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ABSTRACT Keystone Transform (KT) and Radon Fourier Transform (RFT) are two popular methods
proposed to overcome range migration in radars. A major concern in these methods is the computational
complexity for real time operations. In this paper, a low complexity implementation of recurrent chirp-z
transform (CZT) is offered in order to be employed in fast KT with no loss in performance. Additionally,
a novel RFT implementation utilizing recurrent CZT is proposed to take advantage of the fast execution of
repeated CZT. A mathematical analysis and simulation results are presented to show the performance and
efficiency of the proposed techniques.

INDEX TERMS Keystone transform, Radon Fourier transform, range migration, chirp-z transform.

I. INTRODUCTION

DETECTION of high speed targets with low radar cross
section is one of the significant problems and it is taking

an increasing attention in the field of radar signal processing.
It is well known that increasing signal-to-noise ratio (SNR)
by means of long time coherent integration improves radar
detection performance. During long coherent processing in-
terval, a high speed target will move across multiple range
cells especially for high range resolution radars due to nar-
rower range cells. Therefore, it will be difficult to integrate
multiple pulses coherently due to range migration effect and
consequently detection performance will degrade.

Numerous target detection algorithms [1]–[24] have been
developed in order to eliminate the range migration effect in
the last decades. These algorithms can be mainly categorized
into two types: noncoherent integration and coherent inte-
gration. Radon Transform [1]–[3] , Hough Transform [4]–
[6] and the track-before-detect technique [7], [8] are typical
noncoherent integration methods. The noncoherent integra-
tion methods have poor detection performance under low
signal-to-noise ratio (SNR) environment since they do not
compensate the phase fluctuation. With regard to the coherent
integration detection, there are typically two kinds of meth-
ods: non-parametric search and parametric search. The non-
parametric search methods include sequence reverse trans-
form (SRT) [9], adjacent cross correlation function (ACCF)
[10], [11] and scaled inverse Fourier transform (SCIFT)

[12]. These nonparametric search methods have relatively
low computational complexity compared to the parametric
search methods; however, they demand high SNR input and
have degraded detection performance for target echoes with
low SNR. As for the parametric search methods employing
coherent integration detection, Keystone Transform (KT)
[13]–[18] and Radon Fourier Transform (RFT) [19]–[21]
are typical algorithms. KT can eliminate range migration
by rescaling the slow time axis for each range frequency
without considering target’s velocity information. Neverthe-
less, KT needs interpolation operations and an extensive
search to determine and eliminate the Doppler ambiguity
factor. Zhao et al. [22] proposed to implement KT with lower
computational complexity by employing Chirp-Z transform
(CZT). However, this implementation still suffers from high
complexity because it requires repetitive execution of CZT
for each potential Doppler ambiguity factor. RFT can correct
range migration by jointly searching along the range and the
velocity domains, but its implementation is computationally
burdensome due to the two-dimensional searching. Yu et
al. [21] proposed a method using CZT for computationally
efficient implementation of RFT. Even though KT and RFT
have faster implementations utilizing CZT, they can still be
improved for real-time processing.

CZT is an efficient algorithm proposed by Rabiner [25]
to evaluate z-transform on a spiral contour in the z-plane
utilizing Fast Fourier Transform (FFT) operations. In some
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applications, CZT might be required to be executed repeat-
edly bringing large computational load as in the fast KT
implementation [22]. As we will propose in this paper, RFT
can similarly be modified to execute CZT recurrently.

In this work, a fast method is proposed to lower the com-
putational load of performing CZT repeatedly with different
starting points and the same angular spacing on the spiral
contour. Thus, the proposed technique enables not only range
walk compensation methods like KT and RFT to be per-
formed more efficiently but also other applications requiring
recurrent CZT executions. We demonstrate by mathematical
analysis that the proposed method is equivalent to the ex-
isting CZT implementation. Consequently, proposed KT and
RFT implementations have lower computational cost without
sacrificing coherent integration performance compared to
the conventional implementations. Eventually, a simulation
result is presented to depict that the proposed method can
acquire the same integration performance as the existing
algorithms.

The remaining of the paper is organized as follows. In
section 2, we establish the signal model of a rectilinearly
moving target and briefly summarize the CZT, KT and RFT
algorithms. In section 3, the proposed method is described.
Computational complexity of the algorithms has been ana-
lyzed in section 4. We provide simulation results in section
5. Finally, conclusions are drawn in section 6.

II. SIGNAL MODEL AND BRIEF REVIEW OF CZT, KT
AND RFT
A. SIGNAL MODEL AND PROBLEM STATEMENT
Consider a radar that transmits N pulses during the coherent
processing interval. The received signal at the nth pulse after
down conversion, can be written as

sRx(t̃, n)=̃p
[
t̃−2(R0 + vnTr)

c

]
exp
[−j4πfc(R0 + vnTr)

c

]
(1)

where t̃ is fast time, n is pulse number from 0 to N -1, fc is
the carrier frequency, p(t) is an arbitrary envelope signal, c is
the light velocity, v denotes the radial velocity of the target
receding from the radar, Tr is the pulse repetition interval
(PRI), andR0 is the range location of the target when the first
pulse was transmitted, i.e., at n = 0. Radial velocity between
the radar and the target can be represented as follows

v = Fvblind + vres, (2)

where Doppler ambiguity factor is F = round(v/vblind)
1 ,

blind speed is defined as vblind = c
2fcTr

, vres is the residual
velocity with vres < vblind

2 .
After matched filtering, the signal in the slow time - range

frequency domain can be expressed as

Y (f, n) = |P (f)|2exp
[
− j4π(f + fc)

(R0 + vnTr)

c

]
(3)

1round(.) is the function which returns the nearest integer.

FIGURE 1. Standard implementation of CZT using FFT operations.

where P (f) is the Fourier transform of p(t). The coupling
between the range frequency f and slow time index n in the
exponential term in (3) causes the range migration problem.

B. REVIEW OF CZT
CZT employs the idea of expressing z-transform on a spiral
contour as a discrete convolution and thus FFT operations
can be used to compute the z-transform efficiently. K-point
CZT of the N points input signal x(n) can be expressed as
follows

X(k) =
N−1∑
n=0

x(n)A−nWnk k = 0, 1, . . . ,K − 1 (4)

where A is the complex starting point, and W is a complex
scalar describing the complex ratio between points on the
contour in the z-plane on which the z-transform is computed.
The CZT can be implemented as a circular convolution or
equivalently by employing FFT operations as shown in Fig.
1.

C. REVIEW OF KT
The traditional KT [16] [17] is usually implemented by sinc
interpolation to get rid of range migration as given below.

YKT (f,m) =
N−1∑
n=0

Y (f, n)sinc[nαf −m],

m = 0, 1, . . . , N − 1

(5)

where αf = (fc + f)/fc .
Doppler ambiguity factor F can be corrected by multiply-

ing (5) by the correction term which is defined as

CKT (f, n, F ) = exp[−j2πFn
αf

]. (6)

Then, KT output in range frequency – slow time domain
can be expressed as follows

YKT (f,m, F ) =

N−1∑
n=0

Yc,KT (f, n, F )sinc
[
nαf −m

]
(7)

where

Yc,KT (f, n, F ) = Y (f, n)CKT (f, n, F ). (8)

If the ambiguity factor is not known for a given target, it
can be estimated by choosing the highest-amplitude coherent
integration output after Doppler-ambiguity correction for all
possible values of ambiguity factor F .
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FIGURE 2. Implementation of KT employing repeated CZT operations.

Due to high computation complexity of sinc interpolation,
an efficient implementation of KT employing CZT was pro-
posed [22].

In order to perform KT as given in [22], we correct
Doppler ambiguity of matched filter output Y (f, n) and take
CZT over slow time.

ZKT (f, k, F ) = CZT
n

[
Yc,KT (f, n, F )

]
(9)

ZKT (f, k, F ) =
N−1∑
n=0

Yc,KT (f, n, F )A−nWnk
f (10)

where k is the Doppler frequency index. The parameters
of CZT are set as A = 1, and Wf = exp(−j 2π

N αf ).

Coherent integration output can be obtained by the follow-
ing expression

zKT (t̃, k, F ) = IFFT
f

[
ZKT (f, k, F )

]
. (11)

Fig. 2 shows a block diagram of KT implementation
employing NF times repeated Doppler ambiguity compen-
sation, CZT and coherent integration operations, where NF
is the number of all possible values of F .

D. REVIEW OF RFT
RFT searches jointly along velocity and range domains [19]–
[21]. Coherent integration is executed for each possible value
of searching velocity v̂ as follows.

z(t̃, v̂) = IFFT
f

[
Z(f, v̂)

]
(12)

where Z(f, v̂) is defined by the following expression

Z(f, v̂) =
∑
n

Y (f, n) exp
[
j2π(f + fc)

2v̂

c
Trn

]
(13)

Expression (12) yields maximum coherent integration am-
plitude when the searching velocity is equal to the true
velocity, i.e. v̂ = v.

To reduce complexity, it has been proposed to search by
using CZT [21] . Velocity can be searched by finding the
integer k such that v̂ = k∆v where ∆v is the velocity search
resolution. CZT of Y (f, n) can be expressed as

Z(f, k) = CZT
n

[
Y (f, n)

]
=
∑
n

Y (f, n)A−nWnk
f .(14)

FIGURE 3. RFT detector employing CZT.

Thus, RFT employs CZT for searching velocity by set-
ting CZT parameters as Wf = exp

[
j2π(f + fc)

2∆v
c Tr

]
and A = 1.

Coherent integration output can be obtained by taking
IFFT of CZT output along f :

z(t̃, k) = IFFT
f

[
Z(f, k)

]
(15)

The block diagram corresponding to the RFT detector is
depicted in Fig. 3. Coherent integration is performed after
executing CZT of the matched filter output.

III. LOW COMPLEXITY KT AND RFT UTILIZING CZT
In the following subsections, we propose to reduce computa-
tional load of executing repeated CZT and benefit from it in
KT and RFT implementation. For this purpose, KT and RFT
implementations need to be expressed as procedures which
employ repeated CZT. KT has already been presented in this
form as depicted in Fig. 2. On the other hand, existing RFT
implementations do not utilize repeated CZT. Consequently,
a modification of standard RFT implementation is required so
as to take advantage of the fast execution of recurrent CZT.
In section III-A, we offer a modified RFT implementation
which references the same formulation as KT does in Fig. 2.
Afterwards, an efficient method to execute repeated CZT is
offered in III-B.

A. NOVEL RFT IMPLEMENTATION EMPLOYING CZT
RECURRENTLY
Matched filter output in the slow time - range frequency
domain can be reexpressed by substituting (2) in (3):

Y (f, n, F ) = P (f)
2

exp
[
− j2π(f + fc)

2R0

c

]
exp

[
− j2π(f + fc)

2vres
c

Trn
]

exp
[
− j2πFαfn

]
.

(16)

It is clear that Doppler ambiguity can be compensated
using following expression

Yc,RFT (f, n, F ) = Y (f, n, F )CRFT (f, n, F ), (17)

where Doppler ambiguity compensation factor can be defined
as

CRFT (f, n, F ) = exp
[
j2πFαfn

]
. (18)

Then, Doppler ambiguity corrected output can be repre-
sented as
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Yc,RFT (f, n, F ) = P (f)
2

exp
[
− j2π(f + fc)

2R0

c

]
exp

[
− j2π(f + fc)

2vres
c

Trn
]
. (19)

Instead of searching all possible values of velocity, we can
first compensate the ambiguity and search only residual ve-
locity if the Doppler ambiguity factor F is known. Residual
velocity index k can be searched by employing CZT:

ZRFT (f, k, F ) = CZT
n

[
Yc,RFT (f, n, F )

]
, (20)

where CZT parameters are set as given in II-D. Coherent
integration of the CZT output given in (20) has maximum
amplitude when the searching residual velocity is equal to
the true residual velocity, i.e. vres = k∆v.

When the ambiguity factor is not known, it can be esti-
mated by finding coherent integration outputs for all possible
values of the ambiguity factor F , and choosing the one that
produces the highest-magnitude peaks. Coherent integration
output can be obtained by the following expression

zRFT (t̃, k, F ) = IFFT
f

[
ZRFT (f, k, F )

]
, (21)

where k is the search velocity index.
In summary, both KT and RFT implementations have

been represented by single formulation to utilize recurrent
executions of CZT. It can be noticed that expressions (8),
(9), and (11) given for KT are equivalent to (17), (20), and
(21) given for RFT. Similarly, Fig. 2 can be used to represent
the block diagram to implement RFT employing NF times
repeated CZT operations. Doppler ambiguity compensation
factors and CZT parameters are the only differences between
two implementations.

B. PROPOSED METHOD FOR EFFICIENT
IMPLEMENTATION OF RECURRENT CZT
As shown in previous sections, KT and RFT can be im-
plemented by repeating Doppler ambiguity correction and
CZT operations respectively for all possible values of F .
We can employ two tricks in order to reduce computational
complexity of these implementations:

1) To eliminate the multiplication for Doppler ambi-
guity correction, we can set complex starting point
of CZT as a function of f and F . We take
Af (F ) = exp

(
− j2πFαf

)
for RFT and Af (F ) =

exp
(
j2πF/αf

)
for KT.

2) Implementation of CZT can be modified such that
repeating CZT for different values of parameterAf (F )
requires less complexity as explained below.

CZT of the matched filter output Y (f, n) can be evaluated
for each value of F repeatedly as:

Z(f, k, F ) =
∑
n

Y (f, n)[Af (F )]
−n
Wnk
f . (22)

FIGURE 4. Modified implementation of CZT using FFT operations.

FIGURE 5. Proposed implementation of KT and RFT employing recurrent
CZT operations.

For the second trick, we can substitute following expres-
sions in (22):

[Af (F )]
−n

= [Af (F )]
k−n

[Af (F )]
−k (23)

Wnk
f = W

n2+k2−(k−n)2

2

f . (24)

Z(f, k, F ) = [Af (F )]
−k
W

k2/2
f∑

n

W
n2/2
f x(n)W

−(k−n)2/2
f [Af (F )]

k−n

(25)

Z(f, k, F ) can be represented as a convolution:

Z(f, k, F )=[Af (F )]
−k
W

k2/2
f

∑
n

uf (n)vf (k − n, F )

Z(f, k, F )=[Af (F )]
−k
W

k2/2
f

[
uf (n) ∗ vf (n, F )

]
(26)

where uf (n) = W
n2/2
f Y (f, n), vf (n, F ) = W

−n2/2
f [Af (F )]

n

and ∗ denotes convolution operation.
Convolution can be performed using FFT and IFFT opera-

tions as follows.

Z(f, k, F )=[Af (F )]
−k
W

k2/2
f

IFFT
n

[
FFT
n

[uf (n)]FFT
n

[vf (n, F )]
]

(27)

CZT can be implemented by employing (27). Block dia-
gram of the modified CZT implementation is depicted in Fig.
4.

After applying aforesaid two maneuvers, a modified im-
plementation of KT and RFT employing recurrent CZT op-
erations is obtained as shown in Fig. 5. Since the prestored
values of FFT of W−n2/2

f [Af (F )]
n can be used, only one

IFFT will be required to be repeated. On the other hand, one
FFT and one IFFT must be repeated for each value of F
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in KT and RFT implementations employing standard CZT
depicted in Fig. 2.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS
Table 1-4 show steps of modified and standard KT and
RFT implementation methods and number of complex mul-
tiplications required for each step, where M is the number
of range bins in PRI, N is the number of pulses to be
integrated, Nv is the number of searched velocities, NF is
the total number of ambiguity factors and K is the number
of search residual velocities. K is assumed to be an integer
such that Nv = KNF . For simplicity of analysis, we define
J = Nv +N , and T = K +N .

TABLE 1. Computational complexity analysis of standard KT implementation
utilizing CZT

Step Processing Number of complex
multiplications

Obtaining MN -point complex
Y (f, n) multiplication and N groups MN + MN

2
logM

of M -point FFT
Ambiguity NF groups of MN -point NFMN

compensation complex multiplication
CZT over n NF repetition of M groups

of N -point CZT 2NFMNlog2N
of N -point input

IFFT over f NF repetition of N groups NF
MN
2

logM
of M -point IFFT

TABLE 2. Computational complexity analysis of proposed KT implementation
utilizing CZT

Step Processing Number of complex
multiplications

Obtaining MN -point complex
Y (f, n) multiplication and N groups MN + MN

2
logM

of M -point FFT
CZT over n NF repetition of M groups

of N -point modified (NF + 1)MNlog2N
CZT of N -point input

IFFT over f NF repetition of N groups NF
MN
2

logM
of M -point IFFT

TABLE 3. Computational complexity analysis of standard RFT
implementation utilizing CZT

Step Processing Number of complex
multiplications

Obtaining MN -point complex
Y (f, n) multiplication and N groups MN + MN

2
logM

of M -point FFT
CZT over n M groups of Nv -point MJlogJ

CZT of N -point input
IFFT over f N groups of M -point IFFT MN

2
logM

Table 1 and Table 3 demonstrate step-by-step computa-
tional complexities of standard KT with CZT and standard
RFT with CZT, while Table 2 and Table 4 demonstrate step-
by-step computational complexities of proposed KT with
CZT and proposed RFT with CZT, respectively.

TABLE 4. Computational complexity analysis of proposed RFT
implementation utilizing CZT

Step Processing Number of complex
multiplications

Obtaining MN -point complex
Y (f, n) multiplication and N groups MN + MN

2
logM

of M -point FFT
CZT over n NF repetition of M groups

of K-point modified M
(NF+1)

2
T logT

CZT of N -point input
IFFT over f NF repetition of N groups NF

MN
2

logM
of M -point IFFT

The total number of complex multiplications is given in
Table 5 for modified and standard KT and RFT implementa-
tions.

TABLE 5. Number of complex multiplications for algorithms

Algorithm Number of complex multiplications
Standard

KT MN

[
1 +

(NF+1)
2

logM +NF (1 + 2 log 2N)

]
Proposed

KT MN

[
1 +

(NF+1)
2

logM + (NF + 1)log2N

]
Standard

RFT M

[
N + (N logM + J log J)

]
Proposed

RFT M

[
N +

(NF+1)
2

(N logM + T log T )

]

The computational complexity advantage of the proposed
KT and RFT implementations compared to standard imple-
mentations [21] [22] over NF are given in Fig. 6 where
we set M = 512, N = 4, Nv = 1024. The proposed
implementation of KT reduces the number of complex mul-
tiplications for moderate and high values of NF by a factor
of 1.5. The proposed RFT implementation requires less than
half of the number of complex multiplications as required by
the traditional one for moderate values of NF . On the other
hand, the proposed RFT implementation is unfavorable for
very high values of NF .

In addition, the effect ofN on the computational complex-
ity has been examined. The proposed KT implementation is
more advantageous as N increases, whereas the proposed
RFT implementation becomes adverse.

It is also observed that the proposed RFT is usually com-
putationally more efficient when NF is close to K.

The computational complexities of the above four methods
as a function of Nv are given in Fig. 7 for M = 512, N = 4,
NF = K . The figure shows that the proposed RFT and KT
implementations demand lower computational costs than the
conventional ones.
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FIGURE 6. Computational complexity advantage of proposed KT and RFT
implementations compared to standard implementations over NF .

FIGURE 7. Number of complex multiplications required by implementations
as a function of Nv when NF = K.

V. SIMULATION RESULTS
An example is presented to show the integration performance
of the proposed method is the same as the existing method.
Radar parameters are set as follows: Carrier frequency fc =
3 GHz, bandwidth B = 10 MHz, sampling frequency is 10
MHz, pulse width is 100 µs, pulse repetition interval Tr =
0.5 ms.

Other simulation parameters are given as follows:
R0=60km, v=500m/s, Nv=800, NF=8, K=100, M=5000,
the single-sample SNR after matched filtering is 0dB. Fig.
8 shows coherent integration result of proposed RFT imple-
mentations. The maximum differences between normalized
coherent integration output results of standard and proposed
implementations are 1.08×10−12 for RFT and 1.65×10−12

for KT. That is, they are identical within the numerical
precision tolerances offered by the computers used.

VI. CONCLUSION
In this paper, a computationally efficient implementation was
proposed to perform repetitive application of CZT which are
characterized by different starting points and with the same
angular spacing on the spiral contour. It is shown that the
computational complexity of KT can be reduced without any
performance degradation utilizing this proposed technique.

FIGURE 8. Coherent integration result of proposed RFT implementation.

Furthermore, a novel implementation of RFT employing
repetitive CZT was proposed. Consequently, it was shown
that the novel RFT implementation utilizing the proposed re-
current CZT method demands less computation cost without
sacrificing integration performance in certain cases. Finally, a
numerical simulation is provided to show that the integration
performance is unchanged.

Both KT and RFT implementations proposed in this pa-
per are more favorable when there is Doppler ambiguity.
The proposed KT implementation is more advantageous for
higher number of pulses to be integrated and higher number
of possible ambiguity factors. The proposed RFT implemen-
tation is computationally efficient when a low number of
pulses are integrated which is commonly encountered for low
PRF mode due to limited integration time and the searching
ambiguity factor number NF is not too high.

Future studies will explore further reducing the computa-
tional complexity of the proposed algorithm without repeat-
ing CZT for Doppler ambiguity search.
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