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Abstract: The prevalence and nonstop evolving technical sophistication of exploit kits (EKs) is one of the most
challenging shifts in the modern cybercrime landscape. Over the last few years, malware infections via drive-by download
attacks have been orchestrated with EK infrastructures. Malicious advertisements and compromised websites redirect
victim browsers to web-based EK families that are assembled to exploit client-side vulnerabilities and finally deliver
evil payloads. A key observation is that while the webpage contents have drastic differences between distinct intrusions
executed through the same EK, the patterns in URL addresses stay similar. This is due to the fact that autogenerated
URLs by EK platforms follow specific templates. This practice in use enables the development of an efficient system
that is capable of classifying the responsible EK instances. This paper proposes novel URL features and a new technique
to quickly categorize EK families with high accuracy using machine learning algorithms. Rather than analyzing each
URL individually, the proposed overall URL patterns approach examines all URLs associated with an EK infection
automatically. The method has been evaluated with a popular and publicly available dataset that contains 240 different
real-world infection cases involving over 2250 URLs, the incidents being linked with the 4 major EK flavors that occurred
throughout the year 2016. The system achieves up to 100% classification accuracy with the tested estimators.
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1. Introduction
Cyberattacks have been threatening Web visitors ever more with the widespread use of the Internet and exploit
kits (EKs) have become one of the most disruptive weapons for Internet crimes. The emergence and prevalent
use of EK infrastructures is one of the most dangerous developments in the cybercrime space according to
one report.1 EKs exhibit the current state-of-the-art crimeware that is capable of running in an automated
fashion, achieving large-scale infection, and providing remote access. Therefore, the EK phenomenon is among
the principal concerns of many security researchers and practitioners today.

In recent years, EKs have been progressively utilized for system compromise and malware propagation.
These serve various types of malicious content via spear-phishing and drive-by download attacks, in which a
payload is executed on user systems after a client-side vulnerability is exploited [1]. The drive-by download
technique has had dramatic advancements in the past couple of years. Previously, malicious webpages were
generated quickly in a simple manner. Then they evolved into frameworks, and today sophisticated attack tools
∗Correspondence: emre.suren@metu.edu.tr
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1https://blog.malwarebytes.com/cybercrime/2013/02/tools-of-the-trade-exploit-kits/
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known as EKs are on the scene. EK mechanisms automate the infiltration process and command and control
facility of a massive number of vulnerable machines and today they have become responsible for the majority
of client-side attacks affecting Web visitors. The most common application on Internet-enabled devices is Web
browsers, which are hot targets for EKs to infect the victim’s system with a malware, and after exploiting a
vulnerability, hackers usually steal information (e.g., credit card numbers) to directly use or encrypt private
data of the user (e.g., text documents), then ask for a ransom to enable the decryption routine. Even worse, the
compromised devices can become slaves leveraged to attack other systems without any notice. While the primary
kind of attack launched through EKs is drive-by download, click-fraud (AdFraud) and cryptocurrency-mining
are also hot alternatives.

The illustration in Figure 1 is a high-level overview of attacks based on an EK structure that contains
5 essential steps. Attackers utilize three major threat vectors for large-scale malware distribution, which are
compromised webpages, malicious advertising (malvertisement), and malicious spam (malspam). This is known
as a campaign and victims are drawn towards EKs by campaigns. Particularly, today the greater part of
campaigns leverage compromised webpages to direct the target systems to an EK. Social networks and search
term poisoning techniques are still highly utilized to quickly disseminate the infecting URLs throughout the
Internet. There is an additional layer between campaigns and EKs known as a gate or traffic redirection system
(TDS), which is deployed to transfer victims from campaigns to EKs. According to the victim profile, the EK
infects the target system with a proper malware.

Campaign Gate Landing Exploit Payload

Trap Traffic 

Redirection

Profile 

Victim

Exploit 

Vulnerability

Deliver 

Malware

Figure 1. Five phases of EK infection chains.

A great deal of security research in the past decade has been dedicated to detecting standalone pieces
of malicious code. The high number of infection cases and the high rate of changes in the malicious webpage
ecosystem urged security practitioners to develop automated analysis systems, known as honeyclients [2–7].
These visit webpages and analyze the behaviors to detect the malicious ones. High-interaction honeyclients are
instrumented virtual machines that contain real Web browsers. They visit webpages and subsequently collect
artifacts on the operating system. In the case of exploitation, the instrumentation software notices newly
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spawned processes, opened network connections, manipulated files, or registry entries and thus detects the
attack. The output of the inspection is usually the blacklisted URLs and IoCs that are fulfilled by host-based
IDS/IPS or EDR technologies. The critical point about high-interaction systems is that understanding whether
there is an infection or not is relatively easier, possibly even for zero-day, but realizing the origin of the attack
(e.g., attack platform and intrusion techniques) is quite difficult. Low-interaction honeyclients are instrumented
with a headless browser that are usually wget, curl, PhantomJS, HtmlUnit, Selenium, or a custom-implemented
Web client. They retrieve webpages and subject them to static and dynamic analysis of the Web content. The
output of examination is usually the signatures for both the URLs and Web content that will be usable by
Web content filtering systems. The vital point about low-interaction systems is that, while relatively very quick
analysis is provided, HTML parsers and JavaScript interpreters are not as capable as real web browsers and
malicious code usually targets them to break execution (e.g., invalid HTML tag), and correspondingly analysis.

Today, organized cybercrime on the Web is propagating via EKs, which smoothly evade traditional
analysis systems. IDS/IPS and Web gateway security vendors focus on the EK complication to keep their
signature database up-to-date by analyzing such network traffics. First, they usually develop regular expressions
to detect infecting contents or just blacklist the URLs. On the other hand, creating a new unique signature
takes time and effort, since the signature has to be able to match all variants of the EK family while not blocking
benign webpages. However, it is not possible to find examples of the new samples at the first try. Secondly,
signature-based inspection technologies require extensive maintenance in order to keep up-to-date rules against
even minor changes in EK families. Therefore, due to the excessive number of signatures, those systems are not
convenient for frequently changing environments.

Nowadays, security research centers sporadically capture network packets consisting of exploit and mal-
ware by utilizing honeypot mechanisms for early intelligence purposes. In order to get notified about zero-day
threats as soon as possible, they plant as many trap systems as possible, which results in a huge volume of
network traffic for analysis. However, traditional systems are not suitable for large-scale analysis in a reasonable
amount of time. That is why researchers favor machine learning for threat intelligence in these times.

Most previous academic work [8–11] focused on the server-side source code of the EK families and
conducted static source code analysis mostly on PHP code. While the EK families they analyzed leaked behind
the scenes, the current EK families that we analyzed are not leaked online yet. The latter debates [12, 13, 15]
involve machine learning to detect EK traffics from webpage content that are behind the attacks; however,
content inspection consumes too many resources and have high time complexity. In addition, although binary
classification as malicious or benign still dominates the literature today, it falls short of providing efficient threat
intelligence, since the severity of each EK (exploited vulnerability, distributed malware, etc.) is not the same.
More precisely, not all EKs are prevalent at the same time and not every EK is the same in terms of sophistication
and posed danger. Therefore, EK family categorization is inevitable for advanced threat intelligence and the
proposed system should be able to identify changes in EK-based attacks efficiently.

The purpose of this research is to recognize the network traffic of the state-of-the-art EK families efficiently
with honeypot traffic analysis to simplify the work of security analysts. This study comprises the design,
development, and evaluation of an efficient and original categorization method based on machine learning
techniques. Experiments with real-world incidents demonstrate that the proposed models are highly efficient in
categorizing EK families. The assessment shows that the stable classifier, I see EK (IsEK), yields an accuracy
rate of at least 91.6%. The produced system relies on URL analysis rather than content inspection where novel
URL features were introduced.
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Accurately categorizing similar HTTP activities that belong to prevalent EK families is an important
task for a number of reasons. If the assignment process is executed regularly for particular intervals, the classes
that have the highest number of incidents indicate the EK families becoming prevalent. This enables researchers
to abandon studies on discontinued EKs. It is also known that signature-based techniques turn off the rules
related to unused attacks in order to achieve better performance. In addition, tracking the new attack and
evasion techniques utilized by the attackers as closely as possible brings invaluable adversarial understanding.
In this way, protection systems could be tuned better to make Internet visitors safer.

The exceptional elements of our approach are primarily related to the data source we utilize: we engage
a real data source rather than generating our own. The data corpus is publicly available and stored in network
packet captures (pcap). The data collected in a period of one year in 2016. The collection consists of real-world
infections from 4 prevalent live EK families. To the best of our knowledge, there is no publicly released research
that analyzes the EK traffic that occurred throughout 2016. The network traffic of malware infections through
EKs is captured by deliberately accessing the malicious Web sources with real systems rather than relying on
honeyclients.

The rest of this paper is organized as follows. A discussion of the literature and challenges is provided
in Section 2. A comprehensive technical explanation of the methodology including experimental design (e.g.,
sampling strategy), feature selection details, and implementation (e.g., cross-validation of the classifiers) appears
in Section 3. In Section 4, the developed classifiers are evaluated and compared, and then analysis of the results
is presented. Finally, the paper is concluded in Section 5 with future study opportunities.

2. Related work
The first studies on EKs focused on analysis of the source code of EK families, in which researchers installed
EKs from sources to their lab environment for inspection. The dataset contained in each work is partially
common, covering different sets of EKs and back then frequently prominent ones.

Grier et al. [8] conducted a study on the emergence of the “Exploit-as-a-Service” model for the drive-by
download landscape. Their dataset contained 77,000 malicious URLs taken from Google Safe Browsing and a
blacklist provider. According to their research results, in total, over 10,000 unique executable files were delivered
and dynamic analysis of those binaries led to 32 families of malware. In addition, several prominent types of
malware are delivered even by an individual EK.

Kotov and Massacci analyzed the source code of 30 (partly inactive) different EK types to understand
major behaviors and operational skills [9]. The preliminary analysis indicated that the major functionalities of
EKs are managing exploits, evading detection mechanisms, and command and control. The manual examination
concluded that 82% of the EKs apply obfuscation techniques. A handful of well-known vulnerabilities are
targeted rather than launching zero-day exploits or sophisticated attacks.

Allodi et al. performed experiments via MalwareLab with the source code of 10 EKs to reveal the
resilience to changes of targeted systems, particularly the operating system, browser, and plug-ins [10]. They
deployed EKs in a controlled sandbox environment and found that some EK frameworks support the latest
exploits, where cybercriminals achieve a higher infection rate in a small amount of time at the expense of short
appearance on the market. On the other hand, some EK families prefer to serve more stable exploits, where
attackers get a lower but steadier infection pace over time.

De Maio et al. executed an analysis, PExy, on the source code of over 50 EKs in 37 families to recognize
the conditions that make redirections to certain exploit and malware samples [11]. They also worked with EKs
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in offline mode in their laboratories and via automated static source code analysis, where they produced all
combinations of HTTP request parameters (in particular URL and User-Agent) that cause an EK to trigger
an infection. Their goal was to achieve as many different types of exploits as possible and to reveal a potential
zero-day exploit, if one existed. In this way, they retrieved 279 exploit samples including variants. They also
understood the internals by showing that most of the EKs reuse source code from other EKs and even a new
EK usually is based on another EK.

While accessing the source code of the current EKs is not realistic, getting the EK network traffic could
be feasible. Therefore, detection of EK network traffic is vital today. The following studies involved machine
learning or statistics to detect EK traffic behind the attacks and our study also focuses on EK families from
this perspective.

Eshete and Venkatakrishnan [12] analyzed samples of 38 EKs with WebWinnow and identified content
and structural features to model a set of classifiers. They locally installed EKs in a controlled setting and partly
supported the dataset with 11 live EKs that were reported by the URLQuery2 service. They labeled all URLs
as EK rather than EK families. Their model was built with 500 benign and 500 EK URLs to detect EK traffics.
They trained the binary classifier with 1117 benign and 512 EK URLs. The final objective of WebWinnow
converges with PExy, which is to reinforce existing detection systems.

Taylor et al. developed a method to categorize EK flavors by detecting structural patterns in HTTP traffic
[13]. Initially, they represented interactions between the victim browser and EK servers as known EK trees.
In the detection process, their model builds a candidate tree from the request-response pairs of new infections
and finds similar EK products with the weighted Jaccard index. During the analysis period, they built their
own dataset by capturing 3800 h of real-world traffic via a honeyclient, which includes 28 EK instances. The
comparison with the state-of-the-art techniques showed that while the system gets similar true positive rates, it
reduces false positive rates by four orders of magnitude. The details of the patented application were discussed
in Taylor’s dissertation [14].

Stock et al. offered a prevention mechanism, Kizzle, in contrast to previous studies, which was specifically
designed to identify four major EKs (Angler, Rig, Nuclear, SweetOrange) as they evolve over time and produce
signatures that can be applied to antivirus engines or plug-ins of a Web browser [15]. The main objective is
to autogenerate host-based structural signatures by the DBSCAN machine learning algorithm within hours for
detecting superficial but frequent changes. They also observed that all JavaScript code served by EKs applies
obfuscation and EK families reuse exploits from each other. While the packed view of the JavaScript code
is unique across incidents, unpacked code is quite common (e.g., actual fingerprinting and CVE code). They
generated the dataset in a 4-week period in August 2014. The evaluation showed that the false negative rates
are under 5%, while false positive rates are under 0.03%.

There are also some studies where authors perceived the EK phenomenon differently from particular
angles. Jayasinghe et al. [16] detected drive-by download attacks at runtime using lightweight dynamic analysis
of the byte code stream generated by a Web browser during page content execution. They collected their dataset
from forums that publish new URLs, which deliver malware. The approach extracted Opcode call sequences as
features from the JavaScript engine of the Web browser, which generates Opcodes as a part of the rendering
process for each webpage. They utilized naive Bayes, support vector machines (SVM), and decision trees as
binary classifiers and SVM achieved the best score with almost 95% accuracy. Nappa et al. [17] identified drive-
by download attacks by clustering exploit servers belonging to 2 different EKs based on 7 features related to the

2urlquery.net
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served exploits and distributed malware. They utilized two clustering algorithms, which are partitioning around
medoids and an aggressive clustering algorithm. According to the analysis, they observed a highly polymorphic
ecosystem, where both exploit and malware files were packed differently in order not to be detected from the
same file hash. They also made their generated dataset available to academic researchers. Sood et al. [18]
conducted a comparative study for 10 EKs and found 3 victim profiling methods, which were based on user-
agent fingerprinting, HTML document object model (DOM)-based fingerprinting, and IP-based geolocation
tagging. There were 4 JavaScript-based attack techniques for drive-by download, which were obfuscation,
redirection, content injection on the fly, and the domain address generation algorithm (DGA). Takata et al.
[19] proposed a method, MineSpider, which analyzes JavaScript code relevant to browser fingerprinting and
redirection functionality, then reveals URLs in the webpage by executing the extracted redirection code with the
Rhino JavaScript interpreter. MineSpider was implemented in a browser emulator, HtmlUnit, that can emulate
an Internet Explorer 6 browser on Windows XP SP2 and the Java Runtime Environment (JRE), Acrobat PDF,
and Flash Player browser plugins for automatically extracting URLs from webpages independently from the
analysis environment. Their malicious dataset contained over 19,000 URL addresses and was captured during
a 3-year period with the high-interaction honeyclient Marionette. MineSpider extracted 30,000 URLs in a few
seconds by applying program slicing to JavaScript code inside the malicious webpages that were previously
detected as drive-by download attacks from 9 EK families. Aldwairi et al. [20] tested 23 machine learning
classifiers using a dataset of 5435 webpages containing drive-by download attacks and based on the detection
accuracy they selected the top five to build the detection model. They extracted 26 content features without
executing the webpage and reduced the feature vector size to 15. The bagged trees binary classifier achieved
the highest accuracy with 90%. The disadvantage of the study is that although malicious content is triggered
via JavaScript, they do not render page content. The method provides execution time gains; however, essential
dynamic features are not considered. Jagannatha [21] proposed a two-layer detection scheme for EKs and
processed a Bro-IDS HTTP log of 1000 samples generated by a third party in 2012. Naive Bayes was applied
for binary classification and then K-means was utilized for clustering EK families. The 36 features were reduced
to 6 attributes and achieved 99% supervised and 75% unsupervised accuracy for 400 reserved samples. While
this research does not work with network traffic, it relies on quite basic features, does not benefit from structural
patterns in URLs, and ignores content features. Sandnes [22] extracted the URL addresses from the output of
an IDS for EK activity detection. The system can detect the sample as either benign or malicious rather than
detecting the EK family. A custom dataset was built for experiments by relying on the domain addresses, which
were previously associated with an EK activity and triggered IDS alerts related to EK signatures. The SVM,
random forest, and naive Bayes classifiers were utilized with 9 features, where random forest achieved the best
accuracy with 97%.

As the source codes of the recent EKs are not available to the public yet, in our previous study, with
Know Your EK [23], the webpage contents of EK families were explored, and our current research focuses on
URL components of EKs. The present work, using IsEK, is similar to the latest three studies [12, 13, 15], which
tried to distinguish between EK types using HTTP traffic. The approach in Kizzle [15] is closer to ours, where
the EK families appearing in the evaluation significantly overlap with our EK set. On the other hand, that
feature set is only based on page content and the authors reported that their clustering approach inherently
requires large amounts of data. Some aspects of WebWinnow [12], such as the use of URL features, are also
similar to IsEK. Unfortunately, WebWinnow requires a sandbox environment to extract basic content features
and it is not easy to build an identical one for fair comparison. In addition, the honeyclient technology usage
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in WebWinnow breaks scalability. However, we base our methodology on lightweight analysis with machine
learning and utilize simple mathematical calculations and avoid using regular expressions while extracting URL
features. Moreover, our method relies on multifamily classification, which is more informative when compared
to their favored binary classification. In a nutshell, the proposed technique performs faster and is scalable via
customized machine learning algorithms and does not require massive data. The developed models are accurate,
achieving over about 91% for 3 supervised algorithms (KNN, SVM, GBC), which is evidence that our approach
is estimator-independent. It is important to note that only URLs are leveraged to achieve such a capability.

3. Methodology

Previously, our approach involved context-aware content analysis [23] of the EK-based cases stored in pcap files.
There are two key discoveries about EK characteristics. First, each EK has a similar work flow for malware
delivery as illustrated in Figure 1. More precisely, infections contain 5 elements: the campaign, gate, landing
page, exploit, and malware. Second, each component in an infection chain follows particular templates. For
instance, the length of URLs fall within specific boundaries, URLs contain a peculiar number of query keys,
and their values have tailored formats.

The innovation in this study is leveraging the overall URL patterns embedded in HTTP interactions
between EK servers and victim machines. Specifically, instead of analyzing each URL independently, the goal is
to inspect all URLs, which are posted automatically after one click and without any user consent, together. The
structures in the work flow allow to characterize EK flavors to a certain extent. After evaluating the statistical
differences of the URLs of the entire infection chains, we were able to design distinguishing features for each
EK family. Conclusively, the approach takes advantage of machine learning techniques for the discrimination of
network traffics that belong to EK-based infections. In this sense, the proposed method differs from two similar
studies: the system in [12] that combines both URL and content features with binary classification methods
and the work of [15] that only analyzes Web contents individually.

3.1. Data sources
Access to real-world EK data is usually restricted to companies, government agencies, and research institutions
that have had their systems intentionally exposed to these attacks, not made available publicly. To the best
of our knowledge, Kafeine3 and Bradly Duncan4 are the top contributors of open-source EK research data.
Kafeine is usually the first expert who realizes totally new types of campaigns and EK families. The major
contribution of Bradly Duncan is the captured network traffic files, which are shared on his website. On the
other hand, generating our own data corpus may seem to be another option. Although it is not impossible,
the task is quite difficult with some drawbacks. The advantages of using a community-driven data corpus over
generating our own are that it enables proof of the study quality, provides acceptability by a larger audience,
opens doors for future researchers to compare their own results, and offers high quality in the data utilized. To
this end, the primary data source of this study is the full packet captures shared by Bradly Duncan, which is an
advantage of the introduced study, while other researchers depend on private datasets. The origin of the traffic
are incidents that have resulted in malware infection after exploiting a client-side vulnerability through various
EK products. The network captures are stored in the industry standard pcap file format and are available via
the public website. It is crucial that all samples were generated during 2016; hence, this study totally represents
one year, which is also another exclusive aspect when compared to other studies. The EKs exhibit a significant

3malware.dontneedcoffee.net
4malware-traffic-analysis.net
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evolution in a longer period of time, which makes detection difficult. We also include a data corpus5 shared
from a website for testing purposes.

The network traffics were sniffed while intentionally visiting the compromised webpage that causes mal-
ware infection through an EK at the end. The communication between the victim system and EK infrastructure
is provided via real operating system and real browser personalities, contrary to the mentioned related work
that usually relies on honeyclients.

It is imperative that such a study conduct offline analysis, since campaigns and hosted pages by EKs
quickly disappear. In addition, offline analysis provides two benefits, which are repeatable experiments and
acknowledgment of a broad audience. On the contrary, online analysis is not as dependable, since EK behaviors
usually depend on client profiles and the EKs do not give the same response for every request. While exploits
and malware change according to the victim environment, EKs present benign behaviors for certain end-user
platforms. Therefore, while a researcher gets an infection, some others could get normal Web browsing. In that
case, the evaluation and comparisons would not be fair.

3.2. Processing pcap files

We utilized two widely common tools to process pcap files in order to cross-check the results of one with the
other. First, the Tshark library that is the command line interface behind the well-known network packet
capture and analysis tool Wireshark6 was utilized. The second tool executed is Bro7, which was developed and
maintained by the International Computer Science Institute at the University of California at Berkeley and
supported by the US National Science Foundation (NSF). The objective is extracting HTTP traffic (URL and
related metadata) and HTTP files, and assigning general labels to each URL. Although we focus on just URLs,
the page contents were also extracted in order to be sure there is really a malware infection after exploitation.

3.3. Label confirmation
First, although the dataset provider is definitely reliable, all pcap files were manually analyzed and labels were
confirmed. The training dataset comprises all the incidents that happened throughout 2016 and the total
number of pcap files is 189. There are 30 incidents containing malicious spam (malspam), which are outside
the scope. The EKs that have a small number of incidents such as Sundown EK (5), Magnitude EK (3), and
KaiXin EK (2) were removed. There is one pcap file that has an infection from both Angler and Rig, which
was discarded. Finally, 4 pcap files were also removed, where they contained EK-data-dump, Dridex, ISC-diary,
and a malicious Android application. In total, 45 pcap files were discarded and the remaining set contains 144
infections from Rig, RigV, Angler, and Neutrino EK families that correspond to 1456 URLs. The test dataset
covers the incidents that also happened during 2016. The total number of pcap files here is 96. The infections
belong to Rig, RigV, and Neutrino EK flavors that involve 818 URLs.

The pcap files that contain corrupted HTML, exploit, or malware files due to several reasons (e.g., network
fragmentation) were not discarded, although we are not able to recover them with industry standard tools by
default settings, since we wanted to validate that the incidents under investigation execute at least one exploit
and malware. In addition, we consider only the URLs in the infection chain rather than page contents; thus,
there is no problem with invalid files.

5broadanalysis.net
6www.wireshark.org
7www.bro.org
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3.4. A preliminary manual analysis of EKs

A URL address is a string that is placed to access resources hosted on the Web. There are three logical parts
in a URL, which are hostname, path, and query, as shown in Table 1.

According to our key observations through manual EK analysis, there are significant structural patterns
across EK infections. First, an attack usually starts with a campaign page, where the URL address does not
contain a path or query parts. Next, the landing page, exploit, and malware files are served from the same
domain address and frequently the URLs are relatively long. Finally, after malware is executed on the victim
system, a reverse connection is established for command and control (C&C) activity via a third domain address
that contains just a path in the URL without a query field.

Table 1. Logical characterization of a URL.

URL Format <domain name>.<top level domain>/<path>/<query>
Sample URL abc.mydomain.com/path1/path2/page.html?param1=val1&param2=val2
Hostname abc.mydomain.com
Path /path1/path2/page.html
Query ?param1=val1&param2=val2

The dominant characteristics of Neutrino EK infections are that the lengths of the URLs are not very
long and not very short, URLs usually do not have a query part, and the path segment includes many dash
characters. The incidents also have two specific characteristics. First, some chains start with a URL without
any path or query, then follow 4 URLs from the same domain address that have only the path field. Some other
cases start with a URL ending with a JavaScript filename, then follow 4 URLs from the same domain address.
After that, one URL with a key-value pair in the query region appears, and finally one IP address is accessed
ending with a filename for the C&C process.

The dominant characteristics of Angler EK infections are that the lengths of the URLs are long, there
are at least several URLs per chain, URLs usually have many key-value pairs in the query part. The incidents
also have two particular characteristics. First, some chains start with a URL without any path or query, then
follow 5 to 7 URLs from the same domain address with or without path field, and after that a command and
control URL with a filename and key-value pair in the query segment appears. Second, while a set of the cases
contain many URLs for command and control purposes, the other cases access IP addresses with a filename.

The dominant characteristics of Rig EK infections are that the lengths of the URLs are long, including
many dashes or underscores. The chains start with a URL without any path or query, then sometimes follow
one or two URLs from the same domain address, where the first one has no filename but a path part. The next
URL has a filename with a path segment, followed by 3 or 4 URLs from the same domain address, where the
first one has no filename but a query field, and the next 2 URLs have a filename with a query region. Finally,
one IP address or domain is accessed, ending with a relatively short path for C&C efforts. Some versions of Rig
EK infections have a slight difference. The lengths of the URLs are long. The chains start with a URL without
any path or query, then follow 3 URLs from the same domain address, where the first one has no filename but
one key-value pair in the query part including many dashes or underscores. The next two URLs have a filename
with one key-value pair in the query field including many dashes or underscores. Finally, one IP or domain
address is accessed, ending with a relatively short path for C&C services.

The dominant characteristics of RigV EK infections are that the lengths of the URLs are long. The

3721



SÜREN et al./Turk J Elec Eng & Comp Sci

chains start with a URL without any path or query, following 3 or 4 URLs from the same domain address,
where URLs have no filename but 6 key-value pairs in the query parts including many dashes or underscores.
Finally, one IP address or domain is accessed, ending with a relatively short path for C&C functions.

Table 2. Sample infection from RigV.

Functionality URL address
Campaign joellipman.com/
Landing page add.ibeattheclockatticktock.com/?aqs=yandex.74p77.406f4y2&oq=CelqA8fMlKbsDOVbj3

BOJLQ1mz48OVAkWpP2uikLTzB_IhJeH9CW9UU4HupE&sourceid=yandex&es_sm=100
&q=z3rQMvXcJwDQDoTGMvrESLtEMU_OHkKK2OH_783VCZ39JHT1vvHPRAP2tgW
&ie=Windows-1251

Exploit add.ibeattheclockatticktock.com/?ie=Windows-1251&q=z37QMvXcJwDQDoTDMvrESLt
EMU_OH0KK2OH_783VCZz9JHT1vvHPRAPwtgWCel&es_sm=129&sourceid=chrome
&aqs=chrome.125x57.406a8x0&oq=qA8fMlKbsDOVbj3BOJLQBmz48OVAkWpP2rikLTz
B_IhJeH_CWMYgpD_6LWU7dt

Malware add.ibeattheclockatticktock.com/?aqs=edge.122a103.406k4r4&sourceid=edge&es_sm=91
&q=w3bQMvXcJxfQFYbGMvLDSKNbNkbWHViPxoyG9MildZ-qZGX_k7rDfF-
qoV_cCgWRxfE&oq=qfLZQNQHo3kHVeQMwyocLVVtA9vqo3UTQmkKYg5CE-
BzZZQhF-qKSELk93VzFkrFUcw&ie=UTF-8

C&C activity ffoqr3ug7m726zou.ihuk7s.top/0123-4567-89AB-CDEF-0123?iframe

In addition to the gained insights from the anatomic appearance of EK infections, we also identified
internal concrete structures in URLs. For the sake of clarity, we support our claim with an example contained
in the dataset as shown in Table 2. For this EK family, RigV, the landing page, exploit, and malware URLs
have a query part but do not have a path field. There are 6 key-value pairs in the query segment and their order
changes across URLs. While the query keys are also almost the same among different incidents, the values of
the keys are diverse, which are also almost unique among different incidents. More precisely, for this particular
infection, there is a 5-character key ‘es_sm’ and its value is a 2 or 3-digit integer (e.g., for exploit URL ‘129’).
There is a 9-character key ‘source_id’ and its value has a pattern that indicates the browser vendor (e.g., for
malware URL ‘edge’). There is a 2-character key (‘ie’) and its value (e.g., for landing page URL ‘Windows-1251’)
has a pattern that indicates the character encoding. There is a 3-character key ‘aqs’ and its value (e.g., for
exploit URL ‘chrome.125x57.406a8x0’) has a pattern that has the browser vendor, a dot, a two- or three-digit
number, a lowercase character, a two or three-digit number, a dot, a two or three-digit number, a lowercase
character, a digit, a lowercase character, and a digit. There is a 2-character key ‘oq’ and its value (e.g., for
malware URL ‘w3bQMvXcJxfQFYbGMvLDSKNbNkbWHViPxoyG9MildZ-qZGX_k7rDfF-qoV_cCgWRxfE’)
has a pattern that is a minimum of 60 and maximum of 67 characters in a mixed-case alphanumeric string
containing at least one dash or underscore special character. There is a 1-character key ‘q’ and its value (e.g.,
for exploit URL ‘z3rQMvXcJwDQDoTGMvrESLtEMU_OHkKK2OH_783VCZ39JHT1vvHPRAP2tgW’) has a
pattern that is a minimum of 59 and maximum 67 of characters in a mixed-case alphanumeric string containing
at least one dash or underscore special character.

3.5. Feature design
The integral issue is designing the attributes for the machine learning algorithms and coding them into numerical
values. The most obvious technique could be searching for the patterns mentioned above: for example, whether
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the given URL has 6 key-value pairs in the query part or whether the given URL contains a 5-character key
that has a two- or three-digit number. The aforementioned technique involves pattern searching that is usually
conducted with regular expressions. Such an approach is applied to detect just the target object, no less or
no more, to prevent an excessive search space. Therefore, we deduce that in order to be less affected by
the high potential changes in URL patterns, we should follow an intelligent approach that employs statistics.
Counting tokens, measuring lengths, and calculating minimum and maximum values appears to be the optimal
solution. Such mathematical operations are many times more efficient than pattern searching in terms of the
time consumed and speed of action.

For the dataset, with respect to quantifying the patterns in URLs, first we measure the path length, count
the path tokens, and calculate the maximum, minimum, and average of those tokens. Basically, in this way, a
20-character path that has one token is discriminated from a 20-character path that has five tokens. Secondly,
we apply the same logic to the query part, but the key-value pairs are computed separately. Likewise, in order
to differentiate EKs more reliably, counting the particular special characters, dashes, and underscores is also
taken into account to recognize the minor changes of EK families. The extracted features include the following:
path length, query length, count of path tokens, path minimum length, path maximum length, path average
length, path sum length, count of query key tokens, query key minimum length, query key maximum length,
query key average length, query key sum length, count of query value tokens, query value minimum length,
query value maximum length, query value average length, query value sum length, count of special characters,
count of URLs, and count of unique domain addresses.

A custom Python-based script was developed to extract features, especially statistics from the full URL
addresses. The feature design decision is based on the analysis drawn from the live EK families that are hosted
on the World Wide Web. The attributes were derived from 144 incidents of 4 distinct, currently dominant EK
flavors. After the labels of the dataset were manually verified, 20 features were extracted for each URL from
all infection chains. The output of the script is the actual dataset that will be subjected to machine learning
where classification algorithms are applied to enable processing for high speed and accuracy.

3.6. Preprocessing features

In order to build accurate machine learning models, the raw dataset was purified, as in the first try the algorithms
could not perform well. It is considered that transforming actual values of features into an explicit representation
could improve machine learning estimators. In this scope, four common scaling methods were evaluated, which
are the maximum and minimum scaler, standard scaler, standard normalizer, and binarizer. Experiments
showed that the standard scaler performs best on the training dataset.

3.7. Models and experiments

3.7.1. Environment and instruments
Using the features extracted on the sanitized dataset, the scikit-learn machine learning API [24] is adopted
to build classification models. Several classifiers have been tested; however some algorithms (e.g., linear and
logistic regression, stochastic gradient descent, decision trees, naive Bayes) are not well optimized. In this
study, we keep our focus on EK detection rather than the individual successes of machine learning algorithms,
as replacing machine learning algorithms is quite easier than designing a method for detection. Therefore, we
have selected 3 algorithms known for their high performance in terms of accuracy and execution time at the
preelimination stage, which are KNN, SVM, and GBC.
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Table 3. Dataset partitions for cross-validation.

EK Label # Infections # URLs
Angler 31 267
Neutrino 33 216
Rig 52 350
RigV 28 188
Total 144 1021

Table 4. Dataset partitions for testing set.

EK Label # Infections # URLs
Neutrino 35 221
Rig 55 386
RigV 6 41
Total 96 648

3.7.2. Hyperparameter optimization

Principally, machine learning methods follow formulations. KNN, SVM, and GBC have variables called hyper-
parameters, which could be tuned for better performance. In order to reach the capability limits of the methods,
the hyperparameters are optimized based on the training dataset. The same stratified 5-fold cross-validation
process is applied for all three algorithms in the optimization process.

3.7.3. KNN
The hyperparameter of KNN is k, which is the number of neighbors. The range for k is chosen as the odd
numbers between 1 and 15. For every value of the hyperparameter, 5-fold cross-validation is applied. The
optimum value of the hyperparameter k is 5.

3.7.4. SVM
The hyperparameter set for SVM is cost and class weight while the SVM kernel is linear. The hyperparameter
set for the SVM is cost, class weight, and gamma while the SVM kernel is rbf. For every value of the
hyperparameters, 5-fold cross-validation is applied by the grid optimization technique. The best hyperparameter
set is that when the kernel is rbf, cost is 10, gamma is 0.001, and class weight is none.

3.7.5. GBC
The hyperparameter set for GBC is learning rate, number of estimators, and subsample. For every value of
the hyperparameters, 5-fold cross-validation is applied by the random search optimization technique. The best
hyperparameter set is learning rate of 0.8, number of estimators of 400, and subsample of 1.

3.7.6. Training

The goal of the training step is to evaluate designed features that are derived from the URL characterization
of EKs. Using tuned hyperparameters for 3 supervised learning methods, customized KNN, SVM, and GBC
models are built and the labeled dataset is used to train the classification models. Fivefold cross-validation,
shown in Table 3, is utilized for each algorithm to measure the performance.

3.7.7. Testing

The aim of the testing phase is to measure the accuracy of the classifiers, while classification models group
unknown infection chains according to their EK family. Table 4 summarizes the breakdown of infections in the
test set.
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4. Evaluation
This section discusses the evaluation of an efficient classification method by the application of machine learning
techniques for state-of-the-art EK traffic detection. The accuracy of the estimators is assessed, the significance
of the derived features is questioned via the cross-validation results, and the misclassified samples are properly
justified. A comparison of the studies that apply similar techniques is also extensively presented.

4.1. Performance results
Our approach leverages the patterns of URLs appearing in infections based on EKs and the core of the proposed
technique is the analysis of the URLs belonging to an incident altogether. The classification models were
developed using 3 supervised learning algorithms (KNN, SVM, and GBC) and evaluated to decide which
estimator is more suitable for EK discrimination. The first metric is the accuracy on the training dataset
using 5-fold cross-validation and the performance of these classifiers for the training phase is illustrated in
Figure 2.
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KNN SVM GBC

Figure 2. The performance of classification models with cross-validation.

The second metric is the accuracy of the designed models on the test set, which was obtained from a
completely different source that enables to verify the quality of the models effectively. In the testing phase, the
trained classifiers were independently executed and KNN, SVM, and GBC achieved 90.6%, 88.5%, and 98.9%
classification accuracy, respectively. When we optimize our dataset by discarding excess C&C communication
traffics, the models performed better and KNN, SVM, and GBC achieved 95.8%, 91.6%, and 100.0% classification
accuracy, respectively. It is sensible to get one hundred percent accuracy, since we manually checked nearly
2000 URLs and also discarded unrelated file types (e.g., txt, images, some JavaScript).

4.2. Analysis of features

Although KNN and SVM does not expose the importance order of the features, GBC provides such information
where the model gains more power and relies on it while predicting. The rank of the feature gains is as follows:
count of query key tokens, query value maximum length, count of query value tokens, query length, path
sum length, query value average length, path average length, count of special characters, query key maximum
length, path length, path maximum length, query value sum length, path minimum length, and query key sum
length. When the models are tested with the top 5 features among the ranked 14 features, promising results
are measured; however, even a small accuracy decrease is not tolerated. On the other hand, the remaining 6
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features, count of path tokens, query key minimum length, query key average length, query value minimum
length, count of URLs, and count of unique domain addresses, were not leveraged by GBC. However, we observed
a performance decrease for KNN and SVM when these 6 features were removed where we implicitly deduced
that they were utilized somehow. Ultimately, all features were kept.

4.3. Error analysis
The model based on GBC detects previously not seen EK infections better than the other two algorithms. Only
1 sample was misclassified by the model. An infection from Rig was predicted as Angler by the classifier. SVM
misclassified 11 samples and 9 of them were also misclassified by KNN. However, it is easy to justify these
decisions. This is because there are uncommon command and control activities in these infections that cause
many paths and tokens. Removing duplicate URLs that are usually seen in command and control activity could
be a solution here, as well as discarding the URLs that exceed a limited number of URLs per chain.

4.4. Comparison
Although EKs have been researched in the past years, studies dedicated to EK detection are quite limited.
Moreover, while our study utilizes machine learning for detection, other works mainly apply custom techniques.
The results of the current analysis and the literature are compared in Table 5 to give an overall idea. Webwinnow
[12] evaluated 5 binary classifiers and J48 performed better. When compared to our lightweight study, that
method is quite time-consuming due to the examination of page contents rather than solely utilizing URL
addresses. Taylor et al. [13] employed the weighted Jaccard index and also inspected both URLs and page
content. While Kizzle [15] utilized DBSCAN for clustering web content, particularly JavaScript code blocks,
the number of features is not a valid criterion for their model and only false negative rate (FNR) was reported.
Jagannatha [21] only tried naive Bayes in combination with K-means and IsEK performs better in terms of
accuracy. Sandnes [22] experimented with 3 classifiers and random forest achieved the best score, and the model
was only able to detect samples being malicious or not. On the other hand, our proposed method discriminates
particular EK families with a high accuracy.

Table 5. Comparison with the other studies.

Study Accuracy Features Algorithms
[12] TPR: 99.9% FPR: 0.001% FNR: N/A 30 Page content J48 decision tree
[13] TPR: 95% FPR: N/A FNR: N/A 8 Page content and URL Weighted Jaccard index
[15] TPR: N/A FPR: 0.03 FNR: %5 Page content DBSCAN
[21] TPR: 75%-85% FPR: N/A FNR: N/A 6 URL Naive Bayes and K-means
[22] TPR: 97% FPR: N/A FNR: N/A 9 URL Random forest

Ours TPR: 98.9% FPR: N/A FNR: N/A 20 URL Gradient boosting classifier

5. Conclusions and final remarks
This research proposes a lightweight discrimination system for the network traffic of EK families. By using
only the URL characteristics of a complete infection chain, our overall URL patterns technique reasons about
the likelihood of a sequence of HTTP interactions belonging to a specific EK. Our implementation is evaluated
on a real-world dataset collected by a pioneer researcher on EK. In particular, our empirical results show that
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supervised model IsEK classifies EK families quickly with between 91.6% and 100% significant accuracy and
a very low misclassification rate. The results validate our hypothesis that EK infections largely tend to have
hidden patterns in URLs, which are only discovered via the analysis of overall URLs that are responsible for
a successful malware infection. An individual URL analysis could not reason about whether a set of HTTP
traces belongs to an EK infection or not, since every URL does not reflect an EK pattern. For example, some
URLs do not contain either the path or query, i.e. they are just domain addresses and previously never seen in
malicious activity, which also makes them blacklist-free. On the other hand, the proposed novel overall URL
patterns technique is highly efficient in discriminating EK families.

It is assumed that such an agile solution will help security analysts who work with bulk data collected
by honeypots through early discovering of the modified attack techniques to reveal zero-day attacks and also
create obstacles and raise bars for cybercriminals and cause increases in the workload of EK engineers.

During the experiments, we evaluated many URL features but selected the attributes that are easiest
to extract in terms of processing time. Some of the notable properties that are discarded for the mentioned
reason included total number of HTTP GET and POST requests, total number of redirections, total number
of distinct domain addresses, total number of unique country codes in domain addresses, total number of
unique top level domains (TLDs), total number of distinct files downloaded to the victim system involved in
the infection chain, count of some notorious mime-types (e.g., Shockwave file, Octet-stream, plain text), and
total bytes of downloaded content to the victim system. While IsEK is based on the extraction complexity, the
decision criteria could rely on purely a feature selection algorithm (e.g., information gain) in order to get better
accuracy while reducing the number of features.
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