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ABSTRACT

Most of the available multivariate statistical models dieton fitting diferent parameters for the covari-
ate dfects on each multiple responses. This might be unnecessdrindficient for some cases. In this
article, we propose a modeling framework for multivariatarginal models to analyze multivariate lon-
gitudinal data which provides flexible model building stgies. We show that the model handles several
response families such as binomial, count and continuousillMgtrate the model on the Mother's Stress
and Children’s Morbidity data set. A simulation study is dooted to examine the parameter estimates. An
R packagenmmz2 is proposed to fit the model.

Keywords Clustered data, multiple outcomes, parsimonious modetlibgi, statistical software, quasi-
likelihood inference

1. Introduction

Longitudinal data include observations which are colléatepeatedly over time from same subjects,
and this type of data is common in many research areas, eeglicah studies []1,12]. Often, multiple
response variables are collected on each subjects. Thesated measurements are typically dependent
and three dependence structure can be mentioned: withjoomse, between response and cross-response
temporal dependencies. While the former corresponds taldpendence within each response variables
across time, the latter ones corresponds to dependencedretwultiple responses at a specific time point
and dependence between multiple responsedtateiit time points, respectively.

Mother’s Stress and Children’s Morbidity (MSCMI[3]) data s&s collected with the aim of investigat-
ing the dfect of mother’'s employment status on the pediatric careaus@je study included 167 mothers
and their preschool children (aged between 18 months an&is)yith no chronic disease. In MSCM
data set, two binary response variables, specifically msthgess status ¢absence, 2presence) and her
child’s illness status @absence, Zpresence) were collected over 28 days, i.e., this is a biwalongitu-
dinal binary data set. Here, the dependence between no#igss status (or child’s illness status) at day
(t—-m) and at day, where 1< m < t—1, corresponds to within-subject dependence. Whereasfgfendence
between mother’s stress and her child’s illness attdayresponds to multivariate response dependence, the
one between mother’s stress at tinhe fm) and her child’s illness at where 1< m<t — 1, corresponds to
cross-response temporal dependence.

Marginal models are the extensions of generalized lineataiso[4] to correlated data. They permit re-
gression parameter interpretations that are free of therdkgmce structures and are useful when the interest
is on population rather than individuals. In these modetpetidence structures of longitudinal responses
are of secondary interest. Nonetheless, the dependetcakide taken into account to draw valid statis-
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tical inferences. Since the specification of the multieridistribution of the longitudinal responses is very
complex and dticult even for the univariate response case, semi-paransgtproaches for parameter esti-
mation would be beneficial._[5] proposed generalized esthgaquations (GEE) for parameter estimation
in univariate marginal models. With this approach, one amgds to specify the functional relationship be-
tween the mean response and the covariates, and the meaaramdt® of the responsed.] [6] reported that
this semi-parametric approach is able to compete with thdikalihood-based ones in many cases. Two
outstanding features of GEE are: 1) it is not restricted yospecific response family but handles several of
them, 2) it yields consistent parameter and variance etsBr@aen under misspecification of the dependence
structure. The works ofl_[7,8] B, 10] include great literattor univariate marginal models and GEE.

Analysis of multivariate longitudinal data has quite liedtliterature, especially for marginal models.
Review of such methods with a general aspect, i.e., not @uysed on marginal models, could be found in
[11,[12]; the latter has a broad perspective while reviewlmegexisting methods/ [13] considered quasi-least
square methods for multivariate models.][14] proposed tsddebinary data with GEE.[[15] generalized
the work of [14] for other response families rather than biral and proposed the R_[16] package mmm
[17]. [18] considered likelihood based models with commoedictor d@fects for continuous data by using
model selection tools.[ [19] considered joint clusteringrofitivariate individual trajectories.

Traditional multivariate model formulation approach pistes the assumption of separate relationships
between multiple responses and covariates, i.e., fittipgre¢e regression cfieients for each of the re-
lationships. However, in some cases all or some of thesgéameships might be very similar. This yields
estimation of redundant regression fiaéents and causes losses in tligceencies of the parameter esti-
mates. For instance, in the MSCM study, we have 2 responsk4lanovariates and the responses have
similar relationships with 9 of the covariates. The aforatismed traditional formulation would necessi-
tate estimating 24 separate marginal regression parasr{@tetuding intercepts) to completely specify the
relationships between response means and covariates.velpwelusion of 9 separate parameters for the
similar relationships seems to be redundant. Thereforeneeel flexible model building methodologies.
[20] proposed an approach in multivariate models which mssuthat all the covariatefects (including
intercepts) are shared across multiple responses. Be#iigasmethodology permits fitting separate inter-
cepts and covariateffects by including response type indicator variables aratedlinteractions with the
covariates in the design matrix.

In this study, we propose a multivariate marginal model Wwhegtends the works of__[14, 15,120] and
shares the notion ofl_[18]. Its novel feature is that it pesrfiiting common as well as separate regression
parameters for dierent responses within the multivariate marginal modeliaghework. Parameterizing
shared relationships are decided based on statisticafisagite of the interactions regarding response type
indicator variables. Our model is valid for several resgdiasnilies such as binomial, Gaussian and Poisson.
The parameters are estimated via GEE. We propose an R package [21] to fit the model.

The article is organized as follows. In Section 2, we int&lthe proposed model and illustrate the
related parameter estimation procedure. In Section 3, wig dpe model on the MSCM data and give some
illustrative R code snippets for implementation. In Set#gwe conduct a simulation study to illustrate the
gains in the #iciencies. We close the article by discussion and conclydixced in Section 5.

2. Flexible multivariate marginal models
21  Modd

The formulation of the model is given by

9(E(Yitj1Xitj)) = 9luitj) = XitjB- (1)



Here, Yy is the jth (j = 1,...,K) response of subject(i = 1,...,N) attimet (t = 1,...,n). Xy;
is the associated set of covariates which might be changitigtime (time varying) or not changing with
time (time invariant).g is the vector of regression cieients to be estimated and assumed to be shared
across multiple responses. Put another way, we assumeallttiazd covariate #ects as well the intercepts
are shared across multiple responses. Nevertheless, we afligww multiple responses having their own
intercepts by including the response types as indicataabigs in the design matrix. Additionally, we
might allow multiple responses having their own slopes lojuding the interactions between the response
types and the covariates in the design matrix. These aspéttse clear when illustrated by examples in
Section 3. Since inclusion of the response type indicatdalkes introduce covariates that depend on the
response variable, we use the response infexhile denoting the design matriX;¢;. g(.) is a known link
function which linearizes the relationship between theatiates and the mean response. Possible choices
include identity for continuous data, logit and probit fandry data and natural logarithm for count data.

The association parameters are not explicitly specifiedjmaior(1, since they are not of primary sta-
tistical interest, i.e., nuisance parameters. These pEggR) in fact, are specified within the GEE approach
while estimating the parameters.

The traditional model of [[14, 15] diiers from our model by assuming common set of covariates and
different set of regression dtieients for multiple responses, i.@(E(Yitj|Xit)) = 9(uitj) = XitBj. In other
words, this corresponds & # S for j # j’. However, the model which is the subject of this paper permit
havingg; = Bj orBj # B . Differences between these models and the advantages of thet cureewill be
discussed in Section 3 with applications.

2.2 Parameter estimation

The parameter estimation process includes two main stépecnstruction of response and design
matrices, 2) utilizing the original proposal of GEE| [5] afteards. These steps are depicted below.

For the ease of understanding, let's assume a hypothetingltiidinal data set in whick multivari-
ate longitudinal responses aipdcovariates are available. Also, let's assume that the todmial data is
collected onN subjects withn; repeated measurements, which would yisld= Zi'\il n; total number of
observations. The multivariate responses fornMax k matrix which can be denoted b= (Y1,...,Yn)T,
whereY; = (Yi1,....Yi)" andYij = (Yisj,..., Yinj)". Similarly, the design matrix has a dimension of
M x (p + 1) and can be denoted by = (Xi,...,Xn)" whereX; = (1, Xi1,..., Xip)"T with 1 = (1,...,1)"
(havingn; rows) andXi; = (X, . . .» Xin1)"-

The multivariate response matrix is manipulated to comnstaunew one,Ypey, With a dimension of
(M x K) x 1, whereYney = (Yonews s YN,neW)T With Yipew = (Yiz,...,Yin.) andYie = (Yit, ..., Yik)-
On the other hand, the reconstruction of the design matrgelg depends on the scientific interest. In
other words, the manipulation depends on whether only tteedepts or both the intercepts and a certain
subset or the whole set of covariatéeets are to be separated across the responses. Firstidet'sish
the case in which all the intercepts and covaridfeats are to be shared across responses. This indicates
extendingX to Xney Which has a dimension oM x k) x (p + 1), whereXnay = (Xinew - - - » XNnew) " With
Xinew = (replicatei1 )7, ..., replicateKin,)7). The replicate function creatés< (p+ 1) matrices for which
the rows are identical and equalXq. whereXj; = (1, Xit1, ..., Xitp). If the intercepts or both the intercepts
and a certain subset or the whole set of covariffieces are to be separated across the responses, we need
to create additional covariates and append thed.tq. To separate the intercepts for multiple responses,
we need to creatk ~ 1) response type indicator variables. Furthermore, toragpthe covariatefiects (a
certain subset or all of them), we need to creéte () x p* covariates for the interactions of the indicator
variables and the covariates. These additional covara@tesnserted to the right hand side Xy, i.€.,
eventually, we have a design matrix of sid x k) x (p+ 1+ (k—1)+ (k— 1) x p*), wherep* is the number
of covariates for which thefiects on multiple responses are to be separategragdp. Here, we shall note

3



that if p* = p, the model corresponds to the traditional model mentiomhede

The regression parameter estimaf@sare obtained via the GEE approach by considelhg, as a
univariate response matrix antey as the associated design matrix. We do not give the detailbeof
application of GEE methodology to multivariate marginaldals here, sincel [15] illustrated a very similar
application in Section 2.2 of their paper.

In GEE approach, one does not need to fully specify the digion of the responses. However, only the
functional relationship between the response mean andmespvariance, and the one between the response
mean and the covariates need to be correctly specified. #likmnown that GEE yields consistent regression
parameter estimates and their variances even when onéssafetcorrect working correlation structure.
On the other hand, correct choices of such structures woalgase thefiiciency of the estimates. Since
our parameter estimation methodology directly adapts tBE &oproach, these features are inherited to our
estimates. We will discuss them in Section 3 with applicagio

The estimation procedure introduced in this section is é@m@nted via the R functiommm2 which is
available under the R packagemm2. The gee function under thegee package [[22] is utilized within
mmm2. Robust and model based estimates of the standard erroid stadistics are produced at the same
time. We skip the details of the argumentsmefn2 here, since these details are readily provided in the user
manual ofmmmz2. Nevertheless, we provide some sample R code snippets tio®&ctogether with the
modeling formulations and results.

3. Mother’s Stress and Children’s Morbidity Study applications
31 Data

In Mother’s Stress and Children’s Morbidity Study (MSCM§7Lmothers and their preschool children
were enrolled for 28 days. At baseline all the demographi@lites regarding the mother and her children
were collected by an interview. Then, the mothers were reduio report their stress status=@bhsence,
1=presence) and their children’s illness statusal@sence, Zpresence) by telephone. All the variables can
be found in Table 1.

[Insert Table 1 here.]

We considered only the period of day 17 to day 28 (a period afay), since the empirical investiga-
tion of the correlation structures suggested a weak coiwalatructure for the period of days 1 to 16 for
both of the responses. To accommodate the specific featitles mothers and children in our models, we
added the average response values of the neglected tinoe g@alys 1 to 16) as new covariates; see “base-
line stress” and “baseline illness” in Table 1. Moreovernteasure the timefiect in the mean stress and
illness status, we added the standardized time informabi@ur covariate list; see “week” in Table 1. This
version of the MSCM data set is available under the R packagen2 with the name ofliscm. Analyses
of the MSCM data set in the univariate marginal modeling farork could be found in the works of [[7,123].

3.2 Results

While building parsimonious models, the first step might béding the most general model which
assumes that all the intercepts and all the covarifieets on multiple responses ardfeient. Following
the results of this model, one can decide which covarifiezes and whether the intercepts are to be shared
across the multiple responses. The most general modelddv8CM data via the use dgit link function
could be given by



logit(P(Yitj = 1Xitj)) = Bo + B1 * married; + - - - + B11 * Week; + B12 * rtypej+
P13+ (married; = rtypej) + - - - + B3 * (Week; * rtype;). (2)

Let's assume rtype0 for responsestress and rtypel for responssillness. Then, the model given in
Equatior2 indicates the following models:

logit(P(Yit1 = 11Xit1)) = Bo + B1 * married; + - - - + 11 * week; (3)

and

logit(P(Yiz = 11Xit2)) = (Bo + B12) + (B1 + B13) » married; + - - - + (B11 + B23) * Week; (4)

for stress and illness, respectively. As it can be seen frguaiond B andl4, the intercept and covariate
effects on mother’s stress and child’s illness variables dferdnt. For instance, while th&ect of mother’s
marriage status (married) on mother’s stress is assumeav®dmagnitude g1, it is assumed to have a
magnitude of §1 + B13) on child’s illness.

Related results under exchangeable working correlatinrctsire are displayed in Table 2 under the
Model 1 column. We can decide whether multiple responsesie their own parameters by investigating
the significance of the interaction terms. In other wordsinfato reject the null hypothesis in the hypothesis
test ofHp : Bs = OvsHg : Bs # 0, wheress corresponds to an interaction d¢beient ofrtype with a covariate,
i.e.,s=13...,23 in Equatiodi R, would direct us on deciding whether theteel@ovariate to have shared
effect on multiple responses. Similarly, we can decide whdtieresponses to have a shared intercept by
testing the significance of the d@ieient of thertype, i.e., testingHo : 812 = 0vsH;j : B12 # 0 in Equation P.
Results of Model 1 showed that we can allow multiple respetsdéave shared slopes for all the covariates
with 95% confidence, except for the size of the household gizel and baseline stress (bstress). For
instance, this might be read as, a mother’s stress and Hdisdiiness evolved similar to each other across
time (week), the odds ratios for these responses wéte (@ exp(—0.43)) and 083 (= exp(—0.43 + 0.24))
with respect to successive days, respectively. We can auitdre parsimonious model, a model with 9 less
parameters, by omitting the aforementioned insignificatgractions. This model is given by

logit(P(Yitj = 1IXitj)) = Bo + B1 * married; + - -- + 11 * week; + 12 * rtype;j + B13 * (housizg = rtype;)+
P14 * (bstress = rtype;).
©))

We displayed related results under exchangeable workingelation structure in Table 2 under the
Model 2 column. They indicated gains in th&eencies for all the parameters compared to Model 1, since
we estimated 9 less parameters. For instance, standaraeresponse type indicator variable decreased to
0.31 in Model 2 while it was 4 in Model 1. We also reported the results of the model gindbquatior b
under unstructured working correlation structure in Téblender the Model 3 column. Comparison of the
results of Model 2 and Model 3 reveals that the parametemastis are consistent undeffdrent working
correlation choices. We shall note that the model fittingatgm, specifically Fisher-Scoring algorithm, did
not converge to a solution for the most general model givelgnatio 2 under the unstructured working
correlation matrix, since the model requires the estinmadi 2*212) = 276 diterent correlation parameters
for the MSCM data set[[15]. Building a more parsimonious niothe one given in Equatidn 5, enabled



convergence to a solution under this working correlatiotrixavith estimation of same number of correla-
tion parameters.

[Insert Table 2 here.]
The results of Models 1-3 could be easily translated to thesdar diferent responses. For instance,

the regression parameter estimates could be obtained hgipin the values oftype, i.e., Bs + s *
rtypej). Moreover, standard error estimates could be calculayedsng the following well-known for-

mula: \/var(Bs) +var(Bs) + 2 = cov(Bs, Bs). Then, the calculation of statistics are straightforward as
the usual Wald type calculation. All of these results ares@néed in Table 1 of the web appendix of this
paper available at htywww.lancs.ac.ulpg/asafweb-appendix-mmmflex. For instance, under Model 2,
while the estimate of the intercept for respossiess was-2.33 = -2.33 + 0 = 0.89, it was—-1.34 =
—2.33 + 0.89 for responseiliness. Related standard error estimates wegé & v0.13+ 0+ 2= 0 and
0.41 = +/0.13+ 0.09+ 2= (-0.03), respectively. In Table 1 of the web appendix, we alstudted the per-
centage gains in thdficiencies, calculated as the percentage decreases in tiet stdndard error estimates
in terms of Model 2 and Model 3 in comparison with Model 1. Rissshowed that there were considerable
amount of gains. For instance, there was almost 33% gaireimlitiency for the employment status of
mothers (employed) for resporstness under Model 2. The gains of Model 3 seem to be slighéiter
compared to the gains of Model 2.

3.3  Implementation

Model 1 can be fitted in R by the following script

# installing the package from CRAN

R> install.packages("mmm2")

# loading the package into R

R> library("mmm2")

# loading the MSCM data set

R> data(mscm)

# fitting Model 1

R> fit <- mmm2(formula=cbind(stress, illness) ~ married +
+ education + employed + chlth + mhlth + race +
csex + housize + bstress + billness + week,
data=mscm, id=mscm$id, rtype=TRUE,
interaction=1:11, family=binomial,
corstr="exchangeable")

+ + + +

Here, whilertype=TRUE corresponds to the inclusion of response type indicatoabl, interaction=1:11
corresponds to the inclusion of interactions of the respdgpe indicator variable with the first 11 co-
variates (all of the covariates) as new covariates. Mode&r2 lwe fitted by a similar script with a lit-
tle change ofinteraction=c(8,9).Moreover, Model 3 could be built with an additional change of
corstr="unstructured" for Model 2. The results could be displayed by themary () function, e.g.,
the output can be displayed bymmary (£it) for Model 1.

We calculated the computational times required to fit théseet models. While Model 1 took 0.34
seconds, Models 2 and 3 took 0.17 and 0.67 seconds, resiedaiiva personal computer with 4.00 GB
RAM and 2.53 GHz processor. The reason why Model 3 took thgdsttime is that it was fitted under the
unstructured working correlation matrix.
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We considered application of the model presented in thigipap multivariate longitudinal count and
continuous data sets, but we preferred not to include them thee to page limits. These data sets are
available under thenmm2 package with names aflcd and mlgd for these response types, respectively.
Moreover, the related R scripts to fit the models are availahter the package manual. The model building
strategies would be similar to ones illustrated for the MS@#ata set. The only flierence would be on
the model formulations, i.elpgit should be replaced wittog andidentity link functions for count and
continuous responses, respectively.

We fitted the traditional model of [14, 15] and compared thsults with Model 1 by using thenmm
package. We obtained identical results as expected.

4, A simulation study
4.1  Datageneration

We conducted a simulation study to investigate the bias #iesmcy of the estimates of the proposed
model. We reported mean, bias and mean squared error (M3 etimates for this purpose.

Data were generated under the multivariate model of [20} wiprobit link [24], to create within and
between response dependencies while generating datalieomérginal modeling framework. This model
was proposed for multivariate longitudinal binary data.isle marginalized multilevel model with three
levels. The first level is nothing but a multivariate mardgjimadel. The second and third levels are designed
to capture the serial and multivariate response depersenaspectively. Due to page limits, we do not
give more details here; interested reader may refer to thd oéferences.

We mainly assumed that there are 300 subjects (,...,300) who were followed repeatedly over
3 time points { = 1,2, 3). We further assumed that two binary responges (1, 2) and two covariates
were measured for each subject at each time point. In thewilf discussion, subscripts are suppressed
whenever it is possible. The relationship between the resgmand the covariates were specified by

P(Y = 1X) = ®(Bo + B1 * X1 + B2 * X + B3 x X1 * Xo + B4 * rtype+
Bs * X1 * rtype + g = Xo * rtype + Bz = Xq * X * rtype), (6)

via the first level of the data generation model. Hebedenotesprobit link function which is defined as
the cumulative distribution function of the standard ndrtiatribution. X; was taken as a time-varying
covariate which was generated By; = yo + y1 * Xi-11 + & for t = 2,3 with (yo,y1) = (0.2,0.5),

g1 ~ N(0,0.2%), &2 ~ N(0,0.15?) and X;1 ~ N(0,0.4%). X, was a time independent binary vari-
able following a Bernoulli distribution with success probedy of 0.5. Thertype took 1 for the first
response j( = 1) and O for the second response £ 2). The regression parameters were selected as
(81,82, 83,84, Bs, Bs, B7) = (-0.5,0.5,0.9,0.6,0,0,0,0). This configuration corresponds to the case where
intercept and all the covariatdfects are shared across multiple responses. The assogatiameters of
the data generation model, i.e., the parameters of the dermhthird level of the model, were set to have
moderate within-response and between-response cooredati~or instance, the means of the correlations
were around 0.5 and 0.25 for these dependencies, respgctivata sets were analyzed by twdfdrent
models, the most parsimonious (true model for this simohasitudy) and the most general model, under
several working correlation matrix choices. The simulastudy was replicated 10,000 times. Probit analy-
sis was achieved vianm?2 function by setting théamily argument tcfamily=binomial (1ink=probit).

4.2 Results



Results of the simulation study are represented in TableeSrépbrted the results of two main models.
The first one is the model which assumes that the interceptsh@ncovariate féects are shared across the
bivariate responses. The results of this model were planddruihe columns named Parsimonious. Note
that this model is the true model in the sense of data gepnarafihe second one assumes that the inter-
cepts and covariatetects are all response specific. The result of this model waceg@ under the columns
named Common. Both of these models were built under foffiergint working correlation assumptions:
unstructured, exchangeable, AR(1) and independence. fAtleomodels yielded essentially unbiased re-
gression parameter estimates under all of the working ledima assumptions. There seemed no apparent
difference between the estimates of the two models under anyngardrrelation matrix choices in terms of
bias. However, in terms of MSE's the parsimonious model gekim be outperforming the common model
for all of the parameters. In fact, the MSE’s were almost diedib For instance, foBsz, while the former
yielded estimates with an MSE of 0.051 under exchangeahletste, the latter model yielded estimates
with an MSE of 0.096. However, the working correlation matrthoices seemed not toff#r in terms of
MSE'’s. For instance, for the same parameter, the MSE’s dioitmeer model were found to be 0.046, 0.053
and 0.054 for the unstructured, AR(1) and independence ingtorrelation matrices. Interestingly, the
common model yielded highest MSE’s f&f when compared to its MSE'’s f@, 85 andBs. The simulation
results seemed to be in agreement with the ones which weneldtéiom the MSCM data set applications.

[Insert Table 3 here.]

In the simulation study, we also included the traditionaldeldn addition to the aforementioned two
models. Related results (not shown here) seemed to be s$imgptire ones obtained while analyzing the
MSCM data set, i.e., yielded same inferences with the commaxtel. The R codes of the simulation study
are available upon request from the authors.

5 Discussion and conclusion

In literature, itis common to consider separate covarifieets on multiple responses while constructing
multivariate models. However, this assumption might berofedundant and too restrictive. In this article,
we proposed a multivariate marginal modeling frameworkohpermits building more flexible models. A
user-friendly R packagenmmz2, was proposed to fit the model. Our modeling framework is estricted
to a specific response family, but handles several of therst tuat not least, all of the features of marginal
model fitting with GEE are inherited for these multivariatedels.

In this paper, we specifically considered first order GEE (GE&S proposed by[ [5], since our main
focus was on the marginal mean parameters, i.e., the depgngarameters are of secondary interest. This
version of GEE is known to yield irigcient estimates of the dependency parameters, since tbageated
as nuisance parameters. If the scientific interest is ongperttlency parameters together with the marginal
mean parameters, second order GEE (GEEZ2 [[25, 26]) or ditegniagistic regressions[ [27] should be
preferred. Throughout the paper, we considered GEE1 atetidalGEE.
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Table 1: List of the variables appear in the MSCM study and¢teged explanations.

Variable  Explanation

id id number of the mother and her child

stress mother’s stress status:absence, 2presence

illness child’s iliness status:=@bsence, 2presence

married marriage status of the mothegdbher, Emarried

education mother’s education levekl@ss than high school,
1=high school graduate or more

employed mother's employment status:uhemployed, £employed

chlth child’s health status at baselinez\@ry pooypoor,
1=fair, 2=good, 3=very good

mhlth mother’s health status at baselinevéry pooypoor,
1=fair, 2=good, 3=very good

race child’s race: white, I=non-white

csex child’s gender: fmale, Efemale

housize size of the household=®-3 people, #more than 3 people

bstress baseline stress: average value of the mothess stre
status for the first 16 days

billness baseline iliness: average value of the child'eilk
status for the first 16 days

week a time variable: calculated as (day7Z22)
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Table 2: Results of the MSCM data set application. Only robtedard error and Z estimates are reported.
While Models 1, 2 were fitted under exchangeable workingetdation structure, Model 3 was fitted under

unstructured working correlation assumption.

Model 1 Model 2 Model 3

Est. (SE) Z Est. (SE) Z Est. (SE) Z
Intercept -2.14 (0.42) -5.15 -2.23 (0.36) -6.12 -2.58 (D.3A4.49
married -0.01 (0.24) -0.02 0.25 (0.19) 1.34 0.22 (0.18) 1.19
education 0.36 (0.23) 1.62 0.19 (0.20) 0.94 0.25 (0.20) 1.27
employed -0.65 (0.25) -2.59 -0.43 (0.22) -1.95 -0.35 (0.2Rp1
chith -0.26 (0.13) -1.96 -0.34 (0.12) -2.88 -0.26 (0.11)312.
mhlth -0.17 (0.12) -1.39 -0.11 (0.11) -0.97 -0.18 (0.10)731.
race -0.02 (0.24) -0.06 -0.01 (0.18) -0.04 0.19 (0.18) 1.02
csex -0.04 (0.22) -0.20 0.02 (0.18) 0.10 0.05 (0.17) 0.30
housize 0.06 (0.24) 0.26 0.04 (0.23) 0.15 0.17 (0.23) 0.74
bstress 3.89 (0.71) 548 3.48 (0.67) 5.22 3.59 (0.65) 5.53
billness 0.86 (0.71) 1.21 1.52 (0.57) 2.65 1.51 (0.56) 2.68
week -0.43 (0.16) -2.65 -0.31 (0.14) -2.20 -0.36 (0.13) 22.7
rtype 0.56 (0.54) 1.04 0.89 (0.31) 2.91 1.03 (0.29) 3.55
married*rtype 0.50 (0.32) 1.57
education*rtype -0.42 (0.31) -1.35
employed*rtype  0.43 (0.38) 1.13
chlth*rtype -0.14 (0.17) -0.82
mhlth*rtype 0.20 (0.18) 1.12
race*rtype 0.04 (0.32) 0.11
csex*rtype 0.06 (0.29) 0.21
housize*rtype -0.63 (0.32) -1.95 -0.58 (0.30) -1.95 -0.1329) -2.63
bstress*rtype -3.83 (1.10) -3.50 -3.18 (0.99) -3.20 -3.0¥F) -3.99
billness*rtype 1.32 (0.88) 1.50
week*rtype 0.24 (0.26) 0.91
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Table 3: Results of the simulation study. Uns: unstructukeath: exchangeable, Ind: independence.
Parameter  True Parsimonious Common
Uns Exch AR(1) Ind Uns Exch AR(1) Ind
Mean -0.526 -0.512 -0.518 -0.517 -0.526 -0.513 -0.519 &.51
Bo -0.500 Bias -0.026 -0.012 -0.018 -0.017 -0.026 -0.013 9.010.018
MSE 0.005 0.004 0.004 0.004 0.008 0.008 0.008 0.008
Mean 0.459 0.444 0472 0473 0.462 0.447 0.474 0475
B1 0.500 Bias -0.041 -0.056 -0.028 -0.027 -0.038 -0.053 -0.0Z2&B025
MSE 0.022 0.024 0.025 0.025 0.041 0.045 0.046 0.046
Mean 0.954 0922 0.926 0.925 0.954 0.923 0.928 0.926
B2 0.900 Bias 0.054 0.022 0.026 0.025 0.054 0.023 0.028 0.026
MSE 0.011 0.008 0.009 0.009 0.018 0.016 0.016 0.016
Mean 0.648 0.684 0.669 0.669 0.650 0.686 0.675 0.671

B3 0.600 Bias 0.048 0.084 0.069 0.069 0.050 0.086 0.075 0.071
MSE 0.046 0.051 0.053 0.054 0.086 0.096 0.100 0.099
Mean -0.002 -0.003 -0.001 -0.003
Ba 0.000 Bias -0.002 -0.003 -0.001 -0.003
MSE 0.014 0.014 0.014 o0.014
Mean 0.000 0.001 0.001 0.001
Bs 0.000 Bias 0.000 0.001 0.001 0.001
MSE 0.073 0.084 0.086 0.085
Mean 0.002 0.003 0.001 0.003
Be 0.000 Bias 0.002 0.003 0.001 0.003
MSE 0.028 0.029 0.029 0.029
Mean 0.001 0.001 -0.008 0.001
B7 0.000 Bias 0.001 0.001 -0.008 0.001
MSE 0.157 0.177 0.180 0.177
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