
Reduced Order Optimal Control of the Convective
FitzHugh-Nagumo Equations
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Abstract

In this paper, we compare three model order reduction methods: the proper or-
thogonal decomposition (POD), discrete empirical interpolation method (DEIM)
and dynamic mode decomposition (DMD) for the optimal control of the convec-
tive FitzHugh-Nagumo (FHN) equations. The convective FHN equations consists
of the semi-linear activator and the linear inhibitor equations, modeling blood co-
agulation in moving excitable media. The semilinear activator equation leads to
a non-convex optimal control problem (OCP). The most commonly used method
in reduced optimal control is POD. We use DEIM and DMD to approximate ef-
ficiently the nonlinear terms in reduced order models. We compare the accuracy
and computational times of three reduced-order optimal control solutions with the
full order discontinuous Galerkin finite element solution of the convection domi-
nated FHN equations with terminal controls. Numerical results show that POD is
the most accurate whereas POD–DMD is the fastest.
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1. Introduction

Optimal control problems (OCPs) governed by semilinear partial differen-
tial equations (PDEs) with wave-type solutions have been recently investigated
for the Schlögl equation with traveling waves fronts and for the Nagumo equa-
tion with spiral waves [1], for the FitzHugh-Nagumo (FHN) equations with spi-
ral and traveling waves [2, 3, 4], lambda-omega systems with spiral waves [5],
Allee equation [6], optimal harvesting [7] and the convective FHN equations [8]
with traveling wave solutions. PDE-constrained optimization is also applied to
parameter identification in pattern formation. Optimal parameters leading to Tur-
ing patterns in semi-linear reaction-diffusion equations like the Schnakenberg and
Gierer-Meinhardt equations are identified in [9, 10, 11]. Controlling traveling
wave solutions or patterns of semi-linear PDEs is computationally challenging.
For stable solutions of these OCPs, at each iteration step of the nonlinear opti-
mization algorithms, large scale linear systems should be solved. Efficient and
stable solutions of this kind of PDE constrained optimization problems are the
focus of the above mentioned studies.

For space discretization of PDEs, commonly used methods are finite differ-
ences, finite elements, finite volume, and spectral methods. One of the most stable
and accurate methods is the discontinuous Galerkin (dG) method for convection
dominated PDEs like the FHN equations. In this paper, we use the symmetric
interior penalty Galerkin (SIPG) method for space discretization [12, 13], which
is the most relevant and popular dG method. The dG methods possess better prop-
erties for convective problems compared with continuous finite element methods,
but they require a much larger number of degrees of freedom. Recently OCPs
governed by linear stationary and time-dependent convection-diffusion-reaction
equations [14, 15, 16] and semilinear steady state equations [17] are solved ef-
ficiently by the several dG methods. OCPs with PDE constraints are discretized
usually following two approaches: the discretize-then-optimize approach, where
the optimality conditions are imposed in the discrete setting, or the optimize-then-
discretize approach in which the optimality conditions are derived in variational
form and then discretization holds. There is no preferred approach [18, 19], here
we follow the optimize-then-discretize approach: the optimality conditions are
discretized in space by the SIPG method and the backward Euler method in time.
We employ the projected nonlinear conjugate gradient (CG) method [20] for solv-
ing the resulting nonlinear discrete optimization problem.

The optimal control of instationary PDEs requires numerous evaluations of
the optimality system, which lead to large scale optimization problems. In the
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last decade, different types of reduced order modeling (ROM) methods were de-
veloped to approximate these by low order or surrogate models. The resulting
small optimization problems can be solved efficiently with less computational ef-
fort. For an overview of ROMs for OCPs for linear and semilinear PDEs, we refer
the reader to [18, 19]. Despite its heuristic nature, currently, proper orthogonal
decomposition (POD) is the preferred model reduction technique for linear and
semilinear OCPs. The POD basis functions are constructed from the snapshots,
solutions of space-time discretized PDE at pre-specified time-instances, then the
reduced order OCP is solved applying the Galerkin projection. ROMs using the
POD-Galerkin projection for OCPs for linear PDE constraints are investigated in
[21, 22, 23] and for semi-linear PDE constraints in [24, 25, 26]. With increasing
number of POD basis functions, more accurate solutions are obtained. But the suc-
cess of POD depends on the type of the problem; for semi-linear PDEs with trav-
eling or spiral wave type solutions like the Schlögl and FHN equations [1, 4, 27]
require more POD modes than for the OCPs with semi-linear parabolic equations
[24]. Because the reduced nonlinear term still depends on the dimension of the
full order model (FOM), i.e., high dimensional finite element discretized model,
hyper reduction techniques are developed. The empirical interpolation method
(EIM) [28] and the discrete empirical interpolation method (DEIM) [29] are com-
monly used as hyperreduction techniques to reduce the computational cost for
evaluation of the nonlinear terms. More recently, as an alternative to the DEIM,
the dynamic mode decomposition (DMD) [30] is used to approximate the nonlin-
ear terms of the PDEs. DMD was first introduced by Schmid [31], Rowley [32]
and it is based on the linear approximation of the infinite dimensional Koopman
operator [33, 34].

We compare the accuracy and computational efficiency of POD, POD with
DEIM and POD with DMD for the optimal control of the convective FHN equa-
tions modeling blood coagulation and bio-reactors [35, 36]. The FHN equations
are the simplest and most widely used model for describing the complex spatio-
temporal behavior of traveling waves in excited media. In contrast to the classical
FHN equations [37, 38] with a semi-linear PDE and with a linear ordinary dif-
ferential equation (ODE), the convective FHN equations consists of a semi-linear
PDE with the monotone cubic nonlinear term for the activator and a linear PDE
for the inhibitor, modeling excitable systems in moving media. For semi-linear
OCPs like the Burger’s equation, quadratic nonlinear terms can be reduced to
the linear terms [39]. But for higher order polynomial or general nonlinearities,
hyperreduction techniques should be used. As far as we know, reduced order
OCPs using POD–DEIM and POD–DMD are not yet investigated for semilinear
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PDE constraint OCPs. Among these three methods, POD–DMD is the fastest,
because after collecting snapshots, the non-linearity disappears and the reduced
model becomes a coupled system of linear ODEs. Also, the reduced non-convex
optimization problem for POD and POD–DEIM becomes convex for POD–DMD.
The POD is the most accurate but, the slowest. The POD–DMD is less accurate
than the POD but fastest.

In the sequel, we describe the OCP constrained by the convective FHN equa-
tions in Section 2. The fully discrete optimal control system is given in Section 3,
based on the first order optimality conditions. In Section 4, the reduced order
OCPs (POD, POD–DEIM, and POD–DMD) are constructed. In Section 5, we
compare the three ROMs with respect to accuracy and computational efficiency
for a test problem with terminal control. The paper ends with concluding remarks
in Section 6.

2. Optimal control problem

We consider the following OCP:

min
f∈Fad

J(u,v, f ) =
1
2

∫
Ω

(
u(x,T )−uT (x)

)2 dx+
1
2

∫
Ω

(
v(x,T )− vT (x)

)2 dx

+
υ

2

T∫
0

∫
Ω

f (x, t)2 dx dt,

(1)

governed by the convective FHN equations

ut(x, t)−du∆u(x, t)+bbb(x) ·∇u(x, t)+g(u(x, t))+ v(x, t) = f (x, t) in Q,

vt(x, t)−dv∆v(x, t)+bbb(x) ·∇v(x, t)+ ε(v(x, t)− c3u(x, t)) = 0 in Q,

∂nu(x, t) = 0, ∂nv(x, t) = 0 on Σ
N ,

u(x, t) = uD(x, t), v(x, t) = vD(x, t) on Σ
D.

(2)
where du, dv are the diffusion coefficients, c3, ε are real constants, x = (x1,x2)

T is
the spatial element, uT (x) and vT (x) are given desired terminal states, and uD(x, t)
and vD(x, t) are given functions. The control function f (x, t) satisfy the point-wise
box constraints

f ∈Fad := { f ∈ L∞(Q) : fl ≤ f (x, t)≤ fr for a.e (x, t) ∈ Q},
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for some real numbers −∞ < fl < fr < +∞. The cubic polynomial g(u) is given
by

g(u) = c1u(u− c2)(u−1),

where ci, i= 1,2, are non-negative real numbers. The non-linearity g(u) is monos-
table for 0 < c1 < 20 and c2 = 0.02 [35], whereas for the Schlögl equation [1],
the classical FHN equations [2], and the diffusive FHN equations [40] the bistable
cubic non-linearity is considered. The velocity field bbb(x) = (b1(x),b2(x))T is
divergence-free, and for the maximum wave speed bmax, it is given by the parabolic
profile along the x1-direction

b1(x) = ax2(H− x2), bmax =
1
4

aH2, a > 0, b2(x) = 0.

In (1) and (2), T > 0 and Q := Ω× (0,T ] denote the final time and the time-
space domain, respectively. The space domain Ω = (0,L)× (0,H) is bounded,
Lipschitz in R2, and Σ = ∂Ω× (0,T ] is the lateral surface. The Dirichlet and
Neumann boundaries are ΣD := ΓD× (0,T ] and ΣN := ΓN × (0,T ], where ΓD =
{x = {0,L}, 0 < y < H} and ΓN = {0 < x < L, y = {0,H}}. The outward unit
normal vector is denoted by nnn(x) and the outward normal derivative on ∂Ω is
defined as ∂nu = ∇u ·nnn.

The convective FHN equations (2) consists of an activator equation for u(x, t)
and an inhibitor equation for v(x, t) in an excitable medium. In blood coagula-
tion process, the activator variable u(x, t) describes the concentrations of thrombin
in the excitation, and v(x, t) the inhibition of this excitation and recovery of the
medium variable, which is activated factor XI [36]. The complex process of coag-
ulation consists of cascadic enzymatic reactions and feedback loops [41]. These
reactions enable generation of auto-catalytic thrombin outside of the damaged
region. The most important property of the blood coagulation process is the for-
mation of auto-waves with the velocity independent initial conditions [35, 36, 41].
The flow propagates within the impermeable channel walls (Neumann boundary
conditions). Different types of standing and triggering waves occur depending
on the constants of the convective FHN equations [35]. The waves become more
curved when the flow velocity bmax increases. For a detailed discussion of the
complex spatio-temporal wave phenomena occurring in the uncontrolled convec-
tive FHN equations, we refer the reader to [35, 42].

The waves are initiated at t = 0 inside an initial narrow excitation region {xa≤
x1 ≤ xb, 0≤ x2 ≤ H}

u0(x) =
{

ū, if xa ≤ x1 ≤ xb,
0, otherwise, v0(x) = 0. (3)
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The interval from xa to xb is the damaged region of the vessel wall. In blood
coagulation, for fixed thrombin concentration the initial condition (3) mimics the
activation process [35, 36, 41]. In this study, we take a rectangle as xa = 0, xb =
0.1, and we set ū = 0.1.

Optimal control aims that the activator u(x, t) and the inhibitor v(x, t) follow
desired terminal states uT (x) and vT (x) as close as possible in the L2 norm by min-
imizing the cost functional J(u,v, f ). The inhibitor v(x, t) has only some auxiliary
character as for the FHN equations in [2, 3, 4], therefore only the activator u(x, t)
is to be controlled by f (x, t), which seems to be experimentally feasible [43]. The
parameter υ > 0 in the optimal cost functional J(u,v, f ) denotes the penalization
or the Tikhonov regularization parameter.

Remark 2.1. We have considered the OCP (1) with terminal observation func-
tionals to show the applicability of reduced order modeling. Reduced solutions of
OCPs with observation functionals, distributed in spacetime for the FHN equa-
tions [8] can also be handled using the same approach.

3. Optimality system and discretization

The local optimal solutions are constructed using the first-order necessary op-
timality conditions. In [8], we consider a more general OCP constrained by the
FHN equations with distributed, terminal and sparse controls. Here we consider
the OCP (1) only with the terminal controls and without sparse controls. As in
[8], we follow the optimize-then-discretize approach, first by deriving the first
order optimality conditions in the variational form and then discretize the OCP.
The second order necessary and sufficient optimality conditions for semi-linear
parabolic equations are investigated in [2, 44]. The first-order necessary optimal-
ity conditions [44, Chapter 1], lead to the following adjoint system

−pt(x, t)−du∆p(x, t)−bbb(x) ·∇p(x, t)+g′(u)p(x, t)− εc3q(x, t) = 0,
−qt(x, t)−dv∆q(x, t)−bbb(x) ·∇q(x, t)+ εq(x, t)+ p(x, t) = 0,

(4)

with the mixed boundary and terminal time conditions

du∂n p(x, t)+(bbb ·nnn)p(x, t) = 0, dv∂nq(x, t)+(bbb ·nnn)q(x, t) = 0, on Σ
N ,

p(x, t) = 0, q(x, t) = 0, on Σ
D,

p(x,T ) = u(x,T )−uT (x), q(x,T ) = v(x,T )− vT (x), in Ω.
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The flow in the adjoint system (4) is in the opposite direction of the flow in the
state system (2). In view of the box constraints, the optimal solution f (x, t) has to
satisfy the following variational inequality

T∫
0

∫
Ω

(
p(x, , t)+υ f (x, t)

)(
ν(x, t)− f (x, t)

)
dx dt ≥ 0, ∀ν ∈Fad,

which leads to the point-wise projection formula

f (x, t) = P[ fl , fr]

(
− 1

υ
p(x, t)

)
,

with the projection operator P[a,b](φ) = max{a,min{φ ,b}}.

3.1. Space discretization of the optimality system
The optimality system consisting of the state equation (2) and the adjoint equa-

tion (4) is discretized in space using the SIPG method [13]. We denote the family
of meshes consisting of non-overlapping triangular elements K by {Th}h. The
diameter of an element K and the length of an edge E are denoted by hK and hE ,
respectively. We assume that the mesh is regular in the following sense: for dif-
ferent triangles Ki, K j ∈ {Th}h, i 6= j, the intersection Ki∩K j is either empty or a
vertex or an edge, i.e., hanging nodes are not allowed.

The discrete test, state, and control spaces are defined by the space of piece-
wise discontinuous finite element functions

Wh =
{

w ∈ L2(Ω) : w |K∈ Pl(K) , ∀K ∈Th

}
.

Here, the set of polynomials on K ∈ Th of degree at most l is denoted by Pl(K).
In numerical examples, we use linear discontinuous finite elements, i.e., l = 1.

The set Eh of all edges are split into the sets of interior, Dirichlet and Neumann
boundary edges, denoted respectively by E 0

h , E
D
h , E N

h , so that Eh = E 0
h ∪E D

h ∪E N
h .

The inflow and outflow boundaries are defined by

Γ
− = {x ∈ ∂Ω : bbb(x) ·nnn(x)< 0} , Γ

+ = ∂Ω\Γ
−.

Similarly, the inflow and outflow boundaries of an element K ∈Th are defined by

∂K− = {x ∈ ∂K : bbb(x) ·nnnK(x)< 0} , ∂K+ = ∂K \∂K−,
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where nnnK(x) is the exterior unit normal vector on the boundary ∂K of an element
K. Let the common edge for two elements K and Ke be E. Then there are two
traces of a function w ∈Wh along the edge E, denoted by w|E from the interior
of K and we|E from the interior of Ke. Accordingly, the jump and average of w
across the edge E are defined by

[[w]] = w|EnnnK +we|EnnnKe , {{w}}= 1
2
(
w|E +we|E

)
.

Similarly, the jump and average of a vector-valued function are given by

[[∇w]] = ∇w|E ·nnnK +∇we|E ·nnnKe , {{∇w}}= 1
2
(
∇w|E +∇we|E

)
.

We set [[w]] = w|Ennn and {{∇w}} = w|E on a boundary edge E ∈ K ∩ ∂Ω. Then,
the state equations (2) and the adjoint equations (4) are discretized using the SIPG
method leading to the system: ∀w ∈Wh and a.e. t ∈ (0,T ]

〈∂tuh,w〉+ah,u(uh,w)+gh(uh,w)+ 〈vh,w〉= `h,u(t,w)+ 〈 fh,w〉 ,
〈uh(x,0),w(x)〉= 〈u0(x),w(x)〉 ,

〈∂tvh,w〉+ah,v(vh,w)+ ε 〈vh,w〉− εc3 〈uh,w〉= `h,v(t,w),
〈vh(x,0),w(x)〉= 〈v0(x),w(x)〉 ,

(5)

−〈∂t ph,w〉+ah,p(ph,w)+
〈
g′(uh)ph,w

〉
− εc3 〈qh,w〉= 0,

〈ph(x,T ),w(x)〉= 〈uh(x,T )−uT (x),w(x)〉 ,
−〈∂tqh,w〉+ah,q(qh,w)+ ε 〈qh,w〉+ 〈ph,w〉= 0,

〈qh(x,T ),w(x)〉= 〈vh(x,T )− vT (x),w(x)〉 ,
(6)

where 〈·, ·〉 denotes the usual L2-inner product. The bilinear forms ah,u and ah,v in
the discrete state system (5) are given for i = u,v by

ah,i(w̃,w) = ∑
K∈Th

∫
K

di∇w̃ ·∇w dx− ∑
E∈E 0

h ∪E
D
h

∫
E

(
{{di∇w̃}} · [[w]]+{{di∇w}} · [[w̃]]

)
ds

+ ∑
E∈E 0

h ∪E
D
h

diγ

hE

∫
E

[[w̃]] · [[w]] ds+ ∑
K∈Th

∫
K

bbb ·∇w̃w dx

+ ∑
K∈Th

∫
∂K−\∂Ω

bbb ·nnn(w̃e− w̃)w ds− ∑
K∈Th

∫
∂K−∩Γ−

bbb ·nnnw̃w ds,
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for any w̃, w ∈Wh, and γ is called the penalty parameter [13]. For i = u,v, the
linear right-hand side vectors, and the nonlinear form are defined by

`h,i(t,w) = ∑
E∈E D

h

∫
E

iD(x, t)
(diγ

hE
nnn · [[w]]−{{di∇w}}

)
ds− ∑

K∈Th

∫
∂K−∩Γ−

bbb ·nnn iD(x, t)w ds,

gh(u,w) = ∑
K∈Th

∫
K

g(u)w dx.

The bilinear forms ah,p and ah,q in the adjoint system (6) are defined similar to the
bilinear forms ah,u and ah,v for states, respectively, but with the negative velocity
field. They contain, respectively, the additional terms

∑
E∈E N

h

∫
E

(
bbb ·nnn

)
phw ds and ∑

E∈E N
h

∫
E

(
bbb ·nnn

)
qhw ds,

which come from the mixed boundary conditions. The SIPG discrete states and
the control in (5) are given in the form

uh(x, t)=
NK

∑
i=1

Nl

∑
j=1

u i
j(t)φ

i
j (x), vh(x, t)=

NK

∑
i=1

Nl

∑
j=1

v i
j(t)φ

i
j (x), fh(x, t)=

NK

∑
i=1

Nl

∑
j=1

f i
j (t)φ

i
j (x).

In a similar way, the discrete desired terminal states (just L2-projections) are given
by

uh,T (x) =
NK

∑
i=1

Nl

∑
j=1

u i
T, jφ

i
j (x), vh,T (x) =

NK

∑
i=1

Nl

∑
j=1

v i
T, jφ

i
j (x).

The number of (triangular) elements are denoted by NK , and the local dimension
of each element is given by Nl . φ i

j denotes the j-th finite element basis function
defined on the i-th triangle. Setting dG degrees of freedom N := NK ×Nl , the
corresponding time dependent unknown coefficient vectors can be written as

uuu(t) = (u1
1 (t), . . . ,u

1
Nl
(t), . . . ,uNK

1 (t), . . . ,uNK
Nl

(t)) ∈ RN ,

vvv(t) = (v1
1 (t), . . . ,v

1
Nl
(t), . . . ,vNK

1 (t), . . . ,vNK
Nl

(t)) ∈ RN ,

fff (t) = ( f 1
1 (t), . . . , f 1

Nl
(t), . . . , f NK

1 (t), . . . , f NK
Nl

(t)) ∈ RN .

On the other hand, the known coefficient vectors of the discrete desired terminal
states are given by

uuuT = (u1
T,1, . . . ,u

T,1
Nl

, . . . ,uT,NK
1 , . . . ,uT,NK

Nl
) ∈ RN ,

vvvT = (v1
T,1, . . . ,v

T,1
Nl

, . . . ,vT,NK
1 , . . . ,vT,NK

Nl
) ∈ RN ,

9



which are computed from the projection identities〈
uh,T (x),φi(x)

〉
= 〈uT (x),φi(x)〉 ,

〈
vh,T (x),φi(x)

〉
= 〈vT (x),φi(x)〉 , i= 1, . . .N.

Then, the SIPG semi-discretized system of the state equations (5) leads to the
following system of ODEs

MMMuuut +SSSuuuu+ggg(uuu)+MMMvvv = `̀̀u +MMM fff ,
MMMvvvt +SSSvvvv+ εMMMvvv− εc3MMMuuu = `̀̀v,

(7)

and the semi-discrete objective functional takes form

Jh(uuu,vvv, fff ) =
1
2
(uuu−uuuT )

T MMM(uuu−uuuT )+
1
2
(vvv− vvvT )

T MMM(vvv− vvvT )

+
υ

2

∫ T

0
fff T MMM fff dt.

Here MMM denotes the mass matrix, and SSSu and SSSv are the stiffness matrices cor-
responding to the bilinear forms ah,u and ah,v, respectively. The nonlinear vec-
tor ggg(uuu) corresponds to the nonlinear form gh, and the time-dependent vectors
`̀̀u := `̀̀u(t) and `̀̀v := `̀̀v(t) are the vectors corresponding to the linear forms `h,u
and `h,v, respectively. By a similar setting, the SIPG semi-discretized system of
the adjoint equations (6) are given as the following system of ODEs

−MMMpppt +SSSp ppp+RRRg(uuu)ppp− εc3MMMqqq = 0,
−MMMqqqt +SSSqqqq+ εMMMqqq+MMMppp = 0,

(8)

where the state u(x, t) dependent matrix RRRg(uuu) is related to the term 〈g′(uh)ph,w〉
in the adjoint system (6), and SSSp and SSSq are the stiffness matrices corresponding
to the bilinear forms ah,p and ah,q, respectively.

3.2. Fully discrete optimality system
The time interval [0,T ] is partitioned uniformly as 0 = t0 < t1 < · · ·< tNT = T ,

with the step-size ∆t = T/NT . For n = 0,1, . . . ,NT , we denote by uuun, vvvn, fff n,
pppn and qqqn the approximate solution vectors to the semi-discrete solutions uuu(t),
vvv(t), fff (t), ppp(t) and qqq(t) at the time instance t = tn, respectively. Also, we set
`̀̀n

u := `̀̀u(tn) and `̀̀n
v := `̀̀v(tn). Then, applying the backward Euler method to the

semi-discrete state equation (7) and to the semi-discrete adjoint equation (8), we
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obtain the following fully discrete state system

1
∆t

MMM
(
uuun−uuun−1

)
+SSSuuuun +ggg(uuun)+MMMvvvn = `̀̀n

u +MMM fff n,

1
∆t

MMM
(
vvvn− vvvn−1

)
+SSSvvvvn + εMMMvvvn− εc3MMMuuun = `̀̀n

v ,

(MMMuuu0)i = 〈u0(x),φi〉 , (MMMvvv0)i = 〈v0(x),φi〉 ,

(9)

for n = 1,2, . . . ,NT , and the following fully discrete adjoint system

1
∆t

MMM
(

pppn−1− pppn
)
+SSSp pppn−1 +RRRg(uuun)pppn−1− εc3MMMqqqn−1 = 0,

1
∆t

MMM
(
qqqn−1−qqqn

)
+SSSqqqqn−1 + εMMMqqqn−1 +MMMpppn−1 = 0,

pppNT
= uuuNT −uuuT , qqqNT

= vvvNT − vvvT ,

(10)

for n = NT , . . . ,2,1, where uuuT and vvvT are the known coefficient vectors of the
desired terminal states. We note that the fully discrete state system (9) is solved
forward in time, whereas the fully discrete adjoint system (10) is solved backward
in time. The equations (9) and (10) are semi-explicit in time. Because the mass
matrix M is symmetric positive definite and therefore invertible, the discrete solu-
tions of (9) and (10) exist and are unique. The resulting semilinear discrete OCP
can be solved by several optimization algorithms. We use the projected nonlinear
CG method [20], which is applied for solving the OCP governed by Schlögl and
FHN equations in [1, 2, 3, 4] and by the convective FHN equations in [8]. The de-
tails of the implementation of the projected nonlinear CG algorithm can be found
in these papers.

4. Reduced order optimal control

We construct ROMs for the state equation (2) and the adjoint equation (4).
For the construction of the POD modes to the state variables u and v, the POD
method uses the snapshot matrices generated by the coefficient vectors uuu and vvv of
the optimal state solution vectors from the full order optimal control problem, and
similarly, the snapshot matrix generated by the coefficient vector fff of the optimal
control solution is used to construct the POD modes to the control variable f . For
the construction of the POD modes to the adjoint variables p and q, we use the
same POD modes generated by the snapshots of the states u and v, motivated by
the error analysis in [19]. This approach might be not the best option, but the
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construction of different POD modes using the snapshot matrices of the adjoint
states does not improve the suboptimal solutions much [24] and requires more
computational work. It is not known a-priorly how far the optimal solution of the
reduced POD problem is from the exact one unless the snapshots are generating
a sufficiently large state space. Different approaches are discussed in [18] for the
proper choice of the POD basis in the reduced OCP, which affects the accuracy
of the reduced solutions. Here we construct the POD basis for the reduced OCP
from the snapshots of controls of the FOM.

4.1. POD Galerkin discretization
The reduced order system for the state equations (2) of lower dimensions ku

and kv is formed by the Galerkin projection of the equations onto the subspaces

W r
u,h = span{ψu,1, . . . ,ψu,ku} ⊂Wh, W r

v,h = span{ψv,1, . . . ,ψv,kv} ⊂Wh.

For any time t, the reduced order states ur
h(x, t) ∈W r

u,h and vr
h(x, t) ∈W r

v,h stand for
the approximations of the full order states uh(x, t) and vh(x, t), respectively, and
they are given by

uh(x, t)≈ ur
h(x, t) =

ku

∑
i=1

ur
i (t)ψu,i(x), vh(x, t)≈ vr

h(x, t) =
kv

∑
i=1

vr
i (t)ψv,i(x),

where uuur(t) := (ur
1(t), . . . ,u

r
ku
(t))T and vvvr(t) := (vr

1(t), . . . ,v
r
kv
(t))T are the reduced

coefficient vectors, and {ψu,i}ku
i=1 and {ψv,i}kv

i=1 are the L2-orthogonal reduced ba-
sis functions. Similarly, the full order control fh(x, t) is approximated by the re-
duced order control f r

h(x, t) from the k f dimensional subspace W r
f ,h

fh(x, t)≈ f r
h(x, t) =

k f

∑
i=1

f r
i (t)ψ f ,i(x), W r

f ,h = span{ψ f ,1, . . . ,ψ f ,k f } ⊂Wh,

where fff r(t) :=( f r
1(t), . . . , f r

k f
(t))T is the reduced coefficient vector for the control,

and {ψ f ,i}
k f
i=1 are the L2-orthogonal reduced basis functions. All the reduced basis

functions are linear combinations of dG basis functions

ψu,i =
N

∑
j=1

Ψu, j,iφ j(x), ψv,i =
N

∑
j=1

Ψv, j,iφ j(x), ψ f ,i =
N

∑
j=1

Ψ f , j,iφ j(x),

12



where Ψ·,·,i are the coefficient vectors of the i-th reduced basis functions. For
w ∈ {u,v, f}, the following POD matrices are constructed

ΨΨΨw := [Ψw,1 · · ·Ψw,kw ] ∈ RN×kw , Ψw,i = (Ψw,1,i, . . . ,Ψw,N,i)
T ∈ RN ,

where the columns Ψw,i are the POD modes. The POD modes are computed
through the snapshot matrices U = [uuu1, . . . ,uuuNT ], V = [vvv1, . . . ,vvvNT ] and F =
[ fff 1, . . . , fff NT

] in RN×NT [40, 45], respectively, where the columns of the snapshot
matrices are simply the coefficient vectors of the full order states and control from
the FOM (9) at the time instances ti, i = 1, . . . ,NT . Then, for w ∈ {u,v, f}, the
reduced basis functions {ψw,i}, i = 1,2, . . . ,kw, are given by the solution of the
following minimization problem

min
ψw,1,...,ψw,kw

1
NT

NT

∑
j=1

∥∥∥∥∥www j−
kw

∑
i=1

〈
www j,ψw,i

〉
ψw,i

∥∥∥∥∥
2

L2(Ω)

subject to
〈
ψw,i,ψw, j

〉
= Ψ

T
w,·,iMMMΨw,·, j = δi j , 1≤ i, j ≤ kw,

where δi j is the Kronecker delta. Again for w∈{u,v, f}, and for W ∈{U ,V ,F},
the above minimization problem is equivalent to the eigenvalue problems

W W T MMMΨw,·,i = σ
2
w,iΨw,·,i , i = 1,2, . . . ,kw, (11)

for the coefficient vectors Ψw,·,i of the reduced basis functions ψw,i. Setting Ŵ =
RW (RT is the Cholesky factor of the mass matrix MMM), we obtain the equivalent
formulation of (11) as

Ŵ Ŵ T
Ψ̂w,·,i = σ

2
w,iΨ̂w,·,i , i = 1,2, . . . ,kw,

where Ψ̂w,·,i = RΨw,·,i. Because the singular value decomposition (SVD) is more
stable and efficient than the eigenvalue decomposition, we apply the SVD to com-
pute the first kw left singular vectors, Ψ̂w,·,i := ζw,i, of the matrix Ŵ

Ŵ = ζwΣwβ
T
w ,

where the diagonal matrix Σw contains the singular values σw,i, and ζw,i are the
columns of the orthogonal matrix ζw. Using the fact that Ψ̂w,·,i = RΨw,·,i, the
coefficient vectors Ψw,·,i of the reduced basis functions are computed as

Ψw,·,i = R−1
Ψ̂w,·,i , i = 1,2, . . .kw.

13



By the above settings, the following relations can be found between the coefficient
vectors uuu, vvv and fff of the FOM solutions, and the reduced coefficient vectors uuur,
vvvr and fff r

uuu≈ΨΨΨuuuur, vvv≈ΨΨΨvvvvr, fff ≈ΨΨΨ f fff r,

uuur ≈ΨΨΨ
T
u MMMuuu, vvvr ≈ΨΨΨ

T
v MMMvvv, fff r ≈ΨΨΨ

T
f MMM fff .

Then the reduced system for the state equations takes the form

d
dt

uuur +SSSr
uuuur +ΨΨΨ

T
u ggg(ΨΨΨuuuur)+MMMr

u,vvvvr = ΨΨΨ
T
u `̀̀u +MMMr

u, f fff r,

d
dt

vvvr +SSSr
vvvvr + εvvvr− εc3MMMr

v,uuuur = ΨΨΨ
T
v `̀̀v,

(12)

and using the L2-orthogonality of the reduced basis functions, the semi-discrete
reduced order objective functional takes form

Jr
h(uuu

r,vvvr, fff r) =
1
2
(uuur−uuur

T )
T (uuur−uuur

T )+
1
2
(vvvr− vvvr

T )
T (vvvr− vvvr

T )

+
υ

2

∫ T

0
( fff r)T fff rdt,

which is absolutely cheaper to calculate, comparing to the full order objective
functional Jh. Using the same POD modes generated by the snapshot matrix of
the states, we can obtain the reduced adjoint system in a similar way

− d
dt

pppr +SSS r
p pppr +RRRr

g(uuu
r)pppr− εc3MMMu,vqqqr = 0,

− d
dt

qqqr +SSS r
qqqqr + εqqqr +MMM r

v,u pppr = 0.
(13)

In the ROMs (12) and (13), the reduced matrices are defined by

SSSr
u = ΨΨΨ

T
u SSSuΨΨΨu, SSSr

v = ΨΨΨ
T
v SSSvΨΨΨv, SSSr

p = ΨΨΨ
T
u SSSpΨΨΨu, SSSr

q = ΨΨΨ
T
v SSSqΨΨΨv

MMM r
u,v = ΨΨΨ

T
u MMMΨΨΨv, MMM r

u, f = ΨΨΨ
T
u MMMΨΨΨ f , MMM r

v,u = ΨΨΨ
T
v MMMΨΨΨu,

RRRr
g(uuu

r) = ΨΨΨ
T
u RRRg(ΨΨΨuuuur)ΨΨΨu.

The sub-optimality systems (12) and (13) are solved by backward Euler method
in time.
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4.2. Discrete empirical interpolation method
In this part, we rewrite the reduced state equation (12) resulting from the appli-

cation of the DEIM [29] to the cubic nonlinear term ggg(ΨΨΨuuuur). The DEIM aims to
approximate the nonlinear vector ggg(ΨΨΨuuuur) by projecting it onto a subspace of the
space generated by the non-linear functions and spanned by a basis of dimension
m� N

ggg(ΨΨΨuuuur)≈WWWsss(t), (14)

where sss(t) ∈ Rm is the corresponding coefficient vector, and the DEIM basis ma-
trix WWW ∈ RN×m is calculated by the application of the POD to the nonlinear snap-
shot matrix G = [ggg(uuu1) · · ·ggg(uuuNT )] ∈ RN×NT . Since the system (14) is overdeter-
mined, we find a projection matrix PPP such that PPP = [eeep1 · · ·eeepm ] ∈RN×m where eeepi

is the i-th column of the identity matrix III ∈ RN×N . After elimination of the coef-
ficient vector sss(t) in (14), we arrive at the following ROM for the state equation
with the DEIM approximation as follows

d
dt

uuur +SSSr
uuuur +QQQgggr(uuur)+MMMr

u,vvvvr = ΨΨΨ
T
u `̀̀u +MMMr

u, f fff r,

d
dt

vvvr +SSSr
vvvvr + εvvvr− εc3MMMr

v,uuuur = ΨΨΨ
T
v `̀̀v,

(15)

where the matrix QQQ :=ΨΨΨ
T
u WWW (PPPTWWW )−1 is computed once in the off-line stage. The

computation of the reduced nonlinear vector gggr(uuur) := PPPT ggg(ΨΨΨuuuur) ∈ Rm and its
Jacobian matrix require only m� N and m×Nl integral evaluations, respectively,
while they need N and N×Nl integral evaluations when DEIM approximation is
not used.

4.3. Dynamic mode decomposition
The DMD extracts dynamically relevant spatio-temporal information content

from numerical or experimental data sets [34]. Without explicit knowledge of
the dynamical system, the DMD algorithm determines eigenvalues, eigenmodes,
and spatial structures for each mode. The snapshot data is decomposed in spatio-
temporal modes both by POD and DMD that correlates the spatial features of the
data. Additionally, DMD associates the snapshot data to the temporal Fourier
modes. DMD is a special case of the Koopman operator [33] approximating
nonlinear systems via an associated infinite dimensional system. The connec-
tion between the DMD and Koopman operator was established in [32, 31] . The
Koopman operator K acts on a set of scalar observable functions g : M → C

K g(yyy) = g(NNN(yyy)),
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Algorithm 1 Exact DMD Algorithm

G and G ′ are the snapshot matices
Computation of SVD of G , G =UΣV ∗.
Define ÃAAG =U∗G ′V Σ−1.
Computation of the eigenvalues and eigenvectors (λ j,w j) from ÃAAG w j = λ jw j,
j = 1, . . . , m̃.
Computation of DMD modes ΨΨΨ

DMD
j := G ′V Σ−1w j, j = 1, . . . , m̃.

for the nonlinear dynamical system

dyyy
dt

= NNN(yyy),

where yyy ∈M , and M is an n-dimensional manifold. The DMD determines the
Koopman eigenvalues and modes directly from the data, when linear observables
are considered as state space, g(yyy) = yyy, directly from the data.

We consider a snapshot matrix and a time shifted version of the snapshot ma-
trix

YYY = [yyy(t0) · · ·yyy(tm−1)], YYY ′ = [yyy(t1) · · ·yyy(tm)]. (16)

The DMD involves the decomposition of the unknown best-fit linear operator A∈
Rn×n relating the matrices above

Y′ = AY.

The DMD modes are computed by the exact DMD algorithm [46].
In [30], the DMD is proposed for producing low-rank approximations of the

nonlinearities in PDEs as an alternative to DEIM. Here, after building the POD
basis functions of rank ku, we collect snapshots G ,G ′ for the non-linear term ggg(uuu)
from the FOM (7) at NT+1 time instances and divide them into sets as in (16)

G = [ggg(uuu0) · · ·ggg(uuuNT−1)] ∈ RN×NT , G ′ = [ggg(uuu1) · · ·ggg(uuuNT )] ∈ RN×NT .

The snapshots matrices satisfy

G ′ = AAAG G ,

where the unknown matrix AAAG is given as the solution of the minimization prob-
lem

min
∥∥G ′−AAAG G

∥∥2
F ,
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where ‖·‖F denotes the Frobenius norm, AAAG = G ′G †, and † is the Moore-Penrose
pseudoinverse. The Algorithm 1 gives the exact DMD procedure [46] to find
the DMD basis matrix ΨΨΨ

DMD = [ΨΨΨDMD
1 · · ·ΨΨΨDMD

m̃ ] ∈ RN×m̃. After calculating the
DMD basis function ΨΨΨ

DMD by the Algorithm 1, the nonlinear vector ggg(uuu) in the
full order state equations (7) is approximated as the following time-dependent
vector

gggDMD(t) =
m̃

∑
j=1

α jΨΨΨ
DMD
j exp(ω jt) = ΨΨΨ

DMDdiag(eωt)α, (17)

where α = [α1, . . . ,αm̃]
T is the initial amplitudes given by α = (ΨΨΨDMD)†ggg(uuu1),

and ω = [ω1, . . . ,ωm̃]
T includes the eigenvalues λ j as ω j = log(λ j)/∆t, j = 1, . . . m̃.

Inserting the identity (17) into the reduced state equations (12), we obtain the
following linear ROM for the activator equation

d
dt

uuur +SSSr
uuuur +ΨΨΨ

T
u gggDMD(t)+MMMr

u,vvvvr = ΨΨΨ
T
u `̀̀u +MMMr

u, f fff r. (18)

Although the dimension of the reduced system (18) with m̃ DMD modes is small
as the reduced system (15) with m DEIM modes, the POD–DMD reduced state
equation (18) is linear, and the OCP problem becomes convex and Newton’s it-
erations are no more needed. Therefore, the POD–DMD is much faster than the
POD and the POD–DEIM.

5. Numerical results

We consider the OCP (1)-(2) with a fast wave speed Vmax = 64, and with the
parameters and initial condition given by

c1 = 9, c2 = 0.02, c3 = 5, ε = 0.1, dy = dz = 1, υ = 10−3,

u0(x, t) =
{

0.1, if 0≤ x1 ≤ 0.1, 0≤ x2 ≤ H
0, otherwise, , v0(x,0) = 0.

The desired terminal states are chosen as

uT (x) = unat(x,T/2) and vT (x) = vnat(x,T/2),

where unat and vnat stand for the solutions of the uncontrolled convective FHN
equations. The box constraint for the control is given by

Fad := { f ∈ L∞(Q) : −0.2≤ f (x, t)≤ 0.2 for a.e (x, t) ∈ Q}.
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The space domain is taken as a rectangle with H = 5 and L= 100. We use uniform
step size in space, ∆x1 =∆x2 = 0.5, and in time, ∆t = 0.05 for the final time T = 1.
Stopping criteria for the OCP is the relative error |Jold − J|/|Jold| ≤ 10−3 on the
objective functional. For w ∈ {u,v, f}, the number of POD modes are determined
according to the following energy criteria (relative information content (RIC) )

ε(kw) =
∑

kw
i=1 σ2

w,i

∑
dw
i=1 σ2

w,i

,

which represents the energy captured by the first kw POD modes over all dw POD
modes, dw is the rank of the related snapshot matrix, and σw,i is the correspond-
ing singular value of the i-th mode. In the computations, the number of POD
modes are taken as the same, k := max{ku,kv,k f }, so that the energy criteria
minkw ε(kw) ≥ %99.99 is satisfied for w ∈ {u,v, f}. Moreover, for w ∈ {u,v, f},
we define the following relative L2-error

‖wh−wr
h‖ :=

‖wh(x, t)−wr
h(x, t)‖L2(Ω)

‖wh(x, t)‖L2(Ω)

,

to compute the errors between full and reduced order solutions at a given time t.
The singular values of the snapshot matrices of the states u, v, of the control

f , and of the non-linearity g(u) in Figure 1 decay slowly almost at the same rate,
which is typical for convection dominated problems. According to the RIC for
%99.99 of energy captured, we have chosen k = 9 POD modes for the states u, v
and the control f .
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−10
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10
0
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Figure 1: Singular values of the snapshot matrices
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The FOM state solutions at the final time in Figures 2-3, top, show the same
wave type characteristics as in [8]. The error plots between full and reduced order
state solutions in Figures 2-3, bottom, agree for POD, POD–DEIM and POD–
DMD with m = 14 and m̃ = 18 DEIM and DMD modes, respectively. In Figure 4,
we give the full and reduced order control profiles at the final time. We see that
there is a bit difference between the full and reduced order profiles, but the reduced
order profiles are similar in between. The relative L2-errors between the full and
reduced order solutions of the states and the control at the final time are shown
in Table 1. Both states u and v are approximated by the reduced models with
the same accuracy, whereas the errors in control are larger for POD–DMD due to
linearization of the reduced OCP.

Figure 2: State u profiles at the final time: (Top) Uncontrolled, desired and optimal FOM states;
(Bottom) FOM-ROM errors for k = 9 POD modes, m = 14 DEIM basis and m̃ = 18 DMD basis.

‖uh−ur
h‖ ‖vh− vr

h‖ ‖ fh− f r
h‖

POD 4.644e-03 6.167e-02 6.614e-01
POD–DEIM 4.988e-03 6.511e-02 7.123e-01
POD–DMD 5.787e-03 7.670e-02 1.061e+00

Table 1: Relative L2-errors between full and reduced order states and control at the final time.
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Figure 3: State v profiles at the final time: (Top) Uncontrolled, desired and optimal FOM states;
(Bottom) FOM-ROM errors for k = 9 POD modes, m = 14 DEIM basis and m̃ = 18 DMD-basis.

Because the Galerkin projected POD–DMD system is linear, the resulting
OCP is convex. Therefore, no Newton iteration is recorded for the POD–DMD
in Table 2, and instead of nonlinear CG, we use linear CG method. Comparing
the speedup factors (the ratio of the CPU times (in seconds) required for evalua-
tion of FOM to the CPU times required for evaluation of ROM) in Table 2, the
computational efficiency of the POD–DMD approach is clearly visible. The POD
reduced sub-optimal solutions are the most accurate, the POD–DEIM and POD–
DMD solutions are less accurate, whereas the POD solutions oscillate at higher
modes, as shown for the relative FOM-ROM errors in the Frobenius norm in Fig-
ure 5, and in Table 1 as well . The value of the objective function J obtained by
full and reduced order solutions are almost the same with increasing number of
POD modes in Figure 6, left. The ROMs require significantly less CPU time com-
pared to the FOM. In terms of computational cost, the POD–DMD is the fastest,
Figure 6, right. For a small number of POD modes, the CPU times oscillate until
k ≈ 6, and after they do not change much. Therefore it is not necessary to use a
larger number of POD modes considering the CPU times, and the accuracy of the
reduced order solutions and reduced order objective functional.
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Figure 4: Control profiles at the final time for k = 9 POD modes k = 9, m = 14 DEIM basis and
m̃ = 18 DMD basis.
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Figure 5: Relative FOM-ROM Frobenius errors for state u (left) and state v (right).
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Figure 6: The values of the objective functionals (left) and CPU times (right) with increasing
number of POD modes.

J # CG # Line #Newton CPU Speedup
iterations searches iterations times factors

FOM 2.376e-03 184 710 3.22 15496.7 -
POD 2.396e-03 85 317 3.19 828.3 18.7
POD–DEIM 2.392e-03 88 332 3.20 386.2 40.1
POD–DMD 2.396e-03 99 370 1 8.0 1937.1

Table 2: The values of the optimal objective functionals J, nonlinear CG iterations and line
searches, average number of Newton iterations per time step, CPU times and speedup factors.
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6. Conclusions

In this study, the computational efficiency and accuracy of three ROM methods
are investigated for solving semilinear convection dominated OCP problem. We
derived the ROMs for the state and adjoint equations using the same POD basis
functions generated by the snapshot matrices of the states only. Two hyperreduc-
tion techniques, the DEIM and DMD are applied to reduce the computational cost
arising from the nonlinear term in the activator equation. Among the three ROM
techniques the POD without DEIM/DMD is the most accurate as expected. The
POD–DEIM and POD–DMD errors are close, but the POD–DMD is the fastest
due to the fact that the reduced state equations are no more nonlinear and the
OCP is convex. In a future study, we plan to compare these ROM techniques for
model predictive control and feedback control problems using compressive POD
and DMD.
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References

[1] R. Buchholz, H. Engel, E. Kammann, F. Tröltzsch, On the optimal control
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[40] B. Karasözen, T. Küçükseyhan, M. Uzunca, Structure preserving integra-
tion and model order reduction of skew–gradient reaction–diffusion sys-
tems, Annals of Operations Research 258 (2017) 79–106. doi:10.1007/

s10479-015-2063-6.

27

https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1017/S0022112009992059
https://doi.org/10.1371/journal.pone.0004454
https://doi.org/10.1371/journal.pone.0004454
https://doi.org/10.1159/000089933
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1109/jrproc.1962.288235
https://doi.org/10.1137/17M1135281
https://doi.org/10.1137/17M1135281
https://doi.org/10.1007/s10479-015-2063-6
https://doi.org/10.1007/s10479-015-2063-6


[41] A. Lobanov, T. Starozhilova, The effect of convective flows on blood co-
agulation processes, Pathophysiol Haemost Thromb 34 (2005) 121–134.
doi:10.1159/000089932.

[42] F. I. Ataullakhanov, V. I. Zarnitsina, A. V. Pokhilko, A. I. Lobanov, O. L. Mo-
rozova, Spatio-temporal dynamics of blood coagulation and pattern forma-
tion: A theoretical approach, International Journal of Bifurcation and Chaos
12 (09) (2002) 1985–2002. doi:10.1142/S0218127402005649.

[43] C. Vilas, M. R. Garca, J. R. Banga, A. A. Alonso, Robust feed-back con-
trol of travelling waves in a class of reaction-diffusion distributed biological
systems, Physica D: Nonlinear Phenomena 237 (18) (2008) 2353 – 2364.
doi:10.1016/j.physd.2008.02.019.
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