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Abstract—In this paper, the problem of sequential beam con-
struction and adaptive channel estimation based on reduced rank
(RR) Kalman filtering for frequency-selective massive multiple-
input multiple-output (MIMO) systems employing single-carrier
(SC) in time division duplex (TDD) mode are considered. In
two-stage beamforming, a new algorithm for statistical pre-
beamformer design is proposed for spatially correlated time-
varying wideband MIMO channels under the assumption that
the channel is a stationary Gauss-Markov random process. The
proposed algorithm yields a nearly optimal pre-beamformer
whose beam pattern is designed sequentially with low complexity
by taking the user-grouping into account, and exploiting the
properties of Kalman filtering and associated prediction error
covariance matrices. The resulting design, based on the second
order statistical properties of the channel, generates beamspace
on which the RR Kalman estimator can be realized as accurately
as possible. It is observed that the adaptive channel estimation
technique together with the proposed sequential beamspace con-
struction shows remarkable robustness to the pilot interference.
This comes with significant reduction in both pilot overhead
and dimension of the pre-beamformer lowering both hardware
complexity and power consumption.

I. INTRODUCTION

It is anticipated that massive MIMO systems in the mm

wave range form an important part of 5G systems expected to

support much larger (e.g., 1000 times faster) data rates than

the currently deployed standards [1]. In practice, channel state

information (CSI) is typically obtained with the assistance of

the periodically inserted pilot signals [2]. This brings the pilot

overhead consumed by the training data to be proportional

to the number of active users in the system for uplink

training, and the number of BS antennas for downlink training

respectively [3]. We assume CSI at the BS can be acquired

by means of uplink training in time division duplex (TDD)

mode, where the uplink pilots provide the BS with downlink as

well as uplink channel estimates simultaneously via leveraging

channel reciprocity [2], [3].

The processing of the signals with very large dimensionality,

the pilot interference, and the pilot overhead are thought

to be limiting factors for an accurate channel acquisition

and throughput of massive MIMO transmission in mm wave

especially in high mobility or in applications requiring low

latency and short-packet duration. Recently, the two-stage

beamforming concept under the name of Joint Spatial Division

and Multiplexing (JSDM) [4], [5] has been proposed to reduce

the dimension of the MIMO channel effectively, and to enable

massive MIMO gains and simplified system operations [6].

Even though JSDM is suggested as an effective reduced-

complexity two-stage downlink precoding scheme for flat-

fading multi-user MIMO systems in frequency division duplex

(FDD) mode initially, the idea of two-stage beamforming

(in [4]–[6]) can be applied to both downlink and uplink

transmission in TDD. The key idea lies in user-grouping,

i.e., partitioning the user population supported by the serving

BS into multiple groups each with approximately the same

channel covariance eigenspaces. Then, one can decompose

the MIMO beamformer at the BS into two steps via the

use of a spatial pre-beamformer, which distinguishes intra-

group signals from other groups by suppressing the inter-

group interference while reducing the signaling dimension.

The major complexity reduction comes from the approach

that the pre-beamformer is properly designed based only on

the second-order statistics of the channel, and not on the

instantaneous CSI (which varies on a much higher rate).

The wideband massive MIMO channel is expected to be

sparse both in the angle and time (delay) domains. The

channel sparsity [7], [8], which becomes particularly relevant

at mm wave frequencies, is observed in practical cellular

systems, where the channels are often characterized with

limited scattering and hence correlated in the spatial domain;

the BS sees the incoming multi-path components (MPCs)

under a very constrained angular range, i.e., angle of arrival

(AoA) support, and the MPCs occur in clusters in the angle-

delay plane [7]. Thus, it is important to design statistical pre-

beamformer yielding an efficient implementation of channel

estimator taking this sparsity into account. Moreover, the

subsequent stages preceded by the channel estimation can be

realized in much lower complexity.

In this paper, reduced rank Kalman filter based CSI es-

timator together with the sequential design of statistical

pre-beamformer is proposed for frequency-selective massive

MIMO systems employing single-carrier (SC) modulation in

TDD mode. With proposed pre-beamformer design, taking the

Kalman prediction errors at each eigen-direction and inter-

group interference in JSDM into account, significant reduction

in beamspace dimension is obtained, which reduces the pilot

overhead and hardware complexity considerably for hybrid

beamforming.

http://arxiv.org/abs/1703.03028v1


II. SYSTEM MODEL

We consider a cellular system based on massive MIMO

transmission operating at mm wave bands in the TDD mode

employing SC in which a BS, having N antennas, serves K

single-antenna UTs. In order to reduce the overhead while ac-

quiring the instantaneous CSI associated with massive MIMO,

two-stage beamforming [4]–[6] is adopted throughout this

paper. It is assumed that K users are partitioned into G groups,

where the Kg users in group g have statistically independent

but identically distributed (i.i.d.) channels [4], [5].

The frequency-selective massive MIMO channel is sup-

posed to be time-varying in general. At the beginning of

every coherence interval, all users of the intended group g

transmit training sequences with length T . We assume a linear

modulation (e.g., PSK or QAM) and a transmission over

frequency-selective channel for all UTs with a slow evolution

in time relative to the signaling interval (symbol duration).

Under such conditions, the baseband equivalent received signal

samples, taken at symbol rate (W) after pulse matched filtering,

are expressed as1

yn =

Kg∑
{k=1, gk ∈Ωg}

Lg−1∑
l=0

h
(gk )

n,l
x
(gk )

n−l

︸                             ︷︷                             ︸
Intra-Group Signal

+

G∑
{g′=1 |g′,g}

©
«

Kg′∑
{k=1, g′

k
∈Ωg′ }

Lg′−1∑
l=0

h
(g′

k
)

n,l
x
(g′

k
)

n−l

ª®®¬
+ nn

︸                                                         ︷︷                                                         ︸
η
(g)
n :Inter-Group Interference + AWGN

(1)

for n = 0, 1, 2, . . ., where h
(gk )

n,l
is N × 1 time-varying multi-

path channel vector, namely, the array impulse response of

the serving BS stemming from the lth multi-path component

(MPC) of kth user in group g at the nth signaling interval.

Here,
{
x
(gk )
n ; n = −Lg + 1, . . .

}
are the training symbols for

the kth user in group g
2, Lg is the channel memory of group

g multi-path channels, Ωg is the set of all UTs belonging

to group g with cardinality |Ωg | = Kg, and {gk}
Kg

k=1
are

UT indices forming Ωg. The Lg − 1 symbols at the start

of the preamble, prior to the first observation at n = 0, are

the precursors. Training symbols are selected from a signal

constellation S ∈ C and E
{
|x
(gk )
n |2

}
is set to Es for all gk . In

(1), nn are the additive white Gaussian noise (AWGN) vectors

during uplink pilot segment with spatially and temporarily

i.i.d. as CN (0,N0IN ), and N0 is the noise power. The first

term of (1) is the received signal of the intended group g,

named as the intra-group signal of group g users. The second

term, η
(g)
n , namely the inter-group interference, comprises

of all the interfering signals, which stem from all inner or

outer cell users belonging to different groups other than g.

1 Only the UTs, belonging to same group, are assumed to be synchronized
for coherent uplink SC transmission.

2 Training sequences are assumed to be non-orthogonal for synchronized
intra-group users for SC transmission in general.

In (1), we assume users come in groups, either by nature

or by the application of proper user grouping algorithms in

[5], [7], which are out of scope of this work. Finally, the

average received signal-to-noise ratio (snr) can be defined as

snr ,
Es

N0

3.

A. Fundamental Assumptions on Signal and Channel Model

Each resolvable MPC of the users, belonging to any group

g, is assumed to span some particular angular sector in

azimuth-elevation plane, capturing local scattering around the

corresponding UTs’ angle of arrival (AoA) (with respect to

the BS). Then, their corresponding cross-covariance matrices

can be expressed in the form of

E

{
h
(gk )

n,l

(
h
(g′

k′
)

n,l′

)H }
= ρ
(g)

l
R
(g)

l
δgg′δkk′δll′, (2)

for
∑Lg−1

l=0
ρ
(g)

l
= 1 and Tr

{
R
(g)

l

}
= 1 by using the uncorrelated

local scattering model where all MPCs are assumed to be

mutually independent according to the well-known wide sense

stationary uncorrelated scattering (WSSUS) model [7], [8], the

multi-path channel vectors are uncorrelated with respect to l,

and also mutually uncorrelated with that of the different users

(independent of whether in the same group or not). In (2),

ρ
(g)

l
is the power delay profile (pdp) of the group g multi-path

channels, showing the average channel strength at each delay,

and R
(g)

l
, with rg,l non-zero or dominant eigenvalues, can be

considered as the common spatial covariance matrix of group

g UTs at lth delay. In this model, each antenna element at a BS

is assumed to see the incoming MPCs at the same common

support on the angle-delay plane (similar to the one in [7],

[9]). Also, the effective rank of R
(g)

l
, namely, rg,l is expected

to be much smaller than the number of array elements, N , due

to the channel sparsity pronounced at mm wave [7], [10].

The channel long-term channel spatial correlation charac-

teristic is assumed to be stationary. In fact, R
(g)

l
s are slowly

varying in time as the AoA of each user signal evolves

depending on the user mobility, variation rate of the scattering

environment characteristics, etc. [7], [9], [11]. However, this

rate of change is significantly lower than that of the small-scale

fading (instantaneous CSI), and they can be estimated with

guaranteed accuracy for all intended groups in practice with

the help of fast initial acquisition techniques or by acquiring

the AoA sector of each user group [9]. Here, our focus is on

the tracking of instantaneous CSI with significantly reduced

complexity and overhead.

When Rayleigh-correlated channel coefficients are assumed

such as h
(gk )

l
∼ CN

(
0, ρ
(g)

l
R
(g)

l

)
, mutually independent across

the users for all gk ,

Spatio-temporal covariance matrix of the inter-group inter-

ference in (1) can be calculated by taking long-term expecta-

tion over all MPCs h
(g′

k′
)

n,l′
s other than the ones belonging to

3 It shows the maximum achievable snr after beamforming when the beam
is steered towards a point, i.e., angular location by assuming that the channel

is normalized so that 1
N

Es
N0

can be seen as the average received snr at each

antenna element before beamforming.



group (g) in spatial domain, and transmitted symbols x
(g′

k′
)

n′
s

in temporal domain. Considering the mutual independence

across multi-path channel vectors (due to the WSSUS model)

given by (2), and considering that the transmitted symbols of

different users are uncorrelated (including the data transmis-

sion period), i.e., E

{
x
(gk )
n

(
x
(g′

k′
)

n′

)H }
= γ(g)Esδnn′δgg′δkk′, the

following is obtained: E

{
η
(g)
n

(
η
(g)

n′

)H }
= R

(g)
η δnn′ , where

R
(g)
η , Es

©«
∑
g′,g

γ(g
′)Kg′

Lg′−1∑
l=0

ρ
(g′)

l
R
(g′)

l

ª®
¬
+ N0IN, (3)

and γ(g
′) for g

′
, g can be regarded as the relative average

received power at BS of inter-group users normalized with that

of the group g users. In (3), γ(g
′)s are accountable for the near-

far effect stemming from the fact that average received signal

strength of different UTs may differ significantly depending

on their distance to the BS. Moreover, It is important to note

that N × N covariance matrix of the inter-group interference

R
(g)
η in (3) consists of all the statistical information of the CSI

in spatial domain (i.e., AoA support) for all inner and outer

cell users interfering with group g users.

B. Spatio-Temporal Domain Vector Definitions

Before elaborating on the details of the estimation tech-

nique, we give the following matrix and vector definitions

that will be useful in the subsequent sections. First, the

training vector (or convolution vector), comprising of the

transmitted pilots for kth user in group g at the nth signaling

interval, is defined as x
(g)

n,k
,

[
x
(gk )
n · · · x

(gk )

n−Lg+1

]H
. In a

similar manner, the extended multi-path channel vector of

the kth user, belonging to the intended group g, is given as

f
(g)

n,k
,

[
h
(gk )

n,0
· · · h

(gk )

n,Lg−1

]T
NLg×1

by concatenating all MPCs

of the kth user in group g. Then, by using these defined

ones, it will be useful to construct the following vector that

represents the concatenated channel vector (including all the

related channel parameters of users in group g to be estimated

simultaneously):

h
(g)
n , vec

{[
f
(g)

n,1
f
(g)

n,2
· · · f

(g)

n,Kg

]
NLg×Kg

}
. (4)

Finally, the complete training vector that consists of the

training data of all users in group g at the nth signaling interval

is given by

x
(g)
n , vec

{[
x
(g)

n,1
x
(g)

n,2
· · · x

(g)

n,Kg

]
Lg×Kg

}
. (5)

Based on (4) and (5), the spatio-temporal domain signal

model is obtained by expressing yn in (1) as

yn =
(
x
(g)
n ⊗ IN

)H
h
(g)
n + η

(g)
n (6)

III. A KALMAN FILTER IMPLEMENTATION OF THE

REDUCED-RANK MMSE CHANNEL ESTIMATOR

As in the case of the Wiener filter, our goal is to reach a

dimension reduction of the estimator. The conventional spatial

dimension for a MIMO system with N antennas is N , which

can be large, especially for Massive MIMO Our goal is to

reduce this dimensionality to D where D can be much smaller

depending on the channel condition.

A. Pre-beamforming Stage

The pre-beamforming is applied in order to distinguish

intra-group signal of group g users from other groups by

suppressing the inter-group interference while reducing the

signaling dimension of yn in (6). At the pre-beamforming

stage, a D-dimensional vector y
(g)
n can be formed for all intra-

cell groups by a linear transformation through a matrix
(
S
(g)

D

)H
as

y
(g)
n =

(
Ψ
(g)
n

)H
h
(g)
n +

(
S
(g)

D

)H
η
(g)
n (7)

where Ψ
(g)
n , x

(g)
n ⊗ S

(g)

D
, and η

(g)
n is the inter-group inter-

ference. Here, S
(g)

D
can be regarded as N × D statistical pre-

beamforming matrix that projects the N-dimensional received

signal samples {yn} in (1) on a suitable D-dimensional sub-

space in spatial domain.

B. Reduced Rank Kalman Estimator

For channel variation in time, we adopt a state-space model

(7) as a first-order stationary Gauss-Markov process [12]:

h
(g)
n = αh

(g)

n−1
+

√
1 − α2b

(g)
n . (8)

This is an autoregressive first order (AR(1)) model, with bn

being the input, which is also known as the disturbance. As

we do not want the covariance of h
(g)
n change with n, we set

E

{
h
(g)
n

(
h
(g)
n

)H }
= E

{
b
(g)
n

(
b
(g)
n

)H }
, R

(g)

h
(9)

We focus on minimum mean square error (MMSE) channel es-

timation based on the current and all previous received training

signals. The following MMSE estimate and its corresponding

estimation error covariance are given by

ĥ
(g)

n |m
, E

{
h
(g)
n |y

(g)

k
, k = 0, 1, . . . ,m

}
P
(g)

n |m
, E

{(
h
(g)
n − ĥ

(g)

n |m

) (
h
(g)
n − ĥ

(g)

n |m

)H
|y
(g)

k
, k = 0, 1, . . . ,m

}
(10)

Based on a standard derivation or a factor graph model,

the MMSE estimates and the covariance matrices can be

recursively computed based on Kalman filtering as shown in

Table I. The Kalman filter description is standard. However,

what we are implementing is a reduced-rank Kalman filter, that

is to say, the rank of the Kalman gain matrix is significantly

smaller than N due to the statistical pre-beamformer. To that

end, the matrix Ψ
(g)
n is important. More specifically, we are

seeking the subspace S
(g)

D
that will achieve the rank reduction

and the associated reduction in complexity.

The new subspace SH
D

will be different than the Wiener

filter formulation earlier [13]. In particular, it will also be time-

varying, or evolving in time. In what follows, we will develop

this new filter.

Note that the a posteriori and the a priori estimate covari-



TABLE I: Channel Estimation based on Reduced Rank

Kalman Filtering after pre-beamformer S
(g)

D
for user group g,

g = 1, . . . ,G

Initialization: ĥ
(g)

0 |−1
= 0 and P

(g)

0 |−1
= R

(g)

h
(11)

while n = 0, 1, . . . do

Ψ
(g)
n = x

(g)
n ⊗ S

(g)

D
(12)

Measurement Update:

Innovation: z
(g)
n = y

(g)
n −

(
Ψ
(g)
n

)H
ĥ
(g)

n |n−1
(13)

Innovation Covariance:

E
(g)
n =

(
Ψ
(g)
n

)H
P
(g)

n |n−1
Ψ
(g)
n +

(
S
(g)

D

)H
R
(g)
η S

(g)

D
(14)

Kalman Gain: K
(g)
n = P

(g)

n |n−1
Ψ
(g)
n

(
E
(g)
n

)−1

(15)

A Posteriori State Estimate: ĥ
(g)

n |n
= ĥ
(g)

n |n−1
+K

(g)
n z
(g)
n

(16)
A Posteriori Estimate Covariance:

P
(g)

n |n
=

[
I −K

(g)
n

(
Ψ
(g)
n

)H ]
P
(g)

n |n−1
(17)

Prediction:

A Priori State Estimate: ĥ
(g)

n+1 |n
= αĥ

(g)

n |n
(18)

A Priori Estimate Covariance:

P
(g)

n+1 |n
= α2P

(g)

n |n
+ (1 − α2)R

(g)

h
(19)

end while

ances can be written as

P
(g)

n |n
= P

(g)

n |n−1
− P
(g)

n |n−1
Ψ
(g)
n

[(
Ψ
(g)
n

)H
P
(g)

n |n−1
Ψ
(g)
n

+

(
S
(g)

D

)H
R
(g)
η S

(g)

D

]−1 (
Ψ
(g)
n

)H
P
(g)

n |n−1
(20)

P
(g)

n |n−1
= α2P

(g)

n−1 |n−1
+

(
1 − α2

)
R
(g)

h
, P

(g)

0 |−1
= R

(g)

h
(21)

where we can express R
(g)

h
in (9) by using (2) and (4) in the

following form

R
(g)

h
=

Lg−1∑
l=0

IKg
⊗ ELg,l ⊗ ρ

(g)

l
R
(g)

l
, (22)

where ELg,l is an Lg × Lg elementary diagonal matrix where

all the entries except the (l + 1)th diagonal one are zero. By

applying the matrix inversion lemma on (20), we get(
P
(g)

n |n

)−1

=

(
P
(g)

n |n−1

)−1

+Ψ
(g)
n

[ (
S
(g)

D

)H
RηS

(g)

D

]−1 (
Ψ
(g)
n

)H
.

(23)

C. Sequential Beam Design

In this section, our goal is to find a good subspace (spanned

by the columns of S
(g)

D
matrix) on which the reduced di-

mensional instantaneous Kalman estimator can be realized

as accurately as possible, so that a minimal performance

compromise in the subsequent statistical signal processing

operations after beamforming is provided. Different criteria

can be used to design beam pattern as similar to one in [13]. In

this paper, we adopt error volume as the optimization criterion,

namely, the minimization of det
(
P
(g)

n |n

)
, and S

(g)

D
is designed

to minimize the error volume at each signaling interval for a

given prediction error covariance P
(g)

n |n−1
that is a function of

all previous training signals.

We consider to construct S
(g)

D
optimally at beginning of each

M consecutive signaling interval where the symbol time n =

mM + u for m = 0, 1, . . . , and 0 ≤ u ≤ M − 1. Here, M

can be considered as the consecutive channel transmissions

composed of a training period followed by a data transmission

period as a block, and the pre-beamformer is supposed to be

updated at each of this interval. Assuming that the channel is

almost stationary for M consecutive symbol interval, one get

the following equations in (25) and (26) together with (24)

P
(g)

n+M |n
= α2MP

(g)

n |n
+

(
1 − α2M

)
R
(g)

h
(24)

where
(
1 − α2M

)
should be approximately equal to 0 so that

stationarity is ensured.

The eqn. (25) results in

det
(
P
(g)

n |n

)
=

det
(
P
(g)

n |n−M

)

det

{
I +

(
IM ⊗

[ (
S
(g)

D

)H
R
(g)
η S

(g)

D

]−1
) ((

F
(g)
n

)H
P
(g)

n |n−M
F
(g)
n

)} .

(27)

where F
(g)
n , X

(g)
n ⊗ S

(g)

D
. It is difficult to use (27) to

find the optimal S
(g)

D
since it depends on the training data.

We will use an approximation of (26) to get to a solution.

In an approximation similar to that performed to reach the

stochastic gradient in the least mean square (LMS) algo-

rithm, we will replace X
(g)
n

(
X
(g)
n

)H
with its expected value

E

{
X
(g)
n

(
X
(g)
n

)H }
= (EsM)IKgLg

to yield a block diagonal

P
(g)

n |n
:

P
(g)

n |n
=

[ (
P
(g)

n |n−M

)−1

+ (EsM)
(
IKgLg

⊗ S
(g)

D

)
(
IKgLg

⊗

[ (
S
(g)

D

)H
R
(g)
η S

(g)

D

]−1
) (

IKgLg
⊗ S
(g)

D

)H ]−1

= P
(g)

n |n−M
− (EsM)P

(g)

n |n−M

(
IKgLg

⊗ S
(g)

D

)
×

[
IKgLg

⊗
(
S
(g)

D

)H
R
(g)
η S

(g)

D
+ (EsM)

(
IKgLg

⊗ S
(g)

D

)H
P
(g)

n |n−M

(
IKgLg

⊗ S
(g)

D

)]−1 (
IKgLg

⊗ S
(g)

D

)H
P
(g)

n |n−M

(28)

Since initially P
(g)

0 |−1
= R

(g)

h
has block-diagonal structure given

in (22), P
(g)

n |n
and P

(g)

n |n−M
can be expressed in the following

form:

P
(g)

n |m
=

Lg−1∑
l=0

IKg
⊗ ELg,l ⊗ A

l,(g)

n |m
. (29)



(
P
(g)

n |n

)−1

=

(
P
(g)

n |n−M

)−1

+

M−1∑
m=0

Ψ
(g)
n−m

[(
S
(g)

D

)H
R
(g)
η S

(g)

D

]−1 (
Ψ
(g)
n−m

)H

=

(
P
(g)

n |n−M

)−1

+

( [
x
(g)
n x
(g)

n−1
. . . x

(g)

n−M+1

]
︸                      ︷︷                      ︸

, X
(g)
n

⊗S
(g)

D

) (
IM ⊗

[(
S
(g)

D

)H
R
(g)
η S

(g)

D

]−1
) ([

x
(g)
n x
(g)

n−1
. . . x

(g)

n−M+1

]
⊗ S
(g)

D

)H
(25)

=

(
P
(g)

n |n−M

)−1

+

(
X
(g)
n

(
X
(g)
n

)H )
⊗

(
S
(g)

D

[ (
S
(g)

D

)H
R
(g)
η S

(g)

D

]−1 (
S
(g)

D

)H )
(26)

In order to construct the nearly optimal S
(g)

D
, first the

following matrices in (30) are constructed. Then, by using

(28), (29) and (30), we get the following recursive relations

in (32), which starts with (31)

SNR
l,(g)

0 |−m
=

[(
S
(g)

D

)H
R
(g)
η S

(g)

D

]−1 [
ρ
(g)

l

(
S
(g)

D

)H
R
(g)

l
S
(g)

D

]
(31)

for m = 1, . . . ,M. Finally, the following error volume ex-

pression is obtained after using (28) and the matrix inversion

lemma:

det
(
P
(g)

n |n

)
=

det
(
P
(g)

n |n−M

)
det

(
I + (EsM)

∑Lg−1

l=0
IKg
⊗ ELg,l ⊗ SNR

l,(g)

n |n−M

) .
(33)

Proposition: Given all previous training signals, the

pre-beamformer S
(g)

D
at nth signaling interval minimizing

det
(
P
(g)

n |n

)
in (33) is given by a proper scaled version of

the D dominant generalized eigenvectors of R
(g)

l
and R

(g)
η

[13]. Under this pre-beamformer design, all three matrices

SNR
l,(g)

n |n
, SNR

l,(g)

n |n−M
and SNR

l,(g)

0 |−m
are simultaneously di-

agonalizable, i.e., given these generalized eigenvectors that

diagonalize SNR
l,(g)

0 |−m
initially, the SNR

l,(g)

n |n
and SNR

l,(g)

n |n−M
are also diagonalizable for every n from the recursive relation

in (32). This sequential beamspace construction algorithm is

summarized in Algorithm 1.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide some numerical results to

evaluate the performance of the reduced rank Kalman Esti-

mator for the proposed pattern design of the pre-beamformer.

Throughout the demonstrations, we consider a massive MIMO

system with uplink training in TDD mode where a BS is

equipped with a uniform linear array (ULA) of N = 100

antenna elements along the y-axis4, and each of K users has

a single receive antenna.

In the studied scenario, K users were clustered into eight

groups (G = 8), and each UT is assumed to be located at a

specific azimuth angle θ along the ring centered at the origin

in the x-y plane. The channel covariance matrix of each group

is specified with the center azimuth angle θ (AoA), and can

4Although the proposed estimators are valid for an arbitrary array structure
in this paper, ULA is considered for the ease of exposition only.

Algorithm 1 Sequential Pre-beamformer Construction

Require: Obtain the generalized eigenvectors of R
(g)

l
and R

(g)
η

by solving ρ
(g)

l
R
(g)

l
Vl
= R

(g)
η Vl

Λ
l, l = 0, . . . , Lg − 1,

Λ
l
0 ← Λ

l ,

while m = 0, 1, 2, . . . do

The pre-beamformer is in the form [13]:

S
(g)

D
,

[
S
(g)

D
(0) S

(g)

D
(1) · · · S

(g)

D
(Lg − 1)

]
N×D

(34)

SNR
l,(g)

0 |−M
is diagonalized with N × dl S

(g)

D
(l) constructed

by the columns of Vl corresponding to the dl dominant

generalized eigenvalues for
∑Lg−1

l=0
dl = D.

In order to find the set of column indices of Vl showing the

dl largest eigenvalues at each signaling interval m, namely,{
Ilm

}
, solve the following

{
Ilm

}
= argmax

{I′lm}
Lg−1

l=0

det
©
«
I + (EsM)

Lg−1∑
l=0

IKg
⊗ ELg,l ⊗ Λ

l

{I′lm}
ª®¬︸                                                    ︷︷                                                    ︸

F

(
{I′lm}

Lg −1

l=0

)
(35)

where |
{
Ilm

}
| = dl, and

max F
({
Ilm

}Lg−1

l=0

)
=

Lg−1∏
l=0

dl∏
i=1

(
1 + (EsM)λli

)Kg

(36)

by assuming that SNR
l,(g)

n |n−M
have nearly orthogonal

eigenspaces for different l, and λl
i
’s are the diagonal entries

of Λl whose indices are given by the set
{
Ilm

}
.

Update:

S
(g)

D
(l) ← Vl

{Ilm}
, l = 0, . . . , Lg − 1 (37)

Λ
l

{Ilm}
← Λl

{Ilm}
− (EsM)

(
Λ
l

{Ilm}

)2

.

/ (
ID + (EsM)Λl

{Ilm}

)

Λ
l ← α2M

Λ
l
+

(
1 − α2M

)
Λ
l
0. (38)

end while Here, .

/
denotes the elementwise division and

Λ
l

{Ilm}
shows the diagonal elements of Λl whose indices

given by the set
{
Ilm

}
at the mth signaling interval.



[
IKgLg

⊗
(
S
(g)

D

)H
R
(g)
η S

(g)

D

]−1 [ (
IKgLg

⊗ S
(g)

D

)H
P
(g)

n |m

(
IKgLg

⊗ S
(g)

D

)]
=

Lg−1∑
l=0

IKg
⊗ ELg,l ⊗ SNR

l,(g)

n |m
, where we defined

SNR
l,(g)

n |m
,

[ (
S
(g)

D

)H
R
(g)
η S

(g)

D

]−1 [ (
S
(g)

D

)H
A
l,(g)

n |m
S
(g)

D

]
(30)

SNR
l,(g)

n |n
= SNR

l,(g)

n |n−M
− (EsM)SNR

l,(g)

n |n−M

[
ID + (EsM)SNR

l,(g)

n |n−M

]−1

SNR
l,(g)

n |n−M

SNR
l,(g)

n+M |n
= α2MSNR

l,(g)

n |n
+

(
1 − α2M

)
SNR

l,(g)

0 |−M
, l = 0, . . . , Lg − 1. (32)

be calculated in a similar way to the ones in [4], [6]. In the

simulations, our focus is on the channel estimation accuracy of

the intended group g with 3 MPCs, i.e., Lg = 3. The first two

MPCs of group g stem from a azimuth angular sector [−1◦, 1◦]

for delays at l = 0, 1, and the angular sector of the last MPC

at l = 2 of g is given as [5◦, 7◦] in azimuth. We assume two

users served simultaneously for group g, i.e., Kg = 2. Each of

the other 7 groups (interfering with the intended one) consists

of three users, i.e., Kg′ = 3, g
′
, g and these users have

3 MPCs whose angular sectors have same supports of AoA

(Lg′ = 3, g′ , g) given by [−29,−26], [−21,−19], [−12,−9],

[−5.5,−3.5], [9.5, 12.5], [15, 17], [24, 27] in azimuth respec-

tively. The noise power is set as N0 = 1 so that all dB power

values are relative to 1. Intra-group users (of the intended

group) use non-orthogonal training waveforms composed of T

chips, and these are obtained by truncating length-63 Kasami

codes by simply choosing the first T chips (training length) of

last Kg Kasami sequences without any optimization.

The trace of the estimation error covariance matrix given by

(17) for the extended channel vector of group g users in (4)

to compare the performance of RR Kalman estimators based

on different pre-beamformers. The covariance matrix of the

inter-group interference is evaluated by (3) when the angular

sector of each group is provided.

In this paper, we compare the performance of dimension

reduction based on Generalized Eigendecomposition in Al-

gorithm 1 (shown to be nearly optimal under some realistic

assumptions) with that of the conventional subspace composed

of the first D dominant eigenvectors of
∑Lg−1

l=0
ρ
(g)

l
R
(g)

l
in

(2). We call this conventional beamspace as discrete Fourier

transform (DFT) beamspace because the eigenvectors of the

spatial correlation matrix of the ULA channel are well-

approximated by the columns of the N × N unitary DFT

matrix whose indices correspond to the support of the Fourier

transform of the spatial correlation function (owing to the

Szegö’s asymptotic theory) [5] depending on the angular

sector of group g UTs. This conventional beamspace is known

to be information preserving for spatially white interference

case, and thus, widely used in practical hybrid beamforming

applications, where the beamforming in RF analog domain can

be implemented by simple phase shifters [14].

In Figure 1, the beam patterns created by the generalized

eigenvector beamspace (GEB) and DFT beamspaces are de-

picted for D = 6 at snr = 30 (dB). The GEB is designed based

on the AoA support of the intended group g for l = 0, 1, 2

while taking the angular locations of the interfering groups

into account. The inter-group users signal are assumed to have

same power level with that of the intended group. As can be

seen from the figure, the GEB tries to create deep nulls at the

angular locations of interfering UTs, whereas the conventional

pre-beamformer only tries to maximize the captured power of

the intended group MPCs for a given dimension. It is expected

that as the number of BS antennas increases, the eigenspaces

of each group are approximately orthogonal. However, the

number of transmit antennas is finite in practice, and there

always exists some overlap among the virtual angular sectors

of each group which leads to a leakage to the intended group

signal. Therefore, as it will be shown later, the accuracy of

the channel estimation realized on the reduced dimensional

subspace, spanned by the conventional DFT beamspace, is

considerably lost due to the residual inter-group interference

after pre-beamforming. On the other hand, the GEB suppresses

the inter-group interference while allowing the MPCs of the

intended group to pass with a negligible distortion.
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Fig. 1: Beam pattern of different pre-beamformers
In Figure 2, the average mean square error (MSE) values

given by Tr
{
P
(g)

n |n

}
/Kg as a function of the dimension of

the spatial domain pre-beamformer (D) are depicted for both

fixed and time-varying pre-beamformer cases. In fixed GEB



case, the pre-beamformer is optimized based on the initial

uncertainties, i.e., initial channel covariance, and kept fixed

during whole transmission period while realizing RR Kalman

estimator. Whereas, in time-varying beamspace construction,

the proposed sequential design algorithm (Algorithm 1) is

used. This algorithm, taking the varying Kalman prediction

errors in each eigen directions into account so as to reduce

error volume, results in much better dimension reduction

capability, i.e., for a given dimension, time-varying beamspace

construction yields much lower channel estimation errors

compared to fixed design alternatives.
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Fig. 2: MSE vs dimension for time-varying channels after 50

training symbol transmission at snr = 30 dB, M = 5
In Figure 3, the average mean square error (MSE) values

as a function of training length are demonstrated for different

beamspace dimensions. Fixed statistical pre-beamformer case

show much inferior performance to time-varying case even

with the use of GEB. Even though the convergence is slower

for lower dimensional pre-beamformers in sequential pre-

beamformer design, it achieves a much lower steady state

estimation error.

V. CONCLUSIONS

In two-stage beamforming, a new algorithm for statistical

pre-beamformer design together with Kalman filtering based

channel estimator is proposed for massive MIMO transmission

employing SC in frequency-selective fading. The proposed

algorithm yields a nearly optimal pre-beamformer whose beam

pattern is designed sequentially with low complexity by taking

the user-grouping into account, and exploiting the properties

of Kalman filtering and associated prediction error covariance

matrices. The resulting design, based on the second order sta-

tistical properties of the channel, generates much lower mean

square error values compared to conventional beamforming

techniques.
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