they are multiplied component by component, resulting in

MCM
⊗ (n) ≤ 7MCM

⊗ (
n

2
), MCM

⊗ (1) = 1 =⇒MCM
⊗ (n) = nlog2 7.

3.2.3 Reconstruction (R).

Let C be as in section 3.1.3. Following the component multiplication, the reconstruction R(C) is computed

recursively, as follows:
R(C) = C1 for n = 1,

R(C) = (R(C1)⊕R(C2), S1 ⊕R(C5)︸ ︷︷ ︸
S2

⊕R(C6), R(C1)	R(C7)︸ ︷︷ ︸
S1

	R(C3)⊕R(C4),

S2 ⊕R(C4)) for n ≥ 2.

(11)

The complexity of this block is

MR
⊕ (n) ≤ 7MR

⊕ (
n

2
) + 7(

n

2
)2, MR

⊕ (1) = 0 =⇒MR
⊕ (n) = (7/3)nlog2 7 − (7/3)n2.

9

Example 3. Consider the case n = 4. The length of CM is 49, which is the input of R. Assume that

C = (C1, . . . , C7) where Ci = (P7i−6, . . . P7i) for i = 1, . . . , 7. The first step is to compute the R(Ci)s,

following which the result is then obtained using (11):

R(C1) = (P1 + P2, r1 + P5︸ ︷︷ ︸
r2

+P6, P1 − P7︸ ︷︷ ︸
r1

−P3 + P4, r2 + P4),

R(C2) = (P8 + P9, r3 + P12︸ ︷︷ ︸
r4

+P13, P8 − P14︸ ︷︷ ︸
r3

−P10 + P11, r4 + P11),

R(C3) = (P15 + P16, r5 + P19︸ ︷︷ ︸
r6

+P20, P15 − P21︸ ︷︷ ︸
r5

−P17 + P18, r6 + P18),

R(C4) = (P22 + P23, r7 + P26︸ ︷︷ ︸
r8

+P27, P22 − P28︸ ︷︷ ︸
r7

−P24 + P25, r8 + P25),

R(C5) = (P29 + P30, r9 + P33︸ ︷︷ ︸
r10

+P34, P29 − P35︸ ︷︷ ︸
r9

−P31 + P32, r10 + P32),

R(C6) = (P36 + P37, r11 + P40︸ ︷︷ ︸
r12

+P41, P36 − P42︸ ︷︷ ︸
r11

−P38 + P39, r12 + P39),

R(C7) = (P43 + P44, r13 + P47︸ ︷︷ ︸
r14

+P48, P43 − P49︸ ︷︷ ︸
r13

−P45 + P46, r14 + P46).

Since each R(Ci) requires seven additions, the computation of all R(Ci)’s requires 49 additions/subtractions,

with the following result:

R(C) = (R(C1)⊕R(C2), S1 ⊕R(C5)︸ ︷︷ ︸
S2

⊕R(C6), R(C1)	R(C7)︸ ︷︷ ︸
S1

	R(C3)⊕R(C4), S2 ⊕R(C4)),

which requires 28 additions because each (R(Ci)⊕R(Cj)) or (R(Ci)	R(Cj)) for i, j ∈ {1, . . . , 7} needs

four additions. As a result, R for n = 4 requires a total of 77 additions.

The complexity of WV requires Q1 = CMF1(A), Q2 = CMF2(B), Q3 = CM(Q1, Q2), and Q4 = R(Q3)

so that

2MCMF
⊕ (n) +MCM

⊗ (n) +MR
⊕ (n) = 6nlog2 7 − 5n2

based on the complexities of these blocks as listed in Table 1.

TABLE 1
Complexities of the different sub-operations of algorithms

Method Operation Recursion Non-recursion

Strassen
CMF 7MCMF

⊕ (n/2) + 5(n/2)2 1.67nlog2 7 − 1.67n2

CM 7MCM
⊗ (n/2) nlog2 7

R 7MR
⊕ (n/2) + 8(n/2)2 2.67nlog2 7 − 2.67n2

Winograd
CMF 7M⊕(n/2) + 4(n/2)2 1.33nlog2(7) − 1.33n2

CM 7MCM
⊗ (n

2
) nlog2 7

R 7MR
⊕ (n

2
) + 7(n

2
)2 2.33nlog2 7 − 2.33n2

10

4 IMPROVED COMPLEXITIES FOR WINOGRAD’S VARIANT ALGORITHMS

This section presents improvements in the complexity of WV. Note that the techniques described in this

section can also be applied to SA but since WV has a better additive complexity, the improvements are

demonstrated only for WV. The primary basis of the method is the observation of the linearity of the

CMF and R operations that are defined in the previous section.

4.1 Improved CMF

Consideration of the CMF operation given in (9) clearly shows that

CMF (A+B) = CMF (A)⊕ CMF (B).

This property can be proved by using induction. Based on this property, new CMF s are proposed as

follows: 

R1 = A11 −A21, R2 = A21 +A22,

CMF1(A) = A11 for n = 1,

CMF1(A) = (CMF1(A11), CMF1(A12), CMF1(A22), CMF1(R1), CMF1(R2),

T1 ⊕ CMF1(A12), CMF1(R1)	 CMF1(A22)︸ ︷︷ ︸
T1

), for n ≥ 2.

(12)



R5 = −B12 +B22, R6 = −B11 +B12,

CMF2(B) = B11 for n = 1,

CMF2(A) = (CMF2(B11), CMF2(B21), T2 	 CMF2(B21), CMF2(R5), CMF2(R6),

CMF2(B22), CMF2(B22)	 CMF2(R6)︸ ︷︷ ︸
T2

), for n ≥ 2.

(13)

It should be noted that the cost of ⊕ (or) is (1/7)nlog2 7 additions/subtractions because the dimension

of the matrices to which CMF applied is n/2 × n/2. Based on Theorem 1, the new CMF computation

complexity therefore becomes MCMF
⊕ (n) ≤ 5MCMF

⊕ (n/2) + (2/7)nlog2 7 + 2(n/2)2, MCMF
⊕ (1) = 0,

MCMF
⊕ (n) ≤ nlog2 7 + nlog2 5 − 2n2.

(14)

Example 4. This example explicitly shows the new CMF1 operation for n = 4. For brevity, the CMF1

operation is only presented. Let A, its sub-matrices Aij ’s, and R1, R2, s1, . . . , s8 be as in Example 2. It
should be noted that the computation of R3 and R4 is not required in Example 2. The next step is to
compute the new CMF for A. From (12), we obtain:

CMF1(A) = (CMF1(A11), CMF1(A12), CMF1(A22), CMF1(R1), CMF1(R2),

Q1 ⊕ CMF1(A12)︸ ︷︷ ︸
Q2

, CMF1(R1)	 CMF1(A22)︸ ︷︷ ︸
Q1

).

11

It should be noted that the cost of computing R1 and R2 is 8 additions. On the other hand, the computation
of CMF s applied to 2× 2 matrices is as follows:

CMF1(A11) = (a11, a12, a22, a11 − a21︸ ︷︷ ︸
r1

, a21 + a22︸ ︷︷ ︸
r2

, r3 + a12︸ ︷︷ ︸
r4

, r1 − a22︸ ︷︷ ︸
r3

),

CMF1(A12) = (a13, a14, a24, a13 − a23︸ ︷︷ ︸
r5

, a23 + a24︸ ︷︷ ︸
r6

, r7 + a14︸ ︷︷ ︸
r8

, r5 − a24︸ ︷︷ ︸
r7

),

CMF1(A22) = (a33, a34, a44, a33 − a43︸ ︷︷ ︸
r9

, a43 + a44︸ ︷︷ ︸
r10

, r11 + a34︸ ︷︷ ︸
r12

, r9 − a44︸ ︷︷ ︸
r11

),

CMF1(R1) = (s1, s2, s4, s1 − s3︸ ︷︷ ︸
r13

, s3 + s4︸ ︷︷ ︸
r14

, r15 + s2︸ ︷︷ ︸
r16

, r13 − s4︸ ︷︷ ︸
r15

),

CMF1(R2) = (s5, s6, s8, s5 − s7︸ ︷︷ ︸
r17

, s7 + s8︸ ︷︷ ︸
r18

, r19 + s6︸ ︷︷ ︸
r20

, r17 − s8︸ ︷︷ ︸
r19

),

Q1 = (s1 − a33︸ ︷︷ ︸
r21

, s2 − a34︸ ︷︷ ︸
r22

, s4 − a44︸ ︷︷ ︸
r23

, r13 − r9︸ ︷︷ ︸
r24

, r14 − r10︸ ︷︷ ︸
r25

, r16 − r12︸ ︷︷ ︸
r26

, r15 − r11︸ ︷︷ ︸
r27

),

Q2 = (r21 + a13︸ ︷︷ ︸
r28

, r22 + a14︸ ︷︷ ︸
r29

, r23 + a24︸ ︷︷ ︸
r30

, r24 + r5︸ ︷︷ ︸
r31

, r25 + r6︸ ︷︷ ︸
r32

, r26 + r8︸ ︷︷ ︸
r33

, r27 + r7︸ ︷︷ ︸
r34

).

It should also be noted that 34 additions are needed for ri’s, i = 1, . . . , 34 and eight additions are needed
for si’s for i = 1, . . . , 8. The computation of the new CMF1 therefore requires a total of 42 additions,
which reduces the number of additions in the original CMF1 computations by two.

4.2 Improved R

A new reconstruction algorithm that represents an improvement over the original one is now presented.

The main idea is the following property:

R(A⊕B) = R(A)⊕R(B),

that can be proved by using induction. Let C be as in section 3.1.3. The reconstruction R(C) is computed

recursively, as follows:

R(C) = C1 for n = 1, and

R1 = C1 ⊕ C2, R2 = R(R1), R3 = C1 	 C7, R4 = R(R3), R5 = R(C5), R6 = R4 ⊕R5,

R7 = R(C6), R8 = R6 ⊕R7, R9 = R(C3), R10 = R(C4), R11 = −R9 ⊕R10,

R12 = R4 ⊕R11, R13 = R6 ⊕R10, R(C) = [R2, R8, R12, R13] for n ≥ 2.

(15)

It should be noted that the computation of R1 and R3 requires (nlog2 7)/7 additions/subtractions each

because the operation here is comprised of only component additions. On the other hand, the computa-

tion R2, R4, R5, R7, R9, R10 requires 6MR
⊕ (n/2) and 5(n/2)2 additions for computing R6, R8, R11, R12, R13,

resulting in the following complexities: MR
⊕ (n) ≤ 6MR

⊕ (n/2) + (2/7)nlog2 7 + 5(n/2)2, MR
⊕ (1) = 0,

MR
⊕ (n) ≤ 2nlog2 7 + 0.5nlog2 6 − 2.5n2.

(16)

12

Example 5. Consider the case of n = 4. The length of CM is 49, which is the input for R. Assume that
C = (C1, . . . , C7) where Ci = (P7i−6, . . . P7i) for i = 1, . . . , 7. The algorithm in (15) yields:

R1 = C1 ⊕ C2 = [P1 + P8︸ ︷︷ ︸
r1

, P2 + P9︸ ︷︷ ︸
r2

, P3 + P10︸ ︷︷ ︸
r3

, P4 + P11︸ ︷︷ ︸
r4

, P5 + P12︸ ︷︷ ︸
r5

, P6 + P13︸ ︷︷ ︸
r6

, P7 + P14︸ ︷︷ ︸
r7

], (7additions)

R2 = R(R1) = [r1 + r2, r8 + r5︸ ︷︷ ︸
r9

+r6, r1 − r7︸ ︷︷ ︸
r8

−r3 + r4, r9 + r4], (7additions)

R3 = C1 ⊕ C7 = [P1 + P43︸ ︷︷ ︸
r10

, P2 + P44︸ ︷︷ ︸
r11

, P3 + P45︸ ︷︷ ︸
r12

, P4 + P46︸ ︷︷ ︸
r13

, P5 + P47︸ ︷︷ ︸
r14

, P6 + P48︸ ︷︷ ︸
r15

, P7 + P49︸ ︷︷ ︸
r16

], (7additions)

R4 = R(R3) = [r10 + r11, r17 + r14︸ ︷︷ ︸
r18

+r15, r10 − r16︸ ︷︷ ︸
r17

−r12 + r13, r18 + r13], (7additions)

R5 = R(C5) = [P29 + P30, r19 + P33︸ ︷︷ ︸
r20

+P34, P29 − P35︸ ︷︷ ︸
r19

−P31 + P32, r20 + P32], (7additions)

R6 = R4 ⊕R5 = [s1, s2, s3, s4], (4 additions)
R7 = R(C6) = [P36 + P37, r21 + P40︸ ︷︷ ︸

r22

+P41, P36 − P42︸ ︷︷ ︸
r21

−P38 + P39, r22 + P39], (7additions)

R8 = R6 ⊕R7 = [s5, s6, s7, s7], (4 additions)
R9 = R(C3) = [P15 + P16, r23 + P19︸ ︷︷ ︸

r24

+P20, P15 − P21︸ ︷︷ ︸
r23

−P17 + P18, r24 + P18], (7additions)

R10 = R(C4) = [P22 + P23, r25 + P26︸ ︷︷ ︸
r26

+P27, P22 − P28︸ ︷︷ ︸
r25

−P24 + P25, r26 + P25], (7additions)

R11 = −R9 ⊕R10 = [s8, s9, s10, s11], (4 additions)
R12 = R4 ⊕R11 = [s12, s13, s14, s15], (4 additions)
R13 = R6 ⊕R10 = [s16, s17, s18, s19], (4 additions)
R(A) = [R2, R8, R12, R13].

The total number of additions is thus 76: one less than in the original case.

The previous and new complexities of CMF , CM and R are summarized in Table 2.

TABLE 2
Complexities of the different sub-operations of algorithms

Method Operation Recursion Non-recursion

Winograd
CMF 7MCMF

⊕ (n/2) + 5(n/2)2 1.33nlog2 7 − 1.33n2

CM 7MCM
⊗ (n/2) nlog2 7

R 7MR
⊕ (n/2) + 8(n/2)2 2.33nlog2 7 − 2.33n2

Improved
CMF 5MCMF

⊕ (n/2) + (2/7)nlog2 7 + 2(n/2)2 nlog2 7 + nlog2 5 − 2n2

CM 7MCM
⊗ (n

2
) nlog2 7

R 6MR
⊕ (n/2) + (2/7)nlog2 7 + 5(n/2)2 2nlog2 7 + 0.5nlog2 6 − 2.5n2

From Table 2, the new complexity of WV can be obtained without changing the number of multiplica-

tions: the complexity of the new WV requires Q1 = CMF1(A), Q2 = CMF2(B), Q3 = CM(Q1, Q2), and

Q4 = R(Q3). It therefore requires

2MCMF
⊕ (n) +MCM

⊗ (n) +MR
⊕ (n) = 5nlog2 7 + 0.5nlog2 6 + 2nlog2 5 − 6.5n2. (17)

13

Employing the complexities listed in Table 2 results in:
M⊗(n) ≤ n2.81,

M⊕(n) ≤ 4nlog2 7 + 0.5nlog2 6 + 2nlog2 5 − 6.5n2,

M(n) ≤ 5nlog2 7 + 0.5nlog2 6 + 2nlog2 5 − 6.5n2.

(18)

5 STOPPING THE RECURSION EARLY

In this section, it is shown that the arithmetic complexity of WV can be further improved if the recursion

is stopped early, followed by the use of the ordinary algorithm. It should be noted that, in this case, the

number of additions is decreased but the number of multiplications is increased. However, the decrease

in the number of additions is greater than the increase in the number of multiplications so that the total

arithmetic cost is reduced. On the other hand, one should note that this method is useful if decreasing the

number of additions is beneficial from a system perspective. For example, the bit addition over binary

fields that corresponds to XOR operation in hardware implementations is known to require more space

than the bit multiplication that corresponds to AND operation. This method is thus useful for matrix

multiplications over binary fields. However, if the multiplication of the matrices is over finite fields with

large characteristics or if the entries of the matrices are large numbers, then the multiplication is much

more costly than the addition, and increasing the number of multiplications in order to obtain less total

arithmetic might not be useful. In such a case, the proposed method described in section 4 offers the best

complexity as given in (18). The details of the comparison are included in section 7.

The remainder of this section provides the details for WV complexity. Let n = m2k. WV is assumed

to be used k times followed by the use of ordinary multiplication for matrices of size m ×m with the

additive complexity of m3−m2 and the multiplicative complexity of m3. The complexity of this method

can be computed as follows:

M (n) = 7M
(
n
2

)
+ 15

4 n
2

= 72M
(
n
22

)
+ 15

4 n
2
(
1 + 7

4

)
= 73M

(
n
23

)
+ 15

4 n
2
(

1 + 7
4 +

(
7
4

)2)
...

= 7kM
(
n
2k

)
+ 15

4 n
2
(

1 + 7
4 +

(
7
4

)2
+ . . .+

(
7
4

)k−1
)
.

So this results in

M(n) = 7k
(
M
(n

2k

)
+

5n2

4k

)
− 5n2 = 7k[M(m) + 5m2]− 5n2 = 2(m+ 2)m27k − 5(m2k)2. (19)

The addition and multiplication complexities are obtained separately as follows: M⊗(n) = m37k,

M⊕(n) = (m+ 4)m27k − 5(m2k)2.
(20)

14

The complexities of WV for different cut-off values m are presented in Table 3. It can be concluded that

the best arithmetic complexity of WV matrix multiplication is obtained when the recursion is stopped at

the point when the size of the matrices becomes eight. In this case, the result is
M⊗(n) ≤ 1.49n2.81,

M⊕(n) ≤ 2.26n2.81 − 5n2,

M(n) ≤ 3.73n2.81 − 5n2.

(21)

TABLE 3
Complexities obtained by stopping the recursion early for Winograd’s variant algorithm

m Addition Multiplication Total

1 5n2.81 − 5n2 n2.81 6n2.81 − 5n2

2 3.43n2.81 − 5n2 1.14n2.81 4.53n2.81 − 5n2

4 2.61n2.81 − 5n2 1.61n2.81 4.57n2.81 − 5n2

8 2.23n2.81 − 5n2 1.49n2.81 3.73n2.81 − 5n2

16 2.13n2.81 − 5n2 1.71n2.81 3.83n2.81 − 5n2

32 2.19n2.81 − 5n2 1.95n2.81 4.14n2.81 − 5n2

On the other hand, when this approach is applied to the proposed method, the result is not so beneficial

because the addition of the CMF s used in the proposed method reduces the amount of improvements.

For example, if the recursion is stopped when n = 2, then it is found that CMF (n) ∼= 1.14n2.81 −

1.33n2.32 − 0.67n which is grater than in (14). However, the total arithmetic complexity is improved

to (3.55n2.81 + 0.148n2.59 + 1.02n2.32 − 6.5n2), which is the best-known complexity, as explained in the

following sections.

6 FURTHER IMPROVEMENTS USING BLOCK RECOMBINATION METHOD

This section describes the use of the results from section 4 together with a block recombination method

[6] in order to improve the arithmetic cost of matrix multiplications to (3.55n2.81 +0.148n2.59 +1.02n2.32−

6.5n2). The following is the main idea: Let A,B,C,D be matrices of dimensions n. The method is based

on the observation of the linearity of the reconstruction step of the block recombination method, i.e.,

based on the following equation:

R(C1)⊕R(C2) = R(C1 + C2). (22)

This equation provides improvements for the computation of AB + CD where A,B,C and D are n× n

matrices. It should be noted that the direct computation of AB + CD requires Q1 = CMF1(A); Q2 =

CMF2(B); Q3 = CMF1(C); Q4 = CMF2(D); Q5 = CM(Q1, Q2); Q6 = CM(Q3, Q4); Q7 = R(Q5);

15

Q8 = R(Q6); and finally due to the final addition of AB and CD, n2 additions. The total cost of the

arithmetic complexity of computing AB + CD is thus

4MCMF
⊕ (n) + 2MCM

⊗ (n) + 2MR
⊕ (n) + n2.

The results are therefore (14n2.81 − 11n2) with the use of SA, (12n2.81 − 9n2) with the use of WV, and

(10n2.81 + n2.59 + 4n2.32 − 12n2) with the use of the improved algorithm presented in section 4. Figure 2

shows the computation.

Fig. 2. Data flow of block recombination for direct computation of AB + CD

On the other hand, block recombination method combined with (22) requires Q1 = CMF1(A); Q2 =

CMF2(B); Q3 = CMF1(C); Q4 = CMF2(D) Q5 = CM(Q1, Q2); Q6 = CM(Q3, Q4); Q7 = CA(Q5, Q6);

and Q8 = R(Q7). The total cost of the arithmetic complexity of computing AB + CD is thus

4MCMF
⊕ (n) + 2MCM

⊗ (n) +MR
⊕ (n) + n2.81,

where n2.81 is the complexity of CA(Q5, Q6). This process is illustrated in Figure 3. When the complexities

given in Table 1 and Table 2 are used, the resulting total arithmetic cost of computing AB + CD is

(12.33n2.81−9.33n2) with the use of SA, (10.67n2.81−7.67n2) with the use of WV, and (9n2.81 +0.5n2.59 +

4n2.32 − 10.5n2) with the use of the improved algorithm presented in section 4.

16

Fig. 3. Data flow of the block recombination for the proposed computation of AB + CD

A similar method can then provide further improvement in the complexities if the computation starts

with ordinary multiplication. Let A and B be two matrices of dimensions n, and let C = AB. The

computation starts with the following: C11 C12

C21 C22

 =

 A11 A12

A21 A22

 B11 B12

B21 B22

 =

 A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

 .
The first step is to compute the CMF operation applied to Aij ’s and Bij ’s for 1 ≤ i, j ≤ 2. The cost of

this step is eight CMF s applied to n/2×n/2 size matrices so that the size of each CMF is nlog2 7/7. Eight

component multiplications are then performed: A11B11, A12B21, A11B12, A12B22, A21B11, A22B21, A21B12,

and A22B22. For this step, CM is applied to vectors of sizes nlog2 7/7. Then, rather than applying operation

R to these products, the component additions (CA) are computed: A11B11 + A12B21, A11B12 + A12B22,

A21B11+A22B21, and A21B12+A22B22. It should be noted that four CAs with sizes nlog2 7/7 are required.

The final step is to apply operation R to those four sums of the products, for which four R operations

are required. Figure 4 illustrates how the method works. The result is a total arithmetic cost of

8MCMF
⊕ (n/2) + 8MCM

⊗ (n/2) + 4MCA
⊕ (n/2) + 4MR

⊕ (n/2).

With the use of Table 2, the new improved complexities can be obtained as follows:

M(n) ≤ 4n2.81 + 1.6n2.32 − 6.5n2 + 0.3n2.59.

It should be noted that this bound is superior to the bound of the original WV obtained by stopping the

algorithm when the dimension of matrices is two that is 4.53n2.81 − 5n2.

17

Moreover, if the matrices are initially divided into four parts and the ordinary multiplication is used,

then we need

32MCMF
⊕ (n/4) + 64MCM

⊗ (n/4) + 48MCA
⊕ (n/4) + 16MR

⊕ (n/4)

This calculation results in

M(n) ≤ 3.59n2.81 + 1.28n2.32 − 6.5n2 + 0.22n2.59.

More generally, if 2i × 2i dimensional matrices are formed initially and ordinary multiplication is used,

then the total arithmetic cost is

2 · 22iMCMF
⊕ (n/2i) + 23iMCM

⊗ (n/2i) + (23i − 22i)MCA
⊕ (n/2i) + 22iMR

⊕ (n/2i).

For i = 3, the following complexities are obtained:
M⊗(n) ≤ 1.49n2.81,

M⊕(n) ≤ 2.06n2.81 + 1.02n2.32 − 6.5n2 + 0.148n2.59,

M(n) ≤ 3.55n2.81 + 1.02n2.32 − 6.5n2 + 0.148n2.59,

(23)

which, to the best of our knowledge, represents an improvement over the best-known arithmetic cost

reported in the literature.

Fig. 4. Matrix multiplication with block recombination approach

18

7 COMPLEXITY COMPARISON

This section provides the complexity results for the cases. We recall that this study deals with the

arithmetic complexity and that the total number of operations in the ring over which the matrices are

defined are counted. If it is assumed that the cost of the ring operations +,−, and ∗ are almost equal, then

the best complexities should be compared: 3.73n2.81 + O(n2) for WV and 3.55n2.81n2 + O(nα), α ≤ 2.59

for the proposed algorithm. Possible examples of this case include Boolean matrix multiplications and

matrix multiplications over Fp in which dlog2 pe is less than the machine word size. Care should be

taken, however, with matrices that have entries stored in more than one word. Such large numbers are

used in cryptographic applications, in which case, the cost of multiplication is generally greater than

the cost of addition. It should be recalled that although stopping the recursion when n = 8 and then

using ordinary multiplication yields the best arithmetic complexity, the number of multiplications also

increases from n2.81 to 1.49n2.81. The 6n2.81 +O(n2) complexity should therefore be used for WV and the

5n2.81n2 + O(nα) complexity for the proposed algorithm because they include less multiplications than

the others. As verification, the previous and new complexities have been compared for matrices over

binary fields, for matrices with entries whose lengths are fitted to the word size of processor, and for

matrices with entries whose lengths are greater than the word size of processor.

TABLE 4
Total arithmetic complexity comparison

WV Proposed n WV Proposed Improvement %

3.73n2.81 − 5n2 3.55n2.81 + 0.15n2.59

256 21175027 20686080 2.31
4096 51544115180 49598704883 3.77

+1.02n2.32 − 6.5n2 16384 2.5x1012 2.4x1012 4.14
262,144 6.07x1015 5.80x1015 4.52

The first comparison involves the comparison of product of matrices over binary fields which are

widely used in cryptographic applications [7], [17]. The cost of addition and multiplication of bits can

be assumed to be identical in software implementation for which the total of arithmetic cost can be

compared. That is, 3.73n2.81 +O(n2) can be compared with the 3.55n2.81 +O(nα) where α ≤ 2.58. As can

be seen from Table 4, the improvements in this case are between 2.31% and 4.52%. On the other hand, for

hardware implementations of matrix multiplication over binary fields, the weights of the additions and

the multiplications should be considered separately. For some platforms the addition, or the XOR gate, is

more costly than the multiplication, or the AND gate. For example, an XOR gate requires twice as many

transistors as an AND gate for hardware implementations using ASIC (Application Specific Integrated

Circuit) technology. Therefore, we should compare 2M⊕(n) +M⊗(n) to measure the space complexity. In

this case the proposed algorithm with 2.06n2.81 + O(nα) additions and 1.49n2.81 multiplications results

19

in improvements between 2.85% and 6.09% over the WV with 2.26n2.81 +O(n2) additions and 1.49n2.81

multiplications for 128 ≤ n ≤ 65536. The results are tabulated in Table 5.

TABLE 5
Comparison of the 2M⊕(n) +M⊗(n) space complexity for hardware implementation over binary fields

WV Proposed n WV Proposed Improvement %

6.01n2.81 − 10n2 5.61n2.81 + 0.30n2.59

128 4785653 4649320 2.85
2M⊕(n) +M⊗(n) = 2M⊕(n) +M⊗(n) = 256 33991094 32782606 3.55

512 239903738 229943236 4.15
+2.04n2.32 − 13n2 4096 83018363918 78573891836 5.35

65536 2x1014 1.87x1014 6.09

In the case of the multiplication of matrices with entries whose sizes are less than word size of processor,

the results are similar to those for matrices over binary fields because one may assumed that most of

the processors perform additions and multiplications of those numbers in an approximately equal time.

It can thus be stated that the improvements are about 4% as indicated in Table 4.

The final step is to analyze the multiplication of matrices with entries whose lengths are greater than

the word size of processor. In this case, we know that the number of multiplications needed for such

numbers is much larger than the number of additions. More precisely, if the number of words required for

storing the entries of matrices is `, `2 multiplications and (`−1)2 additions of words are needed in order to

multiply the entries of the matrices using the school-book method. On the other hand, ` additions of words

are required for adding two entries. It should be noted that the school-book method for multiplication is

efficient only for a small value `. More efficient algorithms, such as Karatsuba multiplication, are available

for larger ` values. However, for this study, the complexities for ` < 6 were analyzed, and the school-book

method was used. The arithmetic complexity is then computed as follows: Let the multiplication and

the addition complexities of WV be MW
⊗ and MW

⊕ , respectively and the multiplication and the addition

complexities of the proposed algorithm be MP
⊗ and MP

⊕ , respectively. Then, (`2 + (` − 1)2)MW
⊗ + `MW

⊕

is compared with (`2 + (`− 1)2)MP
⊗ + `MP

⊕ . It should be noted that in (21), the complexity of WV yields

better results for ` = 2, 3 and that, in (5), the complexity of WV yields better results for ` > 3. On the

other hand, in (23), the complexity of the proposed algorithm produces better results for ` = 2 and in

(18), the complexity of the proposed algorithm gives better results for ` ≥ 3 because a smaller number of

multiplications are used in the latter case than in the former. The computations show that, for n > 4096,

the improvements are about 4%, 8% and 7% for ` = 3, 4, 5 respectively.

8 CONCLUSION

We have improved the arithmetic complexity of Strassen-like matrix multiplication from (6n2.81 − 5n2)

to (5n2.81 + 0.5n2.59 + 2n2.32 − 6.5n2) for n = 2k and from (3.73n2.81 − 5n2) to (3.55n2.81 + 0.148n2.59 +

20

1.02n2.32−6.5n2) for n = 8 ·2k. These results correspond to improvements between 2% and 8% depending

on the size of the entries of the matrices and the implementation platform.

REFERENCES

[1] D. Bini, M. Capovani, F. Romani, and G. Lotti. O(n2.7799) complexity for n∗n approximate matrix multiplication. Inf. Process.
Lett., 8(5):234–235, 1979.

[2] H. Cohn, R. D. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic algorithms for matrix multiplication. In FOCS, pages
379–388, 2005.

[3] H. Cohn and C. Umans. A group-theoretic approach to fast matrix multiplication. In FOCS, pages 438–449, 2003.
[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comput., 9(3):251–280, 1990.
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.
[6] M. A. Hasan, N. Meloni, A. H. Namin, and C. Nègre. Block recombination approach for subquadratic space complexity binary

field multiplication based on toeplitz matrix-vector product. IEEE Trans. Computers, 61(2):151–163, 2012.
[7] A. Joux. Algorithmic cryptanalysis. Chapman & Hall/CRC, 1st edition, 2009.
[8] I. Kaporin. The aggregation and cancellation techniques as a practical tool for faster matrix multiplication. Theor. Comput. Sci.,

315(2-3):469–510, 2004.
[9] V. Y. Pan. Strassen’s algorithm is not optimal: Trililnear technique of aggregating, uniting and canceling for constructing fast

algorithms for matrix operations. In FOCS, pages 166–176, 1978.
[10] V. Y. Pan. New fast algorithms for matrix operations. SIAM J. Comput., 9(2):321–342, 1980.
[11] V. Y. Pan. How to Multiply Matrices Faster, volume 179 of Lecture Notes in Computer Science. Springer, 1984.
[12] R. L. Probert. On the additive complexity of matrix multiplication. SIAM J. Comput., 5(2), 1976.
[13] A. Schönhage. Partial and total matrix multiplication. SIAM J. Comput., 10(3):434–455, 1981.
[14] A. Stothers. On the complexity of matrix multiplication. PhD thesis, University of Edinburgh, 2010.
[15] V. Strassen. Gaussian Elimination is not Optimal. Numer. Math., 13:354–356, 1969.
[16] V. Strassen. The asymptotic spectrum of tensors and the exponent of matrix multiplication. In FOCS, pages 49–54, 1986.
[17] B. Gregory V. Algebraic Cryptanalysis (1. ed.). Springer Publishing Company, Incorporated, 1st edition, 2009.
[18] V. V. Williams. Multiplying matrices faster than cppersmith-winograd. In STOC, pages 887–898, 2012.
[19] S. Winograd. On multiplication of 2x2 matrices. Linear Algebra and Application, 4:381 – 388, 1971.

