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Recently [1], an extension of the topologically massive gravity (TMG) in 2+1 dimensions,
dubbed as minimal massive gravity (MMG), which is free of the bulk-boundary unitarity
clash that inflicts the former theory and all the other known three dimensional theories,
was found. Field equations of MMG differ from those of TMG at quadratic terms in the
curvature that do not come from the variation of an action depending on the metric alone.
Here we show that MMG is a unique theory and there does not exist a deformation of TMG
or MMG at the cubic and quartic order (and beyond) in the curvature that is consistent
at the level of the field equations. The only extension of TMG with the desired bulk and
boundary properties having a single massive degree of freedom is MMG.

I. INTRODUCTION

One of the most promising approaches to a quantum theory of gravity is via the anti-de Sitter
(AdS)- conformal field theory (CFT) [2] correspondence where there is a boundary field theory
dual to the bulk gravity. In 2 + 1 dimensions, where gravity is somewhat less complicated, this
idea has been vigorously pursued in many different works. Einstein’s gravity with a cosmological
constant in 2 + 1 dimensions is locally trivial with no propagating degrees of freedom; therefore to
study a dynamical theory which might mimic realistic gravity and teach us something about four-
dimensional quantum gravity, the next option is to consider the parity-noninvariant topologically
massive gravity (TMG) which has a single massive graviton [3]. TMG with a cosmological constant
has two copies of Virasoro algebra, as its asymptotic symmetry algebra, in the two-dimensional
boundary of AdS3. In TMG, unitarity of the putative boundary CFT is in conflict with the
unitarity of the bulk theory except, ostensibly, at the chiral point where the problematic negative
central charge of the boundary field theory vanishes and the other central charge is positive [4]. But,
exactly at this point in the parameter space of couplings, there arise solutions with asymptotically
non-AdS (logarithmic) behavior which cannot be eliminated from the spectrum on solid physical
grounds except with ad hoc strong boundary conditions [5–7]. So apparently, TMG by itself does
not have a unitary dual CFT in asymptotically AdS spacetimes, and hence most probably is not
viable as a quantum theory (at least in the sense of AdS/CFT correspondence).

Another dynamical theory, new massive gravity (NMG) [8], a judiciously chosen quadratic ex-
tension of Einstein’s gravity and with two helicity-2 (albeit massive) degrees of freedom closer to
the four-dimensional gravity, also has the bulk-boundary unitarity clash and hence does not posses
the expected holographic description. Unfortunately, healthy deformations of NMG in the bulk,
such as the cubic, quartic [9] or infinite order ones [10–12] also suffer from boundary nonunitarity
and so probably lack a CFT dual.

With all these negative results, there seems to be an apparent impasse: Einstein’s gravity has a
healthy boundary structure [13] but suffers from bulk triviality and all the locally nontrivial theories
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seem to suffer from bad boundary behavior and so one may wonder if is it not possible to construct a
dynamical theory of gravity in 2+1 dimensions that is unitary both in the bulk and on the boundary.
It turns out that one can actually construct such a theory [1] once one gives up the condition that the
theory comes from the variation of an action which is purely defined in terms of the metric. (There
does exist an action in the first order, that is the dreibein and the spin-connection formulation
[1, 14]). Equations without a proper Lagrangian formulation are not unheard of in macroscopic
physics, but clearly this is a rather novel idea in microscopic phenomena. But (quantum) gravity
is so elusive that one must try many different routes to get a possible understanding of it. In [1]
keeping the bulk properties of TMG intact, a theory with an improved boundary behavior was
formulated in terms of consistent field equations. Namely, the field equations do not have a Bianchi
identity for generic smooth metrics, but they do satisfy a Bianchi identity for all solutions of the
theory. Therefore the theory is consistent as a classical one and can also be studied as a quantum
theory. Its bulk and boundary unitarity and chiral version and conserved charges were constructed
in [15, 16]. TMG’s deformation with two helicity-2 degrees of freedom was constructed in [17] called
MMG2, which also has unitary bulk and boundary properties for a large class of spacetimes.

The fact that MMG has these remarkable properties which the other three-dimensional theories
lack, begs the question if the theory is unique or if it is part of a large class of theories that are
defined by consistent field equations but do not come from the variation of an action. In this current
work, we show several things. First we prove that at the quadratic order in the curvature MMG is
the only possible deformation of TMG. Our proof will make the rather "magical" appearance of the
on-TMG-shell conserved J-tensor more intuitive. Then we move on to the cubic and quartic orders
in the curvature and show in detail that there does not exist a deformation of TMG or MMG with
a single massive degree of freedom. The Schouten identities satisfied by the powers of the Ricci
tensor guarantee that no new algebraically independent rank -2 tensors built with the powers of
the curvature arise beyond the quadratic terms and hence the proof is valid for all theories based
on the powers of the curvature and not its derivatives. [Note that if derivatives of the curvature are
introduced the problem turns into a separate one, diverging from the idea of extending the single
massive degree of freedom theories. MMG2 discussed above is an example of that.]

Our construction here basically answers the following problem. Let Eµν = 0 be the field equations

Eµν = σGµν + Λ0gµν +
1

µ
Cµν + γYµν = 0, (1)

where the Einstein and Cotton tensors read, respectively, as

Gµν = Rµν −
1

2
gµνR, Cµν = ηµ

αβ∇αSβν , (2)

and Sµν ≡ Rµν − 1
4gµνR is the Schouten tensor. The completely antisymmetric tensor is defined

in terms of the completely symmetric symbols as ηνρσ ≡ ǫνρσ/
√
− det g. The main question is to

find all the possible Y µν tensors which satisfy the on-shell conservation: Namely we demand the
on-shell Bianchi identity :

∇µε
µν = γ∇µY

µν = 0. (on shell) (3)

Let us study the problem order by order in the powers of curvature.

II. R2-EXTENSIONS

Let us assume that one has the most general quadratic tensor as

Y µν ≡ aSµν
2 + bgµνS2 + cSµνS + dgµνS

2, (4)
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where, not to clutter the notation, we have defined Sµν
2 ≡ Sµ

ρSρν and S2 ≡ SµνS
µν which will

come in handy when more powers of the tensors are constructed. The trace and divergence are,
respectively,

Y = (a+ 3b)S2 + (c+ 3d)S2, (5)

∇µY
µν =

(
(a+ c)Sρ

ν + (2d + c)Sδνρ

)
∇ρS + Sµρ

(
a∇µSρ

ν + 2b∇νSµρ

)
. (6)

For this vector to vanish on the TMG mass shell, we must turn the last part to a Cotton tensor,
which is possible only if a = −2b yielding

∇µY
µν =

(
(a+ c)Sρ

ν + (2d+ c)Sδνρ

)
∇ρS + aηλ

νµSµ
ρCρ

λ, (7)

and reducing the trace to

Y = bS2 + (c+ 3d)S2. (8)

Here the discussion bifurcates: If b 6= 0, then the modified theory does not preserve TMG’s property
that all solutions have ∇µR = 0. On the other hand, if b = 0, the modified theory keeps this
property of TMG intact. But in the latter case, no new theories arise beyond TMG since one has
theories are Yµν = cSµνS + dgµνS

2, which for constant S simply gives a shift of TMG parameters.
So we assume b 6= 0. In this case, in (7), the term with the Cotton tensor vanishes onshell (1). The
first term in (7) does not vanish unless one sets

a+ c = 0, 2d+ c = 0, (9)

which reduces, after fixing the overall coefficient as choose a = −1, the Yµν-tensor to the J-tensor
found in [1] as

Jµν = −Sµν
2 +

1

2
gµνS2 + SµνS − 1

2
gµνS2, (10)

which can be recast as Jµν ≡ 1
2η

µρσηντηSρτSση which has the following interesting properties. Its
trace is given as

J =
1

2

(
S2 − S2

)
, (11)

which is nothing but the the quadratic part of NMG, the theory that defines a massive spin-2
particle with two helicities. Quite remarkably, as noted in [17], the variation of the quadratic part
of NMG splits into two parts as

δg

∫ √
−g d3xJ ≡ Jµν +Hµν , (12)

where the H-tensor is

Hµν ≡ 1

2
ηµ

αβ∇αCβν +
1

2
ην

αβ∇αCβµ. (13)

Clearly one has ∇µH
µν = −∇µJ

µν = ηναβSασCβ
σ, and so it follows from (12) that J- and H-

tensors are not separately automatically covariantly conserved. But when the J-tensor is augmented
to TMG equations, one gets a consistent, on-shell, conservation, which can also be coupled to matter
consistently, albeit in a rather complicated way [18]. We would like to note the following observation:
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The H-tensor, when looked at with closer scrutiny, is nothing but the three-dimensional version of
the Bach tensor Bµν that measures whether the spacetime is a conformally Einstein manifold or
not in four dimensions. Namely, in n dimensions, the Bach tensor is given as

Bµν = ∇α∇βWµανβ +
1

2
RαβWµανβ , (14)

which in this form does not allow a three-dimensional analog since the Weyl-tensor (Wµανβ) vanishes
identically. But an equivalent form of the Bach tensor is

Bµν =
1

2
∇αCαµν +

1

2
RαβWµ

α
ν
β, (15)

where Cαµν is the three index Cotton tensor that serves as a "potential" to the Weyl-tensor and is
defined in any dimension as

Cαµν = ∇αRµν −∇µRαν −
1

2(n − 1)

(
gµν∇αR− gαν∇µR

)
. (16)

In three dimensions, one has

Cµν =
1

2
ηµ

αβCαβν , (17)

and hence follows the equivalence of the H- tensor and the three-dimensional version of the Bach
tensor. This is a rather unexpected result which says that when restricted to the conformally
Einstein (or conformally flat, which are the same in three dimensions ) metrics, the quadratic part
of NMG reduces to that of MMG. The quadratic part of NMG, without the Einstein term, was
studied in [19] as a separate model. Note that in four dimensions the Bach tensor is divergence free
but not so in other dimensions, including three dimensions.

Before we move on to the higher powers, let us give a rederivation of the uniqueness of MMG .

III. UNIQUENESS OF MMG

Suppose Xµν is a symmetric and divergence-free (∇µX
µν = 0) tensor, coming from the variation

of an action purely based on the metric. For the X-tensor to be divergence free, the action has
to be diffeomorphism invariant at least up to a boundary term as in the case of TMG. We shall
denote the traces without and index as X ≡ Xµνg

µν . Using this tensor, we can build a symmetric
two-tensor quadratic in our given tensor as

Y µν ≡ 1

2
ηµρσηντηX̃ρτ X̃ση , (18)

where X̃ση = Xση + a gσηX with a real number for now. Note that with just one single parameter,
the above Y -tensor is in a specific form: The most general quadratic form reads

Yµν ≡ Xρ
µXρν + c1gµνXρσX

ρσ + c2XµνX + c3gµνX
2. (19)

But taking this second form simply extends the length of the following computations eventually
resulting to the same conclusion. Using

ηµσρηναβ = −δµν

(
δσαδ

ρ
β − δσβδ

ρ
α

)
+ δµα

(
δσνδ

ρ
β − δσβδ

ρ
ν

)
− δµβ

(
δσνδ

ρ
α − δσαδ

ρ
ν

)
, (20)
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it is easy to show that (18) has all the required tensor structures in it. Hence, we shall start with
it. Then one has X̃ = (1 + 3a)X, and the divergence of X̃ση reads

∇σX̃
ση =

a

(1 + 3a)
∇ηX̃. (21)

Using this, one can compute the divergence of Y µν as

∇µY
µν = ηµρσηντηX̃ρτ∇µX̃ση ≡ ηνητ X̃ρτZη

ρ. (22)

where we defined a new tensor Zµν as

Zµν = ηµαβ∇αX̃β
ν . (23)

Let us now check the properties of the Z-tensor. It is traceless, but it is not automatically symmetric
as can be seen from

ηµνσZ
µν = −∇νX̃σ

ν +∇σX̃. (24)

But with the choice a = −1
2 , Zµν becomes symmetric. So we make this choice which yields

X̃ση = Xση − 1
2gσηX and X̃ = −1

2X . With these, one can compute the divergence of Zµν as

∇µZ
µν = ηναβRαλX̃β

λ = ηναβGαλX̃β
λ = ηναβSαλX̃β

λ, (25)

which is clearly nice as we have started to see the tensors related to the metric, i.e. the Einstein
or the Schouten tensor. The last equation vanishes without the use of any field equation (which we
have not yet introduced) if X̃β

λ is of the form

X̃β
λ = a0δβ

λ + a1Sβ
λ + a2S2β

λ + a3S3β
λ + a4S4β

λ +

∞∑

i=5

aiSiβ
λ. (26)

Note that we do not introduce any derivative terms, as they will bring in extra propagating degrees
of freedom when we build our field equations. We have separated the powers beyond 4 as they will
not yield independent two-tensor structures, due to the Schouten identities, as shown below. And
moreover, for this section, let us stay at the quadratic order and deal with the cubic and quartic
order terms in the next section. So X̃ reads

X̃ = 3a0 + a1S + a2S2. (27)

From Xση = X̃ση − gσηX̃, one obtains the X-tensor as

Xση = −2gσηa0 + a1(Sση − gσηS) + a2
(
S2ση − gσηS2

)
, (28)

or in terms of Einstein tensor, one has

Xση = −2gσηa0 + a1Gση + a2
(
Gσ

µGµη +
R

2
Gση +

R2

8
gση − gσηG

2
µν

)
. (29)

We assumed that the covariant divergence of Xµν vanishes which is possible if and only if a2 = 0.
Then the Zµν reads

Zµν = a1C
µν , (30)

which leads to

∇µY
µν = ηνητ X̃ρτZη

ρ = a1η
νητ (a0gρτ + a1Sρτ )Cη

ρ, (31)

which vanishes on shell for the field equations

Cµν = c1gµν + c2Sµν + c3Yµν , (32)

which is just MMG with Y µν = Jµν proving the uniqueness of the theory at the quadratic order.
Let us now move on to the cubic and quartic powers.
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IV. R3 AND R4 EXTENSIONS ?

A. R3 extension

Suppose we have the following deformation of TMG and MMG,

σGµν + Λgµν +
1

µ
Cµν + γ1Jµν + γ2Kµν = 0, (33)

with the most general two-tensor Kµν built from the powers of the Ricci tensor and not from its
derivatives. (Needless to say, since the Ricci and Riemann tensors are double duals of each other
in three dimensions, one does not consider the Riemann tensor.) Therefore, one has the following
tensor:

Kµν ≡ a1Rµν
3 + a2g

µνR3 + a3RRµν
2 + a4R

µνR2 + a5g
µνRR2 + a6R

µνR2 + a7g
µνR3. (34)

We should note that one can eliminate one of the terms since not all of these, ostensibly, algebraically
independent terms are actually independent. The quickest way to see this is to use the Cayley-
Hamilton theorem. At the end of this discussion, we shall make use of this theorem, but for now,
let us proceed with this form of the K-tensor. Its trace is reads

K = (a1 + 3a2)R3 + (a3 + a4 + 3a5)RR2 + (a6 + 3a7)R
3, (35)

and its covariant-divergence can be computed as

∇µKµν = ∇µR

(
(a1 + a3)Rµν

2 +
(3a3

4
+ 2a6 +

a4
2

)
RRµν +

(a4
2

+ a5 +
3a2
4

)
gµνR2

+
(a5
2

+
a6
2

+ 3a7

)
gµνR

2

)
+Rαρ

2

(
3a2∇νSρα + a1∇αSρ

ν
)
+RµνRαβ

(
a1∇αSβµ + 2a4∇µSβα

)

+RRµρ
(
a3∇µS

ν
ρ + 2a5∇νSµρ

)
.

(36)

For this divergence to vanish on shell of the theory (33), one must see the appearance of the Cotton,
Einstein or the J-tensors. For this purpose, one should turn the last three terms into the Cotton
tensors and the terms multiplying ∇µR to the J-tensor. These, respectively, can be achieved if one
sets

a1 + 2a4 = 0, a1 + 3a2 = 0, a3 + 2a5 = 0, (37)

and

a1 + a3 = k, a3 +
8

3
a6 +

2

3
a4 = −k, a4 + 2a5 +

3

2
a2 = −k a6 + a5 + 6a7 =

5

8
k. (38)

These reduce the divergence of the Kµν -tensor to

∇µKµν = kJµν∇µR+ a1ηλ
ναRαβR

β
ρC

λρ + a1ηλµαR
µνRαβC

λβ + a3ηλµ
νRRµρCλ

ρ, (39)

where we have also made use of (16) and (17). The penultimate term vanishes due to symmetries,
and one can combine the remaining two terms that have Cotton tensor using the three-dimensional
identity valid for any vector ξµ,

ηλναξρ = gλρηβναξβ + gνρηλβαξβ + gαρηλνβξβ, (40)
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as

ηλ
ναRβ

ρ = δβλη
σναRσρ + gνβηλ

σαRσρ + gαβηλ
νσRσρ, (41)

to arrive at

∇µKµν = k

(
Jµν∇µR+ ηλµ

νRRµρCλ
ρ

)
. (42)

The trace reduces to a simple expression in terms of the trace of the J-tensor as

K = −k

2
R
(
R2

αβ − 3

8
R2
)
= −kRJ. (43)

The last two equations are all we need to find the K-tensor that could possibly vanish on the TMG
or MMG shell. It is important to realize that the number k plays a crucial role here. If k = 0, then
clearly without using the field equations. Kµν is conserved, and it is traceless. Explicitly one has

Kµν = Rµν
3 − 1

3
gµνR3 −RRµν

2 − 1

2
RµνR2 +

1

2
gµνRR2 +

1

2
RµνR2 − 1

6
gµνR3. (44)

But this is a red herring: as the Cayley-Hamilton theorem shows, this tensor is identically zero.
Now consider a 3× 3 matrix A; then this matrix satisfies the same equation as its eigenvalues :

A3 − (TrA)A2 +
1

2

[
(TrA)2 − Tr(A2)

]
A− det(A)I3 = 0. (45)

Taking the trace of this equation, one has the determinant in terms of traces as

detA =
1

6

[
(TrA)3 − 3Tr(A2)(TrA) + 2Tr(A3)

]
. (46)

These two equations for the matrix A = (Rµ
ν ) yield Kµν = 0. The second option is to consider

k 6= 0, and then in (42), the second term vanishes both on the TMG and MMG mass shell, but
the first term does not vanish. One could ask whether the theory, as in TMG, requires ∇µR = 0,
which is not so,as is clear from the trace equation (43). Hence, there does not exist a nontrivial
tensor cubic in the curvature that could be used to deform TMG or MMG while keeping its single
particle content intact.

B. R4 extension

The most general two-tensor built with the powers of the Ricci tensor is

Lµν = a1Rµν
4 + a2Rµν

2 R2 + a3RRµν
3 + a4R

2Rµν
2 + a5R

µνR3 + a6R
µνR3

+a7R
µνRR2 + a8g

µνR4 + a9g
µνRR3 + a10g

µνR2R2 + a11g
µνR4 + a12g

µνR2
2.

(47)

Due to Schouten identity and the fact that Kµν is zero, not all terms are linearly independent in
this tensor, but we shall work with this general form and eliminate the dependent terms later. Then
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its divergence follows as

∇µLµν =

(
(
5

4
a1 + a3)Rµν

3 + (
3

4
a2 +

3

4
a6 + a7)R

µνRµν
2 + (a3 + 2a4 +

1

2
a2)RRµν

2

+(
3

4
a4 +

1

2
a7 + 3a5)R

2Rµν + (
1

2
a5 + 4a11 +

1

2
a10)g

µνR3+

(
1

2
a6 + a9 + a8)g

µνR3 + (
1

2
a7 + a12 + 2a10 +

3

4
a9)g

µνRR2

)
∇µR

+RµαR2(a2∇µSα
ν + 4a12∇νSµα) +RRµ

2 β(a3∇µS
βν + 3a9∇νSµ

β)

+RRµαRβν(a3∇µSαβ + 2a7∇βSαµ) +R2Rµα(a4∇µSα
ν + 2a10∇νSµα)

+Rµ
2 βRρ

ν(a1∇µS
βρ + 3a6∇ρSµ

β) +Rµρ
3 (a1∇µSρ

ν + 4a8∇νSµρ)

+RµαRνβ
2 (a1∇µSαβ + 2a2∇βSαµ).

(48)

The terms in the last four lines can be written in terms of the Cotton tensor only if the numerical
parameters are related as

a2 = −a1
2
, a6 = −a1

3
, a7 = −a3

2
, a8 = −a1

4
, a9 = −a3

3
, a10 = −a4

2
, a12 =

a1
8
. (49)

The terms multiplying the derivative of the curvature scalar gives rise to the J-tensor when the
parameters are tuned as

5a1
4

+a3 = −k a3−
1

4
a1+2a4 =

3k

4
, −1

4
a3+3a5+

3

4
a4 = −5k

16
, −1

4
a4+

1

2
a5+4a11 =

17

192
k. (50)

This linear equation set is solved for all ai in terms of a1 and k, upon use of which one arrives at
the divergence as

∇µLµν = k

(
RµαJα

ν − 1

3
gµν(RαβJαβ − 1

8
RJ)

)
∇µR+

(
1

2
a1R2 + (

k

8
+

a1
2
)R2

)
∇µJ

µν

−a1RRµν∇αJ
α
µ + a1ηk

ν
µRµρ

3 Ck
ρ,

(51)

and the trace as

L =
k

8
R2J. (52)

From the trace, we learn that in general the curvature scalar will not be constant since the J-tensor
has the square of the Ricci tensor in it, and hence we must set k = 0 for the first term in the
divergence to vanish since the term in the parentheses is not generically zero. The other terms in
(51) vanish on shell. Once again, we seem to have gotten an on shell-conserved tensor, but it turns
out that this tensor given as

Lµν = Rµν
4 − 1

2
Rµν

2 R2 −
5

4
RRµν

3 +
3

4
R2Rµν

2 − 7

24
RµνR3 − 1

3
RµνR3

+
5

8
RµνRR2 −

1

4
gµνR4 +

5

12
gµνRR3 −

3

8
gµνR2R2 −

1

12
gµνR4 +

1

8
gµνR2

2.
(53)

is identically zero, if one uses the fact that RµρKµ
ρ = 0 which yields

Rµν
4 =

1

3
RµνR3 +RRµν

3 +
1

2
Rµν

2 R2 −
1

2
RµνRR2 −

1

2
Rµν

2 R2 +
1

6
RµνR3, (54)
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and its trace

R4 =
4

3
RR3 +

1

2
R2

2 −R2R2 +
1

6
R4. (55)

Since Lµν = 0 identically, there are no nontrivial quartic extensions of TMG and MMG. Beyond
the quartic order, it is easy to show that all the possible rank-2 tensors built form the powers of
the curvature can be written in terms of the lower order ones [20]. To see this, let us denote the
traceless Ricci tensor as R̃µν ; then one has

δν1ν2ν3ν4[µ1µ2µ3µ4]
R̃µ2

ν1
R̃µ3

ν2
R̃µ4

ν3
R̃µ1

ν4
=

1

4
R̃4 −

1

8
R̃2

2 = 0, (56)

where the bracket represents the total antisymmetrization. The result is just the same as (55)
written in the traceless tensors. The more important object is the rank-2 tensor

δν1ν2ν3ν4[µ1µ2µ3µ4]
R̃µ2

ν1
R̃µ3

ν2
R̃µ4

ν3
R̃µ

ν4
R̃µ1

ν =
1

4
(R̃5)

µ
ν − 1

8
R̃2(R̃3)

µ
ν − 1

12
R̃3(R̃2)

µ
ν = 0, (57)

which proves the claim. Therefore, there does not exist a nontirvial on TMG-shell conserved rank-2
tensor beyond the quadratic one already found in [1].

V. CONCLUSIONS

In this work, we have made an exhaustive search of possible deformations of the topologically
massive gravity beyond the minimal massive gravity, with the condition that the single massive
degree of freedom is intact, and have shown that no such deformations exist. Minimal massive
gravity is a rather unique theory improving the boundary behavior of TMG while keeping its bulk
properties intact. Therefore it is a candidate model which might have a dual unitary boundary
conformal field theory unlike the other three-dimensional gravity theories. The model has been
subject to recent works both in terms of classical solutions and in terms of semiclassical analysis
besides the ones we quoted before in [21–27]. With this work, we have also shown that it is highly
difficult to construct on-shell conserved rank-2 tensors in three dimensions, a question which needs
to be studied in higher dimensions. It would also be of some interest to extend these models to the
ones with two massive degrees of freedom, extending the work initiated in [17].
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