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Abstract: The frequency-modulated continuous wave (FMCW)-based frequency diverse array (FDA) radar concept is extended
to two dimensions (2D). The radar operates as a linear pulsed FMCW/FDA in the transmission (TX) mode while it operates as a
pulsed FMCW/phased array (PA) in the receiving mode. It is shown that the FDA has the capability of scanning a 2D angular
sector in a single pulse TX. It is shown that local instantaneous frequency bandwidth is much smaller than the radiofrequency
(RF) frequency deviation of linear frequency modulation. Positive and negative slope TX/RF locations offer frequency diversity.
The low signal-to-noise ratio of FDA is well compensated due to target temporal decorrelation diversity in the observation time
and by the cumulative detection scheme used. Time domain and frequency domain signal processings are described. A Ku-

band direct digital synthesis-based FDA radar design is compared by a corresponding equivalent PA radar.

1 Introduction

The frequency diverse array (FDA) concept [1, 2] was extended to
a frequency-modulated continuous wave (FMCW)-based FDA in
[3]. The FDA effect was obtained by applying a linear frequency
modulation (LFM) chirp signal to the elements of a linear uniform
array by progressive physical time delays 7, which was restricted
to small values < 1ns to reduce the size of the transmission (TX)
lines. For space scanning, a two-dimensional (2D) linear FDA [4]
was considered where the antenna beam scans, in particular, space
trajectories. Here, we propose to use a hybrid direct digital
synthesis (DDS) FMCW-based FDA to scan a 2D angular space. In
Fig. 1, T, and T, are the progressive delays of the LFM applied
to the antenna elements along x- and z-directions, respectively. The
chirp length is 7 and the radiofrequency (RF) frequency band width
(FBW) is Af. The chirp slope is ys = + Af/ 7. For Ty, > Ty, a
2D angular space scanning property of the FDA beam occurs. The
FDA concept is used in TX only. In receiving (RX) digital beam
forming (DBF) with phased array (PA) is proposed. A multiple
pulsed FMCW/FDA radar in Ku-band is designed to illustrate the
basic concepts such as fast scanning of 2D angular space in slow
time. A cumulative radar detection scheme is proposed to
overcome the low signal-to-noise ratio (SNR) of the FDA. The
SNR for FDA per angle per pulse is smaller than that for PA by the
energy ratio defined by rg= EPAERPA >N . 7 . Where
HK,=AfTy.. We have also F,> K, = AfT,,.. Moreover, the
temporal decorrelation of the target in the long observation time
provides a diversity gain. The local positions of the TX/RF for +
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Fig. 1 Linear 2D array with far field point
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slopes for an angle are different, which gives an additional
frequency diversity (FD).

Moreover, the bandwidths associated with a particular angle is
much smaller than Af. It is shown that for the example given, the
FDA radar has less 2D angular scanning time and total energy-time
product than that of the corresponding PA radar.

2 Theory

A linear 2D array with M and N equidistant elements along x and z
directions, respectively, is shown in Fig. 1. Each row in the x-
direction is fed by DDS oscillators with delays 7,,. Along the x-
direction, the elements are connected by corporate fed TX lines
with delays m T,,. The retarded time TX voltage at P(R,, 9, ¢,)

due to an antenna element at {x,z},,={m-d,n-s} can be
expressed by

Vn®) = @D (@0 n + 5172)| - PU s ) )

where u = 2nu;. w,=2xf, is the carrier frequency, a,, is the
element weight. The frequency in (1) is w(f) = w, + pt for the
1> 0 (+ slope) and w(t) = w, + ut + 2zAf for the p < O (- slope).
trm=t—Ry, | c—mTy,—nTy. ¢ is the velocity of light.
P(t,7)=1for0<tr<7z and O elsewhere. At P(R,, 9o, @),
Ry & Ry — m dsin 8,cos ¢, — nscos d,. Thus, the TX field can be
shown to be

M-1 N-1
Erx(t) = A(W) ) ane™™ " Y b, &)
m=0 n=0
where
9, S ,
AW) = Mp(f,f) el{oot’ + wn?), £, 90)

R,

is the wide band element pattern. t' = t — R,/c is the retarded time.
The + slope phase factors can be expressed by
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Ao 1s the wavelength. Ty = f,/u;. For the - slope, we add n = Af/f,
(relative RF FBW) into the parentheses in (3). For a,,= b, =1,
the summations in (2) become

Fy = &M= "%in(My /2)/ sin(y,/2) )
Fy = &V "%in(Ny,/2)/ sin(y,/2) (6)

As the chirp signals arrive at elements at t = mTy, + nT,, the array
is filled up at Tgy= (N — )Ty, The LFM chirps applied to
antenna elements are shown in Fig. 2. The fill time of the array
should satisfy T, < 7.

The build-up time (BUT) of the peak TX signal is obtained
from (5) and (6) by setting y, .(t,) = 27z{p.q}; p,.q € Z

t;X=Tf-(_ —1)>0; t;z=Tf-(_ —1)>0 (7

ox 0z

For u < 0, we add —# into the parentheses in (7). We should have
0<t<7, which leads to Goin < G < G and
Gumin = — CE{(1 + 7)to;}Gmax = — CE{14;}, where CE stands for the
ceiling integer. For a particular J, there is a finite set of values g.
The BUT's of F; and Fy must coincide. Equating 7,, = 7, yields

Cos @, = (f ol rx— l/oz)/ (lisin 190) (8)

This equation is solved for each value of ¢ in the set for
—CE{(1 +n) X (foTpx+ 5/45)} < p < — CE{foTpr— 5/} and
constraining cos ¢, < 1. This procedure associates a ¢, value with
each g. It is found that p = — CE{f, T¢\}.

3 Numerical example

The FDA parameters are chosen with regard to the best waveforms
and maximum 2D  coverage The  parameters are
fo=15.15GHz,d/}, =5/, =05,M =8, N=5, 7=I1ms,
Tyr =0.2436ns,T,, =2.04ns and Af =2999.7MHz. Then, we
have n= 0198, Tf = +5.051 ms, Tﬁ]] =8.2 ns, fon’X = 36905,
and f,T,, = 30.906. For a chosen cone angle of 4, = 85°, we have
six values of ¢, i.e. ¢ € {—36, — 35,..., —31}.

Then, the corresponding BUTs for 0 <3, <7 are found as
t;. € {0.84,0.68,0.51,0.35,0.19,0.023 }ms.

For 39, = 85°, p=—4,
@, € {58.4,70.8,83.1,95.8,109.6, 125.8 }°. We have chosen Taylor
tapering weights a, in M for SLL , = —20dB, #n, =3 and
b,=1. The azimuth antenna beam widths (BWs) are
@pw = {14.5, 13.4,13.1,13.5.14.7,17.8 }°. The elevation BWs
corresponding to the azimuth values in the ¢, set are
dopw = {174, 17.8,18.3,18.8,19.4,20.0}°. Thus, the total
angular  coverage is I, ~ 76° - 95°  vertical and
@y: ~ 58° — 126° azimuth yielding six number of ¢, TX beam
positions (N,). If we increment the cone angle &, as
9, € {48, 66, 85,103,118,132}°, 9,pw and @.gw BWs do not
leave a gap with < — 3 dB taper. The corresponding ¢, Nis is six
for each §,. Thus, the total Nys is 36. The general coverage is
81 ~38° - 143° and ¢,: ~30° — 134°, which is shown in
Fig. 3. The dots correspond to the angles at which the BUT is a
multiple of CE(T},) = 67 us, where T, is the null-to-null time BW

(TBW). At these points, multiple targets can be distinguished
unambiguously in time.
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Fig. 3 General coverage diagram
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Fig. 4 Normalised time-waveforms at 9, = 85

The horizontal blue lines correspond to the cone angle 9, set.
We can show that the null-to-null TBW T, of Fy is expressed by
Tonz = 2|Td/(N vy, ) = 2t/ (H, N). For Fy, we have
Tony = 2|Tl/(M vy,) & 2¢/(K, M), where the constants are
HK,=06.119 and #, = 0.731. F, approximately shows the number
of ¢, antenna beams for each ¥, and also the number of time
waveforms in 7. For §,=85° we have T,,,=66us and
Tonx € {368,358,348,337,327,317}us. In Fig. 3, we have
Ton = Tyn; = 66 us and each BUT corresponds to a different value
of ¢,. The time waveforms are shown in Fig. 4.

For the - slope, the results are the same except that the timings
of the waveforms are reversed. The rate of rotation of the peak is
found from (7) as

Qo = % _ UcZJz ~ sign( pp) )
%= "0t~ qTi(s/Ag)sin 9y — 7(s/A;)sin I,
0, Vox
%~ "0t — pTy(dlAo)sin 9ysin @,
. f ) (s} (10)
sign( up) F
= 7(d/2,)sin d,sin ¢,

Since &, > K, we have Qg > Q, . A separate very similar RX

PA antenna with sufficient isolation receives the echo signal from a
target. The RX signal is obtained by mixing (dechirping) the
received echo by a coherent local oscillator (LO) chirp with
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Fig. 7 Periodic coherent + slope N_ radar pulses

duration 710 > 7+ T4 + Ty — Tr.o, Where Tig is the time offset
for the beat frequency (BF) wy, = 27 f,o = u(Tqo — TLo)- The base

band signal is the same as the classical FMCW signal with an FDA
envelope

M -
VHE) 2 V() 2 a,, e 2 b, ) (11)
m=

Vo) = Vo P 1), ' =t—Ty and w(r) = wyt with the
effective BF @y, = wpo + @go and @y, = 27fq, = 2w,v/c is the
Doppler frequency (DF) for an outgoing target with radial velocity
Vg > 0. V,, is the complex amplitude containing the amplitude and
phase of the radar RX/RX functions and the propagation path. The
Fourier transform (%9) of V*(¢) is

"o o ) sin(@r/2)
—327(¥ yun + (@T/41))
v (@) =V, mE ; n_E a,b, e o1 (12)

Vo= Vore ™0 W = myo, + nve, @ =®—wp+ O and
@y = M Wpy + nwg,.  The spectral components (SCs) are

ity = 2700,/ Ty <K @, = 271,/ Tt. For the - slope, ¥, is replaced
by (1+#)¥,,. The centre frequency of the (m,n)th SC is
Dpne = £ Wpo + Bgo — Oyns. The SCs are orthogonal if #, and #
are integers. In this case, the peak of a SC coincides with the
nearest % Ehx null of the adjacent one. Here #,=6.119 and
H,=0.731. Thus, there is approximate spectral orthogonality. In
the frequency domain (#9), the FBW is given by
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WBw = (M - 1)wfx + (N - 1)wfz
_(N=DH +2 (13)
T = 7/(27)

wpw = 2xfpw. If two targets are separated by AR, such that their
Fourier spectra (¥#&'s) are adjacent to each other, then we should
have the BF increment Af,,= fgw, Which leads to
AR, = tfgwc/QAf) =2 (N — 1)cT4,/2 + c/Af. In the present case,
few =31.2kHz and AR, = 1.573 m. The time periods of the Fy
and F), waveforms at an angle 9, are T,,, = T¢/v,, = v/ K, < 7 and
Tpe=Tilvoy =2t/ H>71. For §,=85° T, =0.16ms and
Ty = {1.27 — 1.47 }ms. Thus, only the first peaks of F; coincide
with the periodic ~ %, peaks of Fy in 7. The difference of the
BUTs for the + slopes is Aty = fta, — 15, = — |T5|(2q/ve; + 2 + 1),

which can be solved for 8, using the conditions g & — CE(f,Ty,)
and cos I, = [Tz, +q/[1 +0.5(At/ITel +n)] < 1. ¢, is found
from  cos@, = foTex+ p/[1 +0.5(At,/|Te| +n)] using the
conditions p = — CE(f,Ty,) and cos ¢, < 1. The sum of the time
of arrivals for + slopes is a function of range only. The sum
Sty = to, + Iy, = 4Ry/c + |T¢ln. The range resolution in the time
domain (7 9D) is not realistic since ARy (Tpy) = ¢Tyn/4 = Skm is
very large. Thus, the range should be found from the F9
processing. For multiple targets, the angles should be determined
by RX beams.

Two targets at points Roy, o1, @, and Roy, do2, ¢, may have the
same time of arrivals, i.e. Tao + fo;1 = Tqor + fop. The difference
between the ranges is from Aty = 1o — + Lo,
AR = Ry, — Roi = (T 12)(q)/vozs — @/ voz). At 8, we have
AR, = [T/ (foT7,)](s/A)sin 9ysin(9,pw/2), where the target
angles are 9y, = 9, F dogw/2. Since ARy, > AR,, these targets
cannot be distinguished in < and the angle finding algorithm
described above will not work. However, in 9, they will be
separated by Awp,, hence AR, will work. The T of the FDA
waveform for uniform weights for two targets separated by AR, is
shown in Fig. 5. For the - slope, the edges related to m = M — 1
and n = N — 1 shift to the right of the edges for m = n = 0. The BF
due to the range and +DF due to — velocity (closing in target) shifts
the spectra as shown in Fig. 6. The BF is large as the slope
ur= +£2.9997MHz/us is very steep. For R,=2km,
Tqo = 13.34us and fp, = 40.02MHz. For Tio=13.3pus, it is
reduced to fp, =37.7kHz. The BFs are f,, = fpox fao- BY
measuring f} ., we can obtain both f},, and f;,, which enables us to
find both R, and v,. The measurement accuracy depends on
SNR = E,/ n,, where E, is the energy of the FDA waveform and
n, = kT, is the noise spectrum density, k is the Boltzmann's
constant and T is the noise temperature in Kelvin. E, is the area of
the square of & and for uniform weights E, = 53.9mJ/V,. Also,
Ey, =~ M’NV:t/%.. Finding the coherent average of #J recovers
E,. This procedure is a matched filtering in 7 domain. As the
chirps are coherent for Swerling I (SW I) targets, Doppler filters
(DFL) are formed by applying another #J |, for N_ coherent +
pulses. This is the 2D #J used in FMCW radars [5]. N_ + slope
pulses are shown in Fig. 7. Ty > Ty, is required for dechirping and
pulse sampling. The phase of the nth pulse is given by

wult' + (n— DT] = wput’ + o, + Dy, where 0Lt <,
Do = Who + Bgo + AWy, Ay, = pu(n — v T
a,= — Awb,,[ZRo/c +(n- 1)vth/c] and ®y = (n — Dy,

Then, in (11) and (12), w -y, and V+(a~)) - Vi — o).
‘7((0 — wy,) and F T p should be found by a discrete FT; 0 = w,;
¢ =1, ..., Zou, Which is the total number of samples

N_—-1

Z ‘7(605 _ a)bn) e—jzn(n— 1) RIN_ - joy, (14)
n=0
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forms for £ =0,1,...,N.—1, N_ DFL's with period 2z/T, the
null-to-null BW  4z/(N.T) and the centre frequency
Wep =2nR/(N_T). The inclusion of @, implies velocity
compensated DFL. This requires a velocity estimation, which can
be achieved either from the + slope range 7 or forming complex
signal V(") =V, (") + j\}n(t’), where ‘}n(t’) is the Hilbert
transform of V,(¢'). If ®, is the phase of V,(t"), we can show that
AD, =y, — Wy, = wg,T. We have found that a,, can be ignored in
most cases for N_ < 32.

4 Radar example

The size of the TX/RX antenna is ~ 8 cm X 5 cm. The patterns for
wide band microstrip patch elements are shown in Fig. 8. The

antenna gain is G, = 21.3dB. The parameters other than those

given in Section 3, are N_ = NPA = 8 coherent pair of £ pulses

form a burst. There are nf°* = 24 non-coherent bursts. Ty =250 pus
and T}, = 2500 us. The duty cycle is 80%. The radar range equation
for noise only can be written as

_ Eq GAZAGS j'cz)LTLa _ D, - L,
SNR = e k Ty (4n)R.  Iv_-G; Gay (15)

Ey =2Pgz; 2P, = 10 W. rg = 29.68 is the energy ratio. L, = 2dB is
the TX loss, L, = 0.096 dB is the atmospheric loss. R, = 2km. The
noise energy is kT = 9.16 X 10" mJ.

We consider a SW I target of radial extent L, = 1 m and radial
velocity vz = —25.72m/s with RCS 6, = 0.1 m” and decorrelation
time T¢ie = 100 ms [6]. In TX modules, N = 5 DDS oscillators will
provide the delays T, and outputs should be upconverted to f,.
The delays T, will be provided by TX lines on a substrate with a
high-dielectric constant. In the RX modules, LO down conversion
to the base band and signal processing based on 2D #J should be
combined with DBF. We need N, = 36 RX beams to cover the 2D
angular space. The FDA TX beam scans this sector in T, In (15),
L,=3dB is the processing loss. Iy_ is the SNR improvement
factor of cascaded single delay line canceller filter and DFL. v,
and T, are chosen for maximum [y =8.533. The DF is
fao =2.6kHz. For T o = 13.276 ps, f,, = 200kHz. The sampling
frequency is f > 2fy,. D: is the detectability factor for a SW 1
target in noise expressed by D, = log.(Pg)/log.(Py) — 1, where Py
is the probability of detection and Py, is the probability of false
alarm. The coherent integration time is CTI"™P? = 2226 ms. Since
Ly < AR, — [ng]CTI™* = 1 m, the target will remain within AR, in
CTI'PA The frame time (FRT) for n™* bursts is
FRT™* = #FPACTIFPA ~ 534.3 ms in which the target decorrelates
by nee = FRTPA/T, g = 3 times. If we make a detection trial at the
end of each FRT™A, i.e. in each cumulative detection step (CDS).
In nfPA CDSs, we have

PIA=1-(1 =Py PR =1-(1-Py"" (16

For the chosen radar parameters, the solution of (15) for nfPA =2
becomes Py = 0.8346 for Py, =0.5x 107°. Thus from (16), we
have Pii™ =0.9727 and P, = 107°. SNR™* = 16.8dB in the
FRT™A. The non-coherent integration gain for nfP4 bursts for Pq
and P, is GP*=1058dB. The diversity gain for
Niw® =5x2 =10 becomes Gy = 5.48dB which stems from
neg and also a two-fold + slope FD.

The BUT's for + slopes are different causing different firpa
centre frequency locations in the chirp. |forpa — forpa | > for
where f. = ¢/(2L,,) = 150 MHz is the decorrelation frequency of a
SW I target, yielding a two-fold FD. The local chirp FBW at fippa
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1S Aforpa = |ue|Ton/2, where Tynz/ 2 is the energy equivalent
TBW.

The local behaviour of FBW for + slopes are shown in Figs. 9
and 10. Since Af ppa = 98.9 MHz < f, an intrapulse FD does not

occur. The final detection is made in the waveform time
WET!PA = pfPA L FRTMPA = TEPA = 1068 ms.

5 Discussion

Let us compare the present FMCW/FDA radar with an equivalent
FMCW/PA radar. The parameters for PA are N_=N'" =38,

PA =2, nPA=1, and AfFA = 95296 MHz. N5a =2 frequency
agility steps from burst-to-burst are used for PA, rg in (15) is to be
removed. The solution of (15) yields Py = 0.9708 for Py, = 107
We have GP® = 2.7dB and Grs = 6.35dB. For N™* = 8, we have
CIT" = 22.26ms and FRT' = WFT' = 44.53 ms. Since the
required number of TX beam positions are N, = 36, the revisit
time of a target is Th=NyXx WFT'*=1603ms with
SNR™ = 23.65 dB.

If we do not use a cumulative detection in FDA, we would have
TFVDA =5343ms with SNR'” = 16.8dB and the target would
move 13.74m and 41.35m in T5PA and TTA, respectively. This
property may be an advantage in FDA radar for tracking a high
radar cross-section target.
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We will also compare the FDA and PA equivalent radars from
the energy-time product point of view. The energy input to the two
radars is the same E, = E,. The total power delivered to the
radars in the revisit times are

ERA = E . NFPARFDAFDA — 3g4p 17
Ef = Egn NP2nPAnPA Ny = 576E,;, (18)

EXPAVERR = 2/3 = 0.666 (19)
(Eqt™ - TON)I(Egt - TRY) = 4/9 = 0.444 (20)

Thus, it is seen that the present FDA radar has less energy-time
product compared to the equivalent PA radar. This conclusion,
however, should not be generalised to all cases of FDA/PA
comparisons.

6 Conclusions

The FDA radar distributes the energy to time and space has a low
probability of intercept property. Also, different TX f rpa centre
frequencies for each scanning angle may be interpreted as a
frequency scan. The space scanning property can be exploited by a
cumulative detection scheme to compensate for the reduced SNR
inherent in all FDA-based radars. Also, the long observation time

6456

of the target provides a temporal diversity gain. Using the I
domain range Doppler signal processing, we can determine the
range and Doppler of targets conveniently. The implementation of
such a radar requires a hybrid feed topology, i.e. for T, (low) TX
lines, while for T, (high) DDSs are required. The target's direction
can be conveniently found by RX beams.
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