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Özgür Asara,∗ , Özlemİlk b
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ABSTRACT

Most of the available multivariate statistical models dictate on fitting different parameters for the covari-
ate effects on each multiple responses. This might be unnecessary and inefficient for some cases. In this
article, we propose a modeling framework for multivariate marginal models to analyze multivariate lon-
gitudinal data which provides flexible model building strategies. We show that the model handles several
response families such as binomial, count and continuous. We illustrate the model on the Mother’s Stress
and Children’s Morbidity data set. A simulation study is conducted to examine the parameter estimates. An
R packagemmm2 is proposed to fit the model.

Keywords Clustered data, multiple outcomes, parsimonious model building, statistical software, quasi-
likelihood inference

1. Introduction

Longitudinal data include observations which are collected repeatedly over time from same subjects,
and this type of data is common in many research areas, e.g., medical studies [1, 2]. Often, multiple
response variables are collected on each subjects. These repeated measurements are typically dependent
and three dependence structure can be mentioned: within-response, between response and cross-response
temporal dependencies. While the former corresponds to thedependence within each response variables
across time, the latter ones corresponds to dependence between multiple responses at a specific time point
and dependence between multiple responses at different time points, respectively.

Mother’s Stress and Children’s Morbidity (MSCM [3]) data set was collected with the aim of investigat-
ing the effect of mother’s employment status on the pediatric care usage. The study included 167 mothers
and their preschool children (aged between 18 months and 5 years) with no chronic disease. In MSCM
data set, two binary response variables, specifically mother’s stress status (0=absence, 1=presence) and her
child’s illness status (0=absence, 1=presence) were collected over 28 days, i.e., this is a bivariate longitu-
dinal binary data set. Here, the dependence between mother’s stress status (or child’s illness status) at day
(t−m) and at dayt, where 1≤ m ≤ t−1, corresponds to within-subject dependence. Whereas the dependence
between mother’s stress and her child’s illness at dayt corresponds to multivariate response dependence, the
one between mother’s stress at time (t − m) and her child’s illness att, where 1≤ m ≤ t − 1, corresponds to
cross-response temporal dependence.

Marginal models are the extensions of generalized linear models [4] to correlated data. They permit re-
gression parameter interpretations that are free of the dependence structures and are useful when the interest
is on population rather than individuals. In these models, dependence structures of longitudinal responses
are of secondary interest. Nonetheless, the dependencies should be taken into account to draw valid statis-
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tical inferences. Since the specification of the multivariate distribution of the longitudinal responses is very
complex and difficult even for the univariate response case, semi-parametric approaches for parameter esti-
mation would be beneficial. [5] proposed generalized estimating equations (GEE) for parameter estimation
in univariate marginal models. With this approach, one onlyneeds to specify the functional relationship be-
tween the mean response and the covariates, and the mean and variance of the responses. [6] reported that
this semi-parametric approach is able to compete with the full likelihood-based ones in many cases. Two
outstanding features of GEE are: 1) it is not restricted to any specific response family but handles several of
them, 2) it yields consistent parameter and variance estimates even under misspecification of the dependence
structure. The works of [7, 8, 9, 10] include great literature for univariate marginal models and GEE.

Analysis of multivariate longitudinal data has quite limited literature, especially for marginal models.
Review of such methods with a general aspect, i.e., not only focused on marginal models, could be found in
[11, 12]; the latter has a broad perspective while reviewingthe existing methods. [13] considered quasi-least
square methods for multivariate models. [14] proposed models for binary data with GEE. [15] generalized
the work of [14] for other response families rather than binomial and proposed the R [16] package mmm
[17]. [18] considered likelihood based models with common predictor effects for continuous data by using
model selection tools. [19] considered joint clustering ofmultivariate individual trajectories.

Traditional multivariate model formulation approach postulates the assumption of separate relationships
between multiple responses and covariates, i.e., fitting separate regression coefficients for each of the re-
lationships. However, in some cases all or some of these relationships might be very similar. This yields
estimation of redundant regression coefficients and causes losses in the efficiencies of the parameter esti-
mates. For instance, in the MSCM study, we have 2 responses and 11 covariates and the responses have
similar relationships with 9 of the covariates. The aforementioned traditional formulation would necessi-
tate estimating 24 separate marginal regression parameters (including intercepts) to completely specify the
relationships between response means and covariates. However, inclusion of 9 separate parameters for the
similar relationships seems to be redundant. Therefore, weneed flexible model building methodologies.
[20] proposed an approach in multivariate models which assumes that all the covariate effects (including
intercepts) are shared across multiple responses. Besides, their methodology permits fitting separate inter-
cepts and covariate effects by including response type indicator variables and related interactions with the
covariates in the design matrix.

In this study, we propose a multivariate marginal model which extends the works of [14, 15, 20] and
shares the notion of [18]. Its novel feature is that it permits fitting common as well as separate regression
parameters for different responses within the multivariate marginal modelingframework. Parameterizing
shared relationships are decided based on statistical significance of the interactions regarding response type
indicator variables. Our model is valid for several response families such as binomial, Gaussian and Poisson.
The parameters are estimated via GEE. We propose an R packagemmm2 [21] to fit the model.

The article is organized as follows. In Section 2, we introduce the proposed model and illustrate the
related parameter estimation procedure. In Section 3, we apply the model on the MSCM data and give some
illustrative R code snippets for implementation. In Section 4, we conduct a simulation study to illustrate the
gains in the efficiencies. We close the article by discussion and conclusionplaced in Section 5.

2. Flexible multivariate marginal models

2.1 Model

The formulation of the model is given by

g(E(Yit j |Xit j)) = g(µit j) = Xit jβ. (1)
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Here,Yit j is the jth ( j = 1, . . . , k) response of subjecti (i = 1, . . . ,N) at time t (t = 1, . . . , ni). Xit j

is the associated set of covariates which might be changing with time (time varying) or not changing with
time (time invariant).β is the vector of regression coefficients to be estimated and assumed to be shared
across multiple responses. Put another way, we assumed thatall the covariate effects as well the intercepts
are shared across multiple responses. Nevertheless, we might allow multiple responses having their own
intercepts by including the response types as indicator variables in the design matrix. Additionally, we
might allow multiple responses having their own slopes by including the interactions between the response
types and the covariates in the design matrix. These aspectswill be clear when illustrated by examples in
Section 3. Since inclusion of the response type indicator variables introduce covariates that depend on the
response variable, we use the response index,j, while denoting the design matrix,Xit j. g(.) is a known link
function which linearizes the relationship between the covariates and the mean response. Possible choices
include identity for continuous data, logit and probit for binary data and natural logarithm for count data.

The association parameters are not explicitly specified in Equation 1, since they are not of primary sta-
tistical interest, i.e., nuisance parameters. These parameters, in fact, are specified within the GEE approach
while estimating the parameters.

The traditional model of [14, 15] differs from our model by assuming common set of covariates and
different set of regression coefficients for multiple responses, i.e.,g(E(Yit j |Xit)) = g(µit j) = Xitβ j. In other
words, this corresponds toβ j . β j′ for j , j′. However, the model which is the subject of this paper permits
havingβ j ≡ β j′ or β j . β j′ . Differences between these models and the advantages of the current one will be
discussed in Section 3 with applications.

2.2 Parameter estimation

The parameter estimation process includes two main steps: 1) reconstruction of response and design
matrices, 2) utilizing the original proposal of GEE [5] afterwards. These steps are depicted below.

For the ease of understanding, let’s assume a hypothetical longitudinal data set in whichk multivari-
ate longitudinal responses andp covariates are available. Also, let’s assume that the longitudinal data is
collected onN subjects withni repeated measurements, which would yieldM =

∑N
i=1 ni total number of

observations. The multivariate responses form anM × k matrix which can be denoted byY = (Y1, . . . , YN)T ,
whereYi = (Yi.1, . . . , Yi.k)T and Yi. j = (Yi1 j, . . . , Yini j)T . Similarly, the design matrix has a dimension of
M × (p + 1) and can be denoted byX = (Xi, . . . , XN)T whereXi = (1, Xi.1, . . . , Xi.p)T with 1 = (1, . . . , 1)T

(havingni rows) andXi.l = (Xi1l, . . . , Xinil)
T .

The multivariate response matrix is manipulated to construct a new one,Ynew, with a dimension of
(M × k) × 1, whereYnew = (Y1,new, . . . , YN,new)T with Yi,new = (Yi1., . . . , Yini.) and Yit. = (Yit1, . . . , Yitk).
On the other hand, the reconstruction of the design matrix largely depends on the scientific interest. In
other words, the manipulation depends on whether only the intercepts or both the intercepts and a certain
subset or the whole set of covariate effects are to be separated across the responses. First, let’s start with
the case in which all the intercepts and covariate effects are to be shared across responses. This indicates
extendingX to Xnew which has a dimension of (M × k) × (p + 1), whereXnew = (X1,new, . . . , XN,new)T with
Xi,new = (replicate(Xi1.)T , . . . , replicate(Xini.)

T ). The replicate function createsk× (p+1) matrices for which
the rows are identical and equal toXit. whereXit. = (1, Xit1, . . . , Xitp). If the intercepts or both the intercepts
and a certain subset or the whole set of covariate effects are to be separated across the responses, we need
to create additional covariates and append them toXnew. To separate the intercepts for multiple responses,
we need to create (k − 1) response type indicator variables. Furthermore, to separate the covariate effects (a
certain subset or all of them), we need to create (k − 1) × p∗ covariates for the interactions of the indicator
variables and the covariates. These additional covariatesare inserted to the right hand side ofXnew, i.e.,
eventually, we have a design matrix of size (M × k)× (p+ 1+ (k − 1)+ (k− 1)× p∗), wherep∗ is the number
of covariates for which the effects on multiple responses are to be separated andp∗ ≤ p. Here, we shall note
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that if p∗ = p, the model corresponds to the traditional model mentioned above.
The regression parameter estimates,β̂, are obtained via the GEE approach by consideringYnew as a

univariate response matrix andXnew as the associated design matrix. We do not give the details ofthe
application of GEE methodology to multivariate marginal models here, since [15] illustrated a very similar
application in Section 2.2 of their paper.

In GEE approach, one does not need to fully specify the distribution of the responses. However, only the
functional relationship between the response mean and response variance, and the one between the response
mean and the covariates need to be correctly specified. It is well known that GEE yields consistent regression
parameter estimates and their variances even when one selects an incorrect working correlation structure.
On the other hand, correct choices of such structures would increase the efficiency of the estimates. Since
our parameter estimation methodology directly adapts the GEE approach, these features are inherited to our
estimates. We will discuss them in Section 3 with applications.

The estimation procedure introduced in this section is implemented via the R functionmmm2 which is
available under the R packagemmm2. Thegee function under thegee package [22] is utilized within
mmm2. Robust and model based estimates of the standard errors andZ statistics are produced at the same
time. We skip the details of the arguments ofmmm2 here, since these details are readily provided in the user
manual ofmmm2. Nevertheless, we provide some sample R code snippets in Section 3 together with the
modeling formulations and results.

3. Mother’s Stress and Children’s Morbidity Study applications

3.1 Data

In Mother’s Stress and Children’s Morbidity Study (MSCM), 167 mothers and their preschool children
were enrolled for 28 days. At baseline all the demographic variables regarding the mother and her children
were collected by an interview. Then, the mothers were required to report their stress status (0=absence,
1=presence) and their children’s illness status (0=absence, 1=presence) by telephone. All the variables can
be found in Table 1.

[Insert Table 1 here.]

We considered only the period of day 17 to day 28 (a period of 12days), since the empirical investiga-
tion of the correlation structures suggested a weak correlation structure for the period of days 1 to 16 for
both of the responses. To accommodate the specific features of the mothers and children in our models, we
added the average response values of the neglected time period (days 1 to 16) as new covariates; see “base-
line stress” and “baseline illness” in Table 1. Moreover, tomeasure the time effect in the mean stress and
illness status, we added the standardized time informationto our covariate list; see “week” in Table 1. This
version of the MSCM data set is available under the R packagemmm2 with the name ofmscm. Analyses
of the MSCM data set in the univariate marginal modeling framework could be found in the works of [7, 23].

3.2 Results

While building parsimonious models, the first step might be building the most general model which
assumes that all the intercepts and all the covariate effects on multiple responses are different. Following
the results of this model, one can decide which covariate effects and whether the intercepts are to be shared
across the multiple responses. The most general model for the MSCM data via the use oflogit link function
could be given by
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logit(P(Yit j = 1|Xit j)) = β0 + β1 ∗ marriedi + · · · + β11 ∗ weekt + β12 ∗ rtype j+

β13 ∗ (marriedi ∗ rtype j) + · · · + β23 ∗ (weekt ∗ rtype j). (2)

Let’s assume rtype=0 for response=stress and rtype=1 for response=illness. Then, the model given in
Equation 2 indicates the following models:

logit(P(Yit1 = 1|Xit1)) = β0 + β1 ∗ marriedi + · · · + β11 ∗ weekt (3)

and

logit(P(Yit2 = 1|Xit2)) = (β0 + β12) + (β1 + β13) ∗ marriedi + · · · + (β11+ β23) ∗ weekt (4)

for stress and illness, respectively. As it can be seen from Equations 3 and 4, the intercept and covariate
effects on mother’s stress and child’s illness variables are different. For instance, while the effect of mother’s
marriage status (married) on mother’s stress is assumed to have a magnitude ofβ1, it is assumed to have a
magnitude of (β1 + β13) on child’s illness.

Related results under exchangeable working correlation structure are displayed in Table 2 under the
Model 1 column. We can decide whether multiple responses to have their own parameters by investigating
the significance of the interaction terms. In other words, failing to reject the null hypothesis in the hypothesis
test ofH0 : βs = 0 vs H0 : βs , 0, whereβs corresponds to an interaction coefficient ofrtype with a covariate,
i.e., s = 13, . . . , 23 in Equation 2, would direct us on deciding whether the related covariate to have shared
effect on multiple responses. Similarly, we can decide whetherthe responses to have a shared intercept by
testing the significance of the coefficient of thertype, i.e., testingH0 : β12 = 0 vs H1 : β12 , 0 in Equation 2.
Results of Model 1 showed that we can allow multiple responses to have shared slopes for all the covariates
with 95% confidence, except for the size of the household (housize) and baseline stress (bstress). For
instance, this might be read as, a mother’s stress and her child’s illness evolved similar to each other across
time (week), the odds ratios for these responses were 0.65 (= exp(−0.43)) and 0.83 (= exp(−0.43+ 0.24))
with respect to successive days, respectively. We can builda more parsimonious model, a model with 9 less
parameters, by omitting the aforementioned insignificant interactions. This model is given by

logit(P(Yit j = 1|Xit j)) = β0 + β1 ∗ marriedi + · · · + β11 ∗ weekt + β12 ∗ rtype j + β13 ∗ (housizei ∗ rtype j)+

β14 ∗ (bstresst ∗ rtype j).
(5)

We displayed related results under exchangeable working correlation structure in Table 2 under the
Model 2 column. They indicated gains in the efficiencies for all the parameters compared to Model 1, since
we estimated 9 less parameters. For instance, standard error of response type indicator variable decreased to
0.31 in Model 2 while it was 0.54 in Model 1. We also reported the results of the model given in Equation 5
under unstructured working correlation structure in Table2 under the Model 3 column. Comparison of the
results of Model 2 and Model 3 reveals that the parameter estimates are consistent under different working
correlation choices. We shall note that the model fitting algorithm, specifically Fisher-Scoring algorithm, did
not converge to a solution for the most general model given inEquation 2 under the unstructured working
correlation matrix, since the model requires the estimation of

(

2∗12
2

)

= 276 different correlation parameters
for the MSCM data set [15]. Building a more parsimonious model, the one given in Equation 5, enabled
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convergence to a solution under this working correlation matrix with estimation of same number of correla-
tion parameters.

[Insert Table 2 here.]

The results of Models 1-3 could be easily translated to the ones for different responses. For instance,
the regression parameter estimates could be obtained by plugging in the values ofrtype, i.e., (β̂s + β̂s′ ∗
rtype j). Moreover, standard error estimates could be calculated by using the following well-known for-

mula:
√

var(β̂s) + var(β̂s′ ) + 2 ∗ cov(β̂s, β̂s′). Then, the calculation ofZ statistics are straightforward as
the usual Wald type calculation. All of these results are presented in Table 1 of the web appendix of this
paper available at http://www.lancs.ac.uk/pg/asar/web-appendix-mmmflex. For instance, under Model 2,
while the estimate of the intercept for response=stress was−2.33 = −2.33 + 0 ∗ 0.89, it was−1.34 =
−2.33+ 0.89 for response=illness. Related standard error estimates were 0.36 =

√
0.13+ 0+ 2 ∗ 0 and

0.41=
√

0.13+ 0.09+ 2 ∗ (−0.03), respectively. In Table 1 of the web appendix, we also included the per-
centage gains in the efficiencies, calculated as the percentage decreases in the robust standard error estimates
in terms of Model 2 and Model 3 in comparison with Model 1. Results showed that there were considerable
amount of gains. For instance, there was almost 33% gain in the efficiency for the employment status of
mothers (employed) for response=illness under Model 2. The gains of Model 3 seem to be slightlybetter
compared to the gains of Model 2.

3.3 Implementation

Model 1 can be fitted in R by the following script

# installing the package from CRAN

R> install.packages("mmm2")

# loading the package into R

R> library("mmm2")

# loading the MSCM data set

R> data(mscm)

# fitting Model 1

R> fit <- mmm2(formula=cbind(stress, illness) ˜ married +

+ education + employed + chlth + mhlth + race +

+ csex + housize + bstress + billness + week,

+ data=mscm, id=mscm$id, rtype=TRUE,

+ interaction=1:11, family=binomial,

+ corstr="exchangeable")

Here, whilertype=TRUE corresponds to the inclusion of response type indicator variable,interaction=1:11
corresponds to the inclusion of interactions of the response type indicator variable with the first 11 co-
variates (all of the covariates) as new covariates. Model 2 can be fitted by a similar script with a lit-
tle change ofinteraction=c(8,9).Moreover, Model 3 could be built with an additional change of
corstr="unstructured" for Model 2. The results could be displayed by thesummary() function, e.g.,
the output can be displayed bysummary(fit) for Model 1.

We calculated the computational times required to fit these three models. While Model 1 took 0.34
seconds, Models 2 and 3 took 0.17 and 0.67 seconds, respectively on a personal computer with 4.00 GB
RAM and 2.53 GHz processor. The reason why Model 3 took the longest time is that it was fitted under the
unstructured working correlation matrix.
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We considered application of the model presented in this paper on multivariate longitudinal count and
continuous data sets, but we preferred not to include them here due to page limits. These data sets are
available under themmm2 package with names ofmlcd and mlgd for these response types, respectively.
Moreover, the related R scripts to fit the models are available under the package manual. The model building
strategies would be similar to ones illustrated for the MSCMdata set. The only difference would be on
the model formulations, i.e.,logit should be replaced withlog and identity link functions for count and
continuous responses, respectively.

We fitted the traditional model of [14, 15] and compared the results with Model 1 by using themmm
package. We obtained identical results as expected.

4. A simulation study

4.1 Data generation

We conducted a simulation study to investigate the bias and efficiency of the estimates of the proposed
model. We reported mean, bias and mean squared error (MSE) ofthe estimates for this purpose.

Data were generated under the multivariate model of [20] with a probit link [24], to create within and
between response dependencies while generating data from the marginal modeling framework. This model
was proposed for multivariate longitudinal binary data. Itis a marginalized multilevel model with three
levels. The first level is nothing but a multivariate marginal model. The second and third levels are designed
to capture the serial and multivariate response dependencies, respectively. Due to page limits, we do not
give more details here; interested reader may refer to the cited references.

We mainly assumed that there are 300 subjects (i = 1, . . . , 300) who were followed repeatedly over
3 time points (t = 1, 2, 3). We further assumed that two binary responses (j = 1, 2) and two covariates
were measured for each subject at each time point. In the following discussion, subscripts are suppressed
whenever it is possible. The relationship between the responses and the covariates were specified by

P(Y = 1|X) = Φ(β0 + β1 ∗ X1 + β2 ∗ X2 + β3 ∗ X1 ∗ X2 + β4 ∗ rtype+

β5 ∗ X1 ∗ rtype + β6 ∗ X2 ∗ rtype + β7 ∗ X1 ∗ X2 ∗ rtype), (6)

via the first level of the data generation model. Here,Φ denotesprobit link function which is defined as
the cumulative distribution function of the standard normal distribution. X1 was taken as a time-varying
covariate which was generated byXt,1 = γ0 + γ1 ∗ Xt−1,1 + εt for t = 2, 3 with (γ0, γ1) = (0.2, 0.5),
ε1 ∼ N(0, 0.252), ε2 ∼ N(0, 0.152) and X1,1 ∼ N(0, 0.42). X2 was a time independent binary vari-
able following a Bernoulli distribution with success probability of 0.5. The rtype took 1 for the first
response (j = 1) and 0 for the second response (j = 2). The regression parameters were selected as
(β1, β2, β3, β4, β5, β6, β7) = (−0.5, 0.5, 0.9, 0.6, 0, 0, 0, 0). This configuration corresponds to the case where
intercept and all the covariate effects are shared across multiple responses. The associationparameters of
the data generation model, i.e., the parameters of the second and third level of the model, were set to have
moderate within-response and between-response correlations. For instance, the means of the correlations
were around 0.5 and 0.25 for these dependencies, respectively. Data sets were analyzed by two different
models, the most parsimonious (true model for this simulation study) and the most general model, under
several working correlation matrix choices. The simulation study was replicated 10,000 times. Probit analy-
sis was achieved viammm2 function by setting thefamily argument tofamily=binomial(link=probit).

4.2 Results
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Results of the simulation study are represented in Table 3. We reported the results of two main models.
The first one is the model which assumes that the intercepts and the covariate effects are shared across the
bivariate responses. The results of this model were placed under the columns named Parsimonious. Note
that this model is the true model in the sense of data generation. The second one assumes that the inter-
cepts and covariate effects are all response specific. The result of this model were placed under the columns
named Common. Both of these models were built under four different working correlation assumptions:
unstructured, exchangeable, AR(1) and independence. All of the models yielded essentially unbiased re-
gression parameter estimates under all of the working correlation assumptions. There seemed no apparent
difference between the estimates of the two models under any working correlation matrix choices in terms of
bias. However, in terms of MSE’s the parsimonious model seemed to be outperforming the common model
for all of the parameters. In fact, the MSE’s were almost doubled. For instance, forβ3, while the former
yielded estimates with an MSE of 0.051 under exchangeable structure, the latter model yielded estimates
with an MSE of 0.096. However, the working correlation matrix choices seemed not to differ in terms of
MSE’s. For instance, for the same parameter, the MSE’s of theformer model were found to be 0.046, 0.053
and 0.054 for the unstructured, AR(1) and independence working correlation matrices. Interestingly, the
common model yielded highest MSE’s forβ7 when compared to its MSE’s forβ4, β5 andβ6. The simulation
results seemed to be in agreement with the ones which we obtained from the MSCM data set applications.

[Insert Table 3 here.]

In the simulation study, we also included the traditional model in addition to the aforementioned two
models. Related results (not shown here) seemed to be supporting the ones obtained while analyzing the
MSCM data set, i.e., yielded same inferences with the commonmodel. The R codes of the simulation study
are available upon request from the authors.

5 Discussion and conclusion

In literature, it is common to consider separate covariate effects on multiple responses while constructing
multivariate models. However, this assumption might be often redundant and too restrictive. In this article,
we proposed a multivariate marginal modeling framework which permits building more flexible models. A
user-friendly R package,mmm2, was proposed to fit the model. Our modeling framework is not restricted
to a specific response family, but handles several of them. Last but not least, all of the features of marginal
model fitting with GEE are inherited for these multivariate models.

In this paper, we specifically considered first order GEE (GEE1) as proposed by [5], since our main
focus was on the marginal mean parameters, i.e., the dependency parameters are of secondary interest. This
version of GEE is known to yield inefficient estimates of the dependency parameters, since they are treated
as nuisance parameters. If the scientific interest is on the dependency parameters together with the marginal
mean parameters, second order GEE (GEE2 [25, 26]) or alternating logistic regressions [27] should be
preferred. Throughout the paper, we considered GEE1 and called it GEE.
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Table 1: List of the variables appear in the MSCM study and therelated explanations.
Variable Explanation
id id number of the mother and her child
stress mother’s stress status: 0=absence, 1=presence
illness child’s illness status: 0=absence, 1=presence
married marriage status of the mother: 0=other, 1=married
education mother’s education level: 0=less than high school,

1=high school graduate or more
employed mother’s employment status: 0=unemployed, 1=employed
chlth child’s health status at baseline: 0=very poor/poor,

1=fair, 2=good, 3=very good
mhlth mother’s health status at baseline: 0=very poor/poor,

1=fair, 2=good, 3=very good
race child’s race: 0=white, 1=non-white
csex child’s gender: 0=male, 1=female
housize size of the household: 0=2-3 people, 1=more than 3 people
bstress baseline stress: average value of the mother’s stress

status for the first 16 days
billness baseline illness: average value of the child’s illness

status for the first 16 days
week a time variable: calculated as (day-22)/7
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Table 2: Results of the MSCM data set application. Only robust standard error and Z estimates are reported.
While Models 1, 2 were fitted under exchangeable working correlation structure, Model 3 was fitted under
unstructured working correlation assumption.

Model 1 Model 2 Model 3
Est. (SE) Z Est. (SE) Z Est. (SE) Z

Intercept -2.14 (0.42) -5.15 -2.23 (0.36) -6.12 -2.58 (0.34) -7.49
married -0.01 (0.24) -0.02 0.25 (0.19) 1.34 0.22 (0.18) 1.19
education 0.36 (0.23) 1.62 0.19 (0.20) 0.94 0.25 (0.20) 1.27
employed -0.65 (0.25) -2.59 -0.43 (0.22) -1.95 -0.35 (0.22)-1.61
chlth -0.26 (0.13) -1.96 -0.34 (0.12) -2.88 -0.26 (0.11) -2.31
mhlth -0.17 (0.12) -1.39 -0.11 (0.11) -0.97 -0.18 (0.10) -1.73
race -0.02 (0.24) -0.06 -0.01 (0.18) -0.04 0.19 (0.18) 1.02
csex -0.04 (0.22) -0.20 0.02 (0.18) 0.10 0.05 (0.17) 0.30
housize 0.06 (0.24) 0.26 0.04 (0.23) 0.15 0.17 (0.23) 0.74
bstress 3.89 (0.71) 5.48 3.48 (0.67) 5.22 3.59 (0.65) 5.53
billness 0.86 (0.71) 1.21 1.52 (0.57) 2.65 1.51 (0.56) 2.68
week -0.43 (0.16) -2.65 -0.31 (0.14) -2.20 -0.36 (0.13) -2.72
rtype 0.56 (0.54) 1.04 0.89 (0.31) 2.91 1.03 (0.29) 3.55
married*rtype 0.50 (0.32) 1.57
education*rtype -0.42 (0.31) -1.35
employed*rtype 0.43 (0.38) 1.13
chlth*rtype -0.14 (0.17) -0.82
mhlth*rtype 0.20 (0.18) 1.12
race*rtype 0.04 (0.32) 0.11
csex*rtype 0.06 (0.29) 0.21
housize*rtype -0.63 (0.32) -1.95 -0.58 (0.30) -1.95 -0.78 (0.29) -2.63
bstress*rtype -3.83 (1.10) -3.50 -3.18 (0.99) -3.20 -3.79 (0.95) -3.99
billness*rtype 1.32 (0.88) 1.50
week*rtype 0.24 (0.26) 0.91
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Table 3: Results of the simulation study. Uns: unstructured, Exch: exchangeable, Ind: independence.
Parameter True Parsimonious Common

Uns Exch AR(1) Ind Uns Exch AR(1) Ind
Mean -0.526 -0.512 -0.518 -0.517 -0.526 -0.513 -0.519 -0.518

β0 -0.500 Bias -0.026 -0.012 -0.018 -0.017 -0.026 -0.013 -0.019 -0.018
MSE 0.005 0.004 0.004 0.004 0.008 0.008 0.008 0.008
Mean 0.459 0.444 0.472 0.473 0.462 0.447 0.474 0.475

β1 0.500 Bias -0.041 -0.056 -0.028 -0.027 -0.038 -0.053 -0.026-0.025
MSE 0.022 0.024 0.025 0.025 0.041 0.045 0.046 0.046
Mean 0.954 0.922 0.926 0.925 0.954 0.923 0.928 0.926

β2 0.900 Bias 0.054 0.022 0.026 0.025 0.054 0.023 0.028 0.026
MSE 0.011 0.008 0.009 0.009 0.018 0.016 0.016 0.016
Mean 0.648 0.684 0.669 0.669 0.650 0.686 0.675 0.671

β3 0.600 Bias 0.048 0.084 0.069 0.069 0.050 0.086 0.075 0.071
MSE 0.046 0.051 0.053 0.054 0.086 0.096 0.100 0.099
Mean -0.002 -0.003 -0.001 -0.003

β4 0.000 Bias -0.002 -0.003 -0.001 -0.003
MSE 0.014 0.014 0.014 0.014
Mean 0.000 0.001 0.001 0.001

β5 0.000 Bias 0.000 0.001 0.001 0.001
MSE 0.073 0.084 0.086 0.085
Mean 0.002 0.003 0.001 0.003

β6 0.000 Bias 0.002 0.003 0.001 0.003
MSE 0.028 0.029 0.029 0.029
Mean 0.001 0.001 -0.008 0.001

β7 0.000 Bias 0.001 0.001 -0.008 0.001
MSE 0.157 0.177 0.180 0.177
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