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Abstract: The frequency-modulated continuous wave (FMCW)-based frequency diverse array (FDA) radar concept is extended
to two dimensions (2D). The radar operates as a linear pulsed FMCW/FDA in the transmission (TX) mode while it operates as a
pulsed FMCW/phased array (PA) in the receiving mode. It is shown that the FDA has the capability of scanning a 2D angular
sector in a single pulse TX. It is shown that local instantaneous frequency bandwidth is much smaller than the radiofrequency
(RF) frequency deviation of linear frequency modulation. Positive and negative slope TX/RF locations offer frequency diversity.
The low signal-to-noise ratio of FDA is well compensated due to target temporal decorrelation diversity in the observation time
and by the cumulative detection scheme used. Time domain and frequency domain signal processings are described. A Ku-
band direct digital synthesis-based FDA radar design is compared by a corresponding equivalent PA radar.

1 Introduction
The frequency diverse array (FDA) concept [1, 2] was extended to
a frequency-modulated continuous wave (FMCW)-based FDA in
[3]. The FDA effect was obtained by applying a linear frequency
modulation (LFM) chirp signal to the elements of a linear uniform
array by progressive physical time delays Tℓ, which was restricted
to small values < 1 ns to reduce the size of the transmission (TX)
lines. For space scanning, a two-dimensional (2D) linear FDA [4]
was considered where the antenna beam scans, in particular, space
trajectories. Here, we propose to use a hybrid direct digital
synthesis (DDS) FMCW-based FDA to scan a 2D angular space. In
Fig. 1, Tℓx and Tℓz are the progressive delays of the LFM applied
to the antenna elements along x- and z-directions, respectively. The
chirp length is τ and the radiofrequency (RF) frequency band width
(FBW) is Δ f . The chirp slope is μf = ± Δ f / τ. For Tℓz ≫ Tℓx, a
2D angular space scanning property of the FDA beam occurs. The
FDA concept is used in TX only. In receiving (RX) digital beam
forming (DBF) with phased array (PA) is proposed. A multiple
pulsed FMCW/FDA radar in Ku-band is designed to illustrate the
basic concepts such as fast scanning of 2D angular space in slow
time. A cumulative radar detection scheme is proposed to
overcome the low signal-to-noise ratio (SNR) of the FDA. The
SNR for FDA per angle per pulse is smaller than that for PA by the
energy ratio defined by rE = Eo

PA/Eo
FDA ≅ N ⋅ Kz, where

Kz = Δ f Tℓz. We have also Kz ≫ Kx = Δ f Tℓx. Moreover, the
temporal decorrelation of the target in the long observation time
provides a diversity gain. The local positions of the TX/RF for ±

slopes for an angle are different, which gives an additional
frequency diversity (FD). 

Moreover, the bandwidths associated with a particular angle is
much smaller than Δ f . It is shown that for the example given, the
FDA radar has less 2D angular scanning time and total energy-time
product than that of the corresponding PA radar.

2 Theory
A linear 2D array with M and N equidistant elements along x and z
directions, respectively, is shown in Fig. 1. Each row in the x-
direction is fed by DDS oscillators with delays Tℓz. Along the x-
direction, the elements are connected by corporate fed TX lines
with delays m Tℓx. The retarded time TX voltage at P Ro, ϑo, φo

due to an antenna element at x, z mn = m ⋅ d, n ⋅ s  can be
expressed by

Vmn t = amnexp j ωot′mn +
μ

2
tmn
′2 ⋅ P t′mn, τ (1)

where μ = 2πμf. ωo = 2π f o is the carrier frequency, amn is the
element weight. The frequency in (1) is ω t = ωo + μt for the
μ > 0 (+ slope) and ω t = ωo + μt + 2πΔ f  for the μ < 0 (- slope).
tmn′ = t − Rmn / c − mTℓx − nTℓz. c is the velocity of light.
P t, τ = 1 for 0 ≤ t ≤ τ and 0 elsewhere. At P Ro, ϑo, φo ,
Rmn ≅ Ro − m dsin ϑocos φo − nscos ϑo. Thus, the TX field can be
shown to be

ETX t′ ≅ A t′ ∑
m = 0

M − 1

am ejmγx t′ ∑
n = 0

N − 1

bn ejnγz t′ (2)

where

A t′ =
f e ϑo, φo

Ro
P t′, τ ej ωot′ + (μ/2)t′2 , f e ϑo, φo

is the wide band element pattern. t′ = t − Ro/c is the retarded time.
The + slope phase factors can be expressed by

Fig. 1  Linear 2D array with far field point
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γx
+

t′ = − 2πνox
t′
Tf

+ 1 ; γz
+

t′ = − 2πνoz
t′
Tf

+ 1 (3)

νox = f oTℓx −
d

λo
sin ϑocos φo; νoz = f oTℓz −

s

λo
cos ϑo (4)

λo is the wavelength. Tf = f o/μf. For the - slope, we add η = Δ f / f o

(relative RF FBW) into the parentheses in (3). For am = bn = 1,
the summations in (2) become

FM = ej(M − 1)γx/2sin Mγx/2 / sin γx/2 (5)

FN = ej(N − 1)γz/2sin Nγz/2 / sin γz/2 (6)

As the chirp signals arrive at elements at t = mTℓx + nTℓz the array
is filled up at Tfill = N − 1 Tℓz. The LFM chirps applied to
antenna elements are shown in Fig. 2. The fill time of the array
should satisfy Tfill ≪ τ. 

The build-up time (BUT) of the peak TX signal is obtained
from (5) and (6) by setting γx, z to = 2π p, q ; p, q ∈ ℤ

tox
+ = Tf ⋅

− p

νox
− 1 > 0; toz

+ = Tf ⋅
−q

νoz
− 1 > 0 (7)

For μ < 0, we add −η into the parentheses in (7). We should have
0 ≤ to′ ≤ τ , which leads to qmin ≤ q ≤ qmax, and
qmin = − CE 1 + η νoz qmax = − CE νoz , where CE stands for the
ceiling integer. For a particular ϑo there is a finite set of values q.
The BUT's of FM and FN must coincide. Equating tox

± = toz
±  yields

cos φo = f oTℓx −
p

q
⋅ νoz /

d

λo
sin ϑo (8)

This equation is solved for each value of q in the set for
−CE 1 + η × ( f oTℓx + s/λo) ≤ p ≤ − CE f oTℓx − s/λo  and
constraining cos φo ≤ 1. This procedure associates a φo value with
each q. It is found that p = − CE f o Tℓx .

3 Numerical example
The FDA parameters are chosen with regard to the best waveforms
and maximum 2D coverage The parameters are
f o = 15.15 GHz, d /λo = s/λo = 0.5, M = 8, N = 5, τ = 1 ms,
Tℓx = 0.2436 ns, Tℓz = 2.04 ns and Δ f = 2999.7 MHz. Then, we
have η = 0.198, Tf = ± 5.051 ms, Tfill = 8.2 ns, f oTℓx = 3.6905,
and f oTℓz = 30.906. For a chosen cone angle of ϑo = 85°, we have
six values of q, i.e. q ∈ −36, − 35, …, − 31 .

Then, the corresponding BUTs for 0 < toz
+ < τ are found as

toz
+ ∈ 0.84, 0.68, 0.51, 0.35, 0.19, 0.023 ms.

For ϑo = 85°, p = − 4,
φo ∈ 58.4, 70.8, 83.1, 95.8, 109.6, 125.8 °. We have chosen Taylor
tapering weights am in M for SLL m = − 20 dB, n

~
m = 3 and

bn = 1. The azimuth antenna beam widths (BWs) are
φoBW = 14.5, 13.4, 13.1, 13.5.14.7, 17.8 °. The elevation BWs
corresponding to the azimuth values in the φo set are
ϑoBW = 17.4, 17.8, 18.3, 18.8, 19.4, 20.0 °. Thus, the total
angular coverage is ϑo: ∼ 76° → 95° vertical and
φo: ∼ 58° → 126° azimuth yielding six number of φo TX beam
positions Nb . If we increment the cone angle ϑo as
ϑo ∈ 48, 66, 85, 103, 118, 132 °, ϑoBW and φoBW BWs do not
leave a gap with < − 3 dB taper. The corresponding φo Nb′s is six
for each ϑo. Thus, the total Nb′s is 36. The general coverage is
ϑo: ∼ 38° → 143° and φo: ∼ 30 ° → 134°, which is shown in
Fig. 3. The dots correspond to the angles at which the BUT is a
multiple of CE(Tnn) ≅ 67 μs, where Tnn is the null-to-null time BW
(TBW). At these points, multiple targets can be distinguished
unambiguously in time. 

The horizontal blue lines correspond to the cone angle ϑo set.
We can show that the null-to-null TBW Tnnz of FN is expressed by
Tnnz = 2 Tf / N νoz ≅ 2τ / Kz N . For FM, we have
Tnnx = 2 Tf / M νox ≅ 2τ / Kx M , where the constants are
Kz = 6.119 and Kx = 0.731. Kz approximately shows the number
of φo antenna beams for each ϑo and also the number of time
waveforms in τ. For ϑo = 85°, we have Tnnz = 66 μs and
Tnnx ∈ 368, 358, 348, 337, 327, 317 μs. In Fig. 3, we have
Tnn ≅ Tnnz = 66 μs and each BUT corresponds to a different value
of φo. The time waveforms are shown in Fig. 4. 

For the - slope, the results are the same except that the timings
of the waveforms are reversed. The rate of rotation of the peak is
found from (7) as

Ωϑo
=

∂ϑo

∂t
=

νoz
2

qTf (s/λo)sin ϑo
≅

sign μf Kz

τ(s/λo)sin ϑo
(9)

Ωφo
=

∂φo

∂t
=

νox
2

pTf (d /λo)sin ϑosin φo

≅
sign μf Kx

τ(d /λo)sin ϑosin φo

(10)

Since Kz ≫ Kx, we have Ωϑo
≫ Ωφo

. A separate very similar RX
PA antenna with sufficient isolation receives the echo signal from a
target. The RX signal is obtained by mixing (dechirping) the
received echo by a coherent local oscillator (LO) chirp with

Fig. 2  LFM chirps for antenna elements
 

Fig. 3  General coverage diagram
 

Fig. 4  Normalised time-waveforms at ϑo = 85
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duration τLO ≥ τ + Tdo + Tfill − TLO, where TLO is the time offset
for the beat frequency (BF) ωbo = 2π f bo = μ Tdo − TLO . The base
band signal is the same as the classical FMCW signal with an FDA
envelope

V
+

t′ ≅ Vo t ∑
m = 0

M − 1

am ejmγx
+ t′ ∑

n = 0

N − 1

bn ejnγz
+ t′ (11)

Vo t = Vo ejψ t′ P t′, τ , t′ = t − Tdo and ψ t ≅ ωbt with the
effective BF ωb = ωbo + ωdo and ωdo = 2π f do = 2ωovtg/c  is the
Doppler frequency (DF) for an outgoing target with radial velocity
vtg > 0. Vo is the complex amplitude containing the amplitude and
phase of the radar RX/RX functions and the propagation path. The
Fourier transform ℱT  of V+

t′  is

V
~+

ω = V̄o ∑
m = 0

M − 1

∑
n = 0

M − 1

ambn e− j2π Ψmn + (ω̄τ /4π) sin ω̄τ /2
ω̄τ /2

(12)

V̄o = Voτ e− jωTdo, Ψmn = mνox + nνoz, ω̄ = ω − ωb + ωmnf and
ωmnf = m ωfx + nωfz. The spectral components (SCs) are
ωfx = 2πνox/Tf ≪ ωfz = 2πνoz/Tf. For the - slope, Ψmn is replaced
by 1 + η Ψmn. The centre frequency of the m, n th SC is
ω̄mnc = ± ωbo + ωdo − ωmnf. The SCs are orthogonal if Kz and Kx

are integers. In this case, the peak of a SC coincides with the
nearest Kz, x

th  null of the adjacent one. Here Kz = 6.119 and
Kx = 0.731. Thus, there is approximate spectral orthogonality. In
the frequency domain ℱD , the FBW is given by

ωBW = M − 1 ωfx + N − 1 ωfz

+
2π

τ
≅

N − 1 Kz + 2
τ / 2π

(13)

ωBW = 2π f BW. If two targets are separated by ΔRo such that their
Fourier spectra ℱS′s  are adjacent to each other, then we should
have the BF increment Δ f bo = f BW, which leads to
ΔRo = τ f BWc/ 2Δ f ≅ N − 1 cTℓz/2 + c/Δ f . In the present case,
f BW = 31.2 kHz and ΔRo = 1.573 m. The time periods of the FN

and FM waveforms at an angle ϑo are Tpz = Tf /νoz ≅ τ /Kz < τ and
Tpx = Tf /νox ≅ τ /Kx > τ. For ϑo = 85°, Tpz = 0.16 ms and
Tpx = 1.27 → 1.47 ms. Thus, only the first peaks of FM coincide
with the periodic ∼ Kz peaks of FN in τ. The difference of the
BUTs for the ± slopes is Δto = toz

+ − toz
− = − Tf 2q/νoz + 2 + η ,

which can be solved for ϑo using the conditions q ≅ − CE f oTℓz

and cos ϑo = f oTℓz + q/ 1 + 0.5(Δto/ Tf + η) < 1. φo is found
from cos φo = f oTℓx + p/ 1 + 0.5(Δto/ Tf + η)  using the
conditions p ≅ − CE f oTℓx  and cos φo < 1. The sum of the time
of arrivals for ± slopes is a function of range only. The sum
Σto = toz

+ + toz
− = 4Ro/c + Tf η. The range resolution in the time

domain TD  is not realistic since ΔRo Tnn = cTnn/4 = 5 km is
very large. Thus, the range should be found from the ℱD
processing. For multiple targets, the angles should be determined
by RX beams.

Two targets at points Ro1, ϑo1, φo1 and Ro2, ϑo2, φo2 may have the
same time of arrivals, i.e. Tdo1 + toz1

+ = Tdo2 + toz2
+ . The difference

between the ranges is from Δtoz1
+ = toz1

+ − + toz2
+ ,

ΔRo21
+ = Ro2 − Ro1 = cTf /2 q1/νoz1 − q2/νoz2 . At ϑo, we have

ΔRo21
+ ≅ cTf /( f oTℓz) s/λo sin ϑosin ϑoBW/2 , where the target

angles are ϑo1, 2 = ϑo ∓ ϑoBW/2. Since ΔRo21
+ ≫ ΔRo, these targets

cannot be distinguished in TD and the angle finding algorithm
described above will not work. However, in ℱD, they will be
separated by Δωb12 , hence ΔRo will work. The ℱT of the FDA
waveform for uniform weights for two targets separated by ΔRo is
shown in Fig. 5. For the - slope, the edges related to m = M − 1
and n = N − 1 shift to the right of the edges for m = n = 0. The BF
due to the range and +DF due to – velocity (closing in target) shifts
the spectra as shown in Fig. 6. The BF is large as the slope
μ f = ± 2.9997 MHz/μs is very steep. For Ro = 2 km,
Tdo = 13.34 μs and f bo = 40.02 MHz. For TLO = 13.3 μs, it is
reduced to f bo = 37.7 kHz. The BFs are f b ± = f bo ± f do. By
measuring f b ± , we can obtain both f bo and f do, which enables us to
find both Ro and vtg. The measurement accuracy depends on
SNR = Eo/ ηo, where Eo is the energy of the FDA waveform and
ηo = kTs is the noise spectrum density, k is the Boltzmann's
constant and Ts is the noise temperature in Kelvin. Eo is the area of
the square of ℱS and for uniform weights Eo = 53.9 mJ/Vo

2 . Also,
Eo ≅ M

2
NVo

2
τ /Kz. Finding the coherent average of ℱT recovers

Eo. This procedure is a matched filtering in ℱT domain. As the
chirps are coherent for Swerling I (SW I) targets, Doppler filters
(DFL) are formed by applying another ℱTD for N− coherent ±
pulses. This is the 2D ℱT used in FMCW radars [5]. N− ± slope
pulses are shown in Fig. 7. Tg > Tdo is required for dechirping and
pulse sampling. The phase of the nth pulse is given by
ψn t′ + n − 1 T = ωbnt′ + αn + Φd, where 0 ≤ t′ ≤ τ,
ωbn = ωbo + ωdo + Δϖbn, Δϖbn = μ n − 1 vtgT

αn = − Δϖbn 2Ro/c + n − 1 vtgT /c  and Φd = n − 1 ωdo. 
Then, in (11) and (12), ψ → ψn and V

~+
ω
~ → V

+
ω − ωbn .

V
~+

ω − ωbn  and ℱTD should be found by a discrete ℱT; ω = ωi;
i = 1, …, imax, which is the total number of samples

V˘
ki = ∑

n = 0

N− − 1

V
~

ωi − ωbn e− j2π n − 1 k/N− − jαn (14)

Fig. 5  ℱT spectrum for + slope and ϑo = 80°; φo = 83.1°

 

Fig. 6  ℱT spectrum for ± slopes with range and Doppler
 

Fig. 7  Periodic coherent ± slope N− radar pulses
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forms for k = 0, 1, …, N− − 1, N− DFL's with period 2π /T , the
null-to-null BW 4π / N−T  and the centre frequency
ωck = 2πk/ N−T . The inclusion of αn implies velocity
compensated DFL. This requires a velocity estimation, which can
be achieved either from the ± slope range ℱT or forming complex
signal Vcn t′ = Vn t′ + jV

^

n t′ , where V
^

n t′  is the Hilbert
transform of Vn t′ . If Φn is the phase of Vcn t′ , we can show that
ΔΦn = ψn + 1 − ψn ≅ ωdoT . We have found that αn can be ignored in
most cases for N− ≲ 32.

4 Radar example
The size of the TX/RX antenna is ∼ 8 cm × 5 cm. The patterns for
wide band microstrip patch elements are shown in Fig. 8. The
antenna gain is GA = 21.3 dB. The parameters other than those
given in Section 3, are N− = N−

FDA = 8 coherent pair of ± pulses
form a burst. There are n−

FDA = 24 non-coherent bursts. Tg = 250 μs
and Tp = 2500 μs. The duty cycle is 80%. The radar range equation
for noise only can be written as

SNR =
Eot

rE k Ts
⋅

GA
2
σs λo

2
LtLa

4π
3
Ro

4 =
D1 ⋅ Lx

IN−
⋅ Gi ⋅ Gdiv

(15)

Eot = 2Ptτ; 2Pt = 10 W. rE = 29.68 is the energy ratio. Lt = 2 dB is
the TX loss, La = 0.096 dB is the atmospheric loss. Ro = 2 km. The
noise energy is kTs = 9.16 × 10−18 mJ. 

We consider a SW I target of radial extent Ltg = 1 m and radial
velocity vtg = − 25.72 m/s with RCS σs = 0.1 m2 and decorrelation
time Tctg ≅ 100 ms [6]. In TX modules, N = 5 DDS oscillators will
provide the delays Tℓz and outputs should be upconverted to f o.
The delays Tℓx will be provided by TX lines on a substrate with a
high-dielectric constant. In the RX modules, LO down conversion
to the base band and signal processing based on 2D ℱT should be
combined with DBF. We need Nb = 36 RX beams to cover the 2D
angular space. The FDA TX beam scans this sector in Tp. In (15),
Lx = 3 dB is the processing loss. IN−

 is the SNR improvement
factor of cascaded single delay line canceller filter and DFL. vtg

and Tp are chosen for maximum IN−
= 8.533. The DF is

f do = 2.6 kHz. For TLO = 13.276 μs, f bo = 200 kHz. The sampling
frequency is f s ≥ 2 f bo. D1 is the detectability factor for a SW I
target in noise expressed by D1 = loge Pfa /loge Pd − 1, where Pd

is the probability of detection and Pfa is the probability of false
alarm. The coherent integration time is CTIFDA = 22.26 ms. Since
Ltg ≤ ΔRo − vtg CTIFDA ≅ 1 m, the target will remain within ΔRo in
CTIFDA. The frame time (FRT) for n−

FDA bursts is
FRTFDA = n−

FDACTIFDA ≅ 534.3 ms in which the target decorrelates
by nctg = FRTFDA/Tctg = 5 times. If we make a detection trial at the
end of each FRTFDA, i.e. in each cumulative detection step (CDS).
In ns

FDA CDSs, we have

Pcd
FDA = 1 − 1 − Pd

ns
FDA

Pcfa
FDA = 1 − 1 − Pfa

ns
FDA (16)

For the chosen radar parameters, the solution of (15) for ns
FDA = 2

becomes Pd = 0.8346 for Pfa = 0.5 × 10−6. Thus from (16), we
have Pcd

FDA = 0.9727 and Pcfa
FDA = 10−6. SNRFDA = 16.8 dB in the

FRTFDA. The non-coherent integration gain for n−
FDA bursts for Pd

and Pfa is Gi
FDA = 10.58 dB. The diversity gain for

Ndiv
FDA = 5 × 2 = 10 becomes Gdiv

FDA = 5.48 dB which stems from
nctg and also a two-fold ± slope FD.

The BUT's for ± slopes are different causing different f oFDA
±

centre frequency locations in the chirp. f oFDA
+ − f oFDA

− > f c,
where f c ≅ c/(2Ltg) = 150 MHz is the decorrelation frequency of a
SW I target, yielding a two-fold FD. The local chirp FBW at f oFDA

±

is Δ f oFDA ≅ μf Tnnz/2, where Tnnz/ 2 is the energy equivalent
TBW.

The local behaviour of FBW for ± slopes are shown in Figs. 9
and 10. Since Δ f oFDA ≅ 98.9 MHz < f c, an intrapulse FD does not
occur. The final detection is made in the waveform time
WFTFDA = ns

FDA ⋅ FRTFDA = Trv
FDA = 1068 ms. 

5 Discussion
Let us compare the present FMCW/FDA radar with an equivalent
FMCW/PA radar. The parameters for PA are N− = N−

PA = 8,
n−

PA = 2, ns
PA = 1, and Δ f

PA = 95.296 MHz. Ndiv
PA = 2 frequency

agility steps from burst-to-burst are used for PA, rE  in (15) is to be
removed. The solution of (15) yields Pd = 0.9708 for Pfa = 10−6.
We have Gi

PA = 2.7 dB and Gdiv
PA = 6.35 dB. For N−

PA = 8, we have
CITPA = 22.26 ms and FRTPA = WFTPA = 44.53 ms. Since the
required number of TX beam positions are Nb = 36, the revisit
time of a target is Trv

PA = Nb × WFTPA = 1603 ms with
SNRPA = 23.65 dB.

If we do not use a cumulative detection in FDA, we would have
Trv

FDA = 534.3 ms with SNRFDA = 16.8 dB and the target would
move 13.74 m and 41.35 m in Trv

FDA and Trv
PA, respectively. This

property may be an advantage in FDA radar for tracking a high
radar cross-section target.

Fig. 8  Antenna patterns
 

Fig. 9  RF and bandwidth for a particular angle for + slope
 

Fig. 10  RF and bandwidth for a particular angle for − lope
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We will also compare the FDA and PA equivalent radars from
the energy-time product point of view. The energy input to the two
radars is the same Eoin = Eot. The total power delivered to the
radars in the revisit times are

EoT
FDA = Eoin N−

FDA
n−

FDAns
FDA = 384Eoin (17)

EoT
PA = Eoin N−

PA
n−

PAns
PA Nb = 576Eoin (18)

EoT
FDA/EoT

PA = 2/3 = 0.666 (19)

EoT
FDA ⋅ Trv

FDA / EoT
PA ⋅ Trv

PA = 4/9 = 0.444 (20)

Thus, it is seen that the present FDA radar has less energy-time
product compared to the equivalent PA radar. This conclusion,
however, should not be generalised to all cases of FDA/PA
comparisons.

6 Conclusions
The FDA radar distributes the energy to time and space has a low
probability of intercept property. Also, different TX f oFDA centre
frequencies for each scanning angle may be interpreted as a
frequency scan. The space scanning property can be exploited by a
cumulative detection scheme to compensate for the reduced SNR
inherent in all FDA-based radars. Also, the long observation time

of the target provides a temporal diversity gain. Using the ℱT
domain range Doppler signal processing, we can determine the
range and Doppler of targets conveniently. The implementation of
such a radar requires a hybrid feed topology, i.e. for Tℓx (low) TX
lines, while for Tℓz (high) DDSs are required. The target's direction
can be conveniently found by RX beams.
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