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Catalytic Conversion Probabilities for Bipartite Pure States
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For two given bipartite-entangled pure states, an expression is obtained for the least upper bound
of conversion probabilities using catalysis. The attainability of the upper bound can also be decided
if that bound is less than one.
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INTRODUCTION

A major problem in quantum information theory is to
understand the conditions for transforming a given en-
tangled state into another desired state by using only
local quantum operations assisted with classical com-
munication (LOCC). Significant development has been
achieved for the case of pure bipartite states. Bennett et
al. have shown that for the asymptotic case, where es-
sentially an infinite number of copies of states are needed
to be transformed, conversion is possible as long as the
entropy of entanglement is conserved.[1]

Away from the asymptotic limit, where a single copy
of a given state is to be transformed into another
given state, such a simple conversion criterion cannot
be found and investigations have unearthed a deep con-
nection of the problem to the mathematical theory of
majorization.[2] For setting up the necessary notation,
the following definitions are introduced first. For two se-
quences with n elements x and y, we say that x is super-
majorized by y (written x ≺w y), if Fm(x) ≥ Fm(y) for
all m = 1, 2, . . . , n. Here, Fm(x) denotes the sum of the

smallestm elements of x, i.e., Fm(x) = x↑1+x
↑
2+· · ·+x↑m,

where x↑ is the sequence x with all elements arranged in
non-decreasing order (x↑1 ≤ x↑2 ≤ · · · ≤ x↑n). If, in ad-
dition to these, the two sequences have the same sum
(Fn(x) = Fn(y)) then we say that x is majorized by y
(written x ≺ y).

Given two entangled states in Schmidt form, |ψ〉 =
∑n

i=1

√
xi|iA ⊗ iB〉 and |φ〉 = ∑n

i=1

√
yi|i′A ⊗ i′B〉, where

x and y are the respective Schmidt coefficients (
∑

xi =
∑

yi = 1), the problem is essentially to determine the
probability of converting the state |ψ〉 into |φ〉 by LOCC.
As two entangled states with the same Schmidt coeffi-
cients are equivalent under local unitaries, that probabil-
ity depends only on the Schmidt coefficients and not on
the particular local orthonormal bases in which they are
expressed. For that reason, the conversion probability of
|ψ〉 into |φ〉 will be simply denoted by P (x→ y).

The most important step in the solution of this prob-
lem is taken by Nielsen who has shown that |ψ〉 can be
converted into |φ〉 with certainty, i.e., P (x → y) = 1, if
and only if x ≺ y.[3] Subsequently, Vidal has obtained the
expression P (x → y) = min1≤m≤n Fm(x)/Fm(y) for the
conversion probability between two arbitrary states.[4]

Note that the conversion probability is equal to the
largest value of λ such that x is super-majorized by λy,
i.e.,

P (x→ y) = max {λ : λ ≥ 0, x ≺w λy} , (1)

where λy denotes the sequence obtained by multiplying
each element of y with λ.
An interesting development came with the demon-

stration of Jonathan and Plenio that entangled pairs
can be used just like catalysts to improve conversion
probabilities.[5] To be explicit, if |χ〉 =∑N

ℓ=1

√
cℓ|ℓA⊗ℓB〉

is another entangled state shared by the same parties,
then for some cases |ψ〉 ⊗ |χ〉 can be converted into
|φ〉 ⊗ |χ〉 with a probability more than that of |ψ〉 to |φ〉
conversion. In terms of the Schmidt coefficients we have
P (x⊗ c → y ⊗ c) ≥ P (x→ y), where strict inequality is
obtained for some cases. In such a transformation, the
entangled state |χ〉 is not consumed, although it takes
part in the transformation much like a catalyst in chem-
ical reactions.
Subsequently, a lot of research has been directed to un-

derstanding the catalytic transformations.[6, 7, 8] A ma-
jor problem to be solved is to determine the catalytic con-
version probability, i.e., Pcat(x → y) = supc P (x ⊗ c →
y ⊗ c), where the supremum is taken over all finite se-
quences c of positive numbers. This quantity is actually
the least upper bound on catalytic conversion probabil-
ities as it may not be possible to attain the probability
value Pcat(x → y) by a reasonable catalyst c. However,
for any probability smaller than the bound, catalysis is
possible.
Nielsen has suggested the term x ≺T y (x is trumped

by y) whenever there is a c such that x ⊗ c ≺ y ⊗ c.[2]
The notation will be extended and we will say that x is
super-trumped by y (written x ≺w

T y) if there is a c such
that x⊗ c ≺w y⊗ c. The catalytic conversion probability
can be expressed with this notation as

Pcat(x→ y) = sup {λ : λ ≥ 0, x ≺w
T λy} . (2)

The purpose of this letter is to provide a computable
expression for that probability, mainly by finding all of
the necessary and sufficient conditions for x ≺w

T y relation
for the case

∑

xi >
∑

yi. As the case
∑

xi =
∑

yi is
not covered, the results in this letter will not enable us
to analyze the trumping relation.
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First, let us define νth power mean of an n-element
sequence x as

Aν(x) =

(

1

n

n
∑

i=1

xνi

)
1

ν

. (3)

For all finite ν, this is a continuous function which has
a limit A−∞(x) = x↑1. For the particular value ν = 0, it
gives the geometric mean A0(x) = (

∏

xi)
1/n. Note that,

if any element of the sequence x is zero, then Aν(x) =
0 for all ν ≤ 0. We would like to prove the following
theorem.
Theorem: If x and y are n-element sequences of non-

negative numbers such that x has only positive elements
and

∑

xi >
∑

yi, then x ≺w
T y if and only if

Aν(x) > Aν(y) , ∀ ν ∈ (−∞, 1) . (4)

Note that the inequalities are strict and the end point ν =
−∞ is not included (ν = 1 is also strict by assumption).
Even though the theorem deals only with the special

case
∑

xi >
∑

yi, it is nevertheless possible to express
the catalytic transformation probability as

Pcat(x→ y) = min
ν∈[−∞,1]

Aν(x)

Aν(y)
. (5)

where min is used by the inclusion of the end points.
Although the minimization is over a continuous variable,
it is possible to compute Pcat(x → y) to any desired
accuracy. Moreover, the theorem tells us that if there is
a ν in the interval (−∞, 1) that attains the minimum of
(5), then Pcat(x→ y) can not be achieved by any catalyst

c (e.g., when Pcat(x→ y) < min(1, x↑1/y
↑
1)). On the other

hand, if this is not the case and Pcat(x → y) < 1, then
that value can be achieved by some catalyst c.
The following facts, which are not too difficult to prove,

will be frequently used. (1) For any sequence x, we de-
fine the characteristic function Hx(t) =

∑n
i=1(t − xi)

+

where (α)+ = max(α, 0) denotes the positive-part func-
tion. Super-majorization relation x ≺w y between two
non-negative sequences can be equivalently stated[2] as
Hx(t) ≤ Hy(t) for all t ≥ 0. (2) Moreover, if x↑ 6= y↑,
then Hy(t) − Hx(t) is strictly positive on some inter-
val. (3) For the cross-product of two sequences we have
Hx⊗c =

∑

ℓ cℓHx(t/cℓ). (4) If all elements of x̄ is greater
than the corresponding elements of x, i.e., x̄i ≥ xi, then
x̄ ≺w x. (5) If x ≺w y then x ≺w

T y. (6) Finally, ≺w and
≺w

T are partial orders on sequences with n-elements.
Proof of necessity: It will be shown that if x ≺w

T y, x
has no zero elements and x↑ 6= y↑, then the inequalities
(4) are satisfied (it is not necessary to assume

∑

xi >
∑

yi). There is a sequence c having positive elements
such that ∆(t) = Hy⊗c(t)−Hx⊗c(t) is non-negative. For
t > cmaxmax(x↑n, y

↑
n), the function ∆(t) has the constant

value (
∑

xi −
∑

yi)
∑

cℓ. For that reason, the integral

Iν =

∫ ∞

0

∆(t)tν−2dt (6)

is convergent at t = ∞ for all values of ν < 1. Moreover,
(i) if y has no zero elements, then ∆(t) = 0 for a suffi-
ciently small t and the integral is convergent at t = 0.
(ii) If y has zero entries, then ∆(t) ∝ t near t = 0 and
therefore the integral is convergent only for 0 < ν < 1;
but this is sufficient for us as (4) is satisfied for all ν ≤ 0.
Finally, strict positivity of ∆(t) in some interval implies
that Iν is strictly positive. Since the integral is

Iν =

{ 1
ν(1−ν)

(
∑n

i=1 x
ν
j − yνj

)
∑

ℓ c
ν
ℓ ν 6= 0

(ln
∏

xi/
∏

yi) (
∑

ℓ 1) ν = 0
(7)

investigating ν < 0, ν = 0 and ν > 0 cases separately, it
can be seen that (4) are satisfied.�

Proof of sufficiency is lengthy and needs the introduc-
tion of a separate problem. Let γ(s) =

∑N
m=0 γms

m

be a real polynomial where some of the coefficients γm
might be negative. The problem is to express γ as a
ratio of two power series with non-negative coefficients,
which are required to be convergent at a desired value
s = R. To be precise, we would like to find two power
series a(s) =

∑∞

m=0 ams
m and b(s) =

∑∞

m=0 bms
m such

that (i) a(s)γ(s) = b(s), (ii) am ≥ 0 and bm ≥ 0 for all
m and finally (iii) both a(R) and b(R) are finite. We will
say that γ belongs to the polynomial set PR when this
problem has a solution. It is obvious that if γ ∈ PR, then
γ(s) > 0 for all s ∈ (0, R]. The following lemma shows
that this property is also sufficient.

Lemma: For a polynomial γ(s), if γ(s) > 0 for all s
in the range 0 < s ≤ R then γ ∈ PR.

Proof: First, note that the product of two elements of
PR is in the same set. For if γ1, γ2 ∈ PR and ai and bi
are the respective series satisfying positive coefficient and
convergence properties such that ai(s)γi(s) = bi(s) for
i = 1, 2, then we have a1(s)a2(s)γ1(s)γ2(s) = b1(s)b2(s).
Since a1a2 and b1b2 are convergent at R and have non-
negative series coefficients we have γ1γ2 ∈ PR. For that
reason, the assertion will first be proven for irreducible
factors of γ.

(1) For γ(s) = 1 − ξs, it will be shown that if ξR < 1
then γ ∈ PR. For the case, ξ ≤ 0, there is nothing to
be shown as γ has already non-negative coefficients. For
the case, 0 < ξR < 1, we have a(s) = (1 − ξs)−1 =
∑∞

m=0 ξ
msm and b(s) = 1, which satisfy the require-

ments, so that we have γ ∈ PR.

(2) For γ(s) = 1 − 2ξs + λs2, it will be shown that
if λ > ξ2 then γ ∈ PR. Obviously, for ξ ≤ 0 there is
nothing to be proven, so consider ξ > 0 for the following.
Let N be an integer sufficiently large so that

1

4

(

(2N)!

N !2

)
1

N

≥ ξ2

λ
. (8)

We can always find such an N as the left-hand side has
limit 1 as N → ∞ and the right-hand side is strictly less
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than 1. In that case we choose

a(s) =

2N−1
∑

k=0

(1 + λs2)k(2ξs)2N−1−k , (9)

b(s) = (1 + λs2)2N − (2ξs)2N . (10)

Note that all coefficients of a are already non-negative.
That is true for b as well, since the coefficient of s2N is
λN (2N)!/N !2 − (2ξ)2N which is also non-negative by the
special choice of N . Therefore, γ ∈ PR.

(3) The lemma can now be proven for a general polyno-
mial. Express γ(s) as a product of its irreducible factors
as

γ(s) = Asr
∏

i

(1 − ξis)
∏

i

(1− 2ξ′is+ (ξ′2i + η′2i )s2) ,

(11)
where r(≥ 0) is the multiplicity of a possible root at 0,
1/ξi are the real roots, (ξ

′
i± iη′i)−1 are the complex roots

of γ and A > 0. Since γ is non-zero on the interval (0, R],
each real root satisfies ξiR < 1. As each factor is in PR,
we have γ ∈ PR.�

Note that if R > 1 and γ ∈ PR, then the infinite
series a(s) can be chosen such that the value a(1) and all
series coefficients am are rational numbers. The reason
is that a(s) and b(s) can both be multiplied by a third
series which satisfies the necessary non-negativity and
convergence properties. By choosing the coefficients of
the third series, all of these numbers can be made rational
simultaneously as the reader can easily check. After this
brief diversion, we can continue with the rest of the proof
of the theorem.

Proof of sufficiency: If two n-element sequences x and
y (such that x↑ 6= y↑) share some common elements,
then the corresponding elements can be removed from
each, which gives shorter sequences x̄ and ȳ (which have
no common elements, i.e., x̄i 6= ȳj). It is easy to ver-
ify that (i) x ≺w y iff x̄ ≺w ȳ, (ii) x ≺w

T y iff x̄ ≺w
T ȳ,

and (iii) Aν(x) > Aν(y) iff Aν(x̄) > Aν(ȳ). For this rea-
son, it is only necessary to give the proof for sequences
which have no common elements. This will be assumed
below. It will also be assumed that x and y are arranged
in non-decreasing order (x = x↑ and y = y↑). The com-
plete proof of the sufficiency of the inequalities (4) will
be completed in three steps, each one being in the form
of a separate theorem dealing with a special case.

Case A. y has strictly positive elements such that yi =
Kωαi and xi = Kωβi for some integers αi and βi and for
some numbers K > 0 and ω > 1.

Proof: RedefineK such that α1 = 0 (as a result, αi ≥ 0
for all i) and then set K = 1 by dividing each sequence
by a common number. Note that ν → −∞ limit of (4)
gives x1 ≥ y1. As x and y have no common elements, we
have βi > 0 for all i. Let the polynomial Γ(s) be defined

as

Γ(s) =

n
∑

i=1

(sαi − sβi) =
∑

k

Γks
k , (12)

and let γ(s) = Γ(s)/(1 − s). Since Γ(1) = 0, γ(s) is
also a polynomial. We will first show that γ ∈ Pω. The
inequality (4) at ν = 0 implies that γ(1) =

∑n
i=1(βi−αi)

is strictly positive. Next, let s = ων where ν is any value
in (−∞, 1] excluding ν = 0. In that case, we have

γ(s) =
1

1− ων

n
∑

i=1

(yνi − xνi ) . (13)

Investigating the cases ν < 0 and ν > 0 separately, one
finds that γ(s) > 0. As a result, we have γ ∈ Pω.
By the lemma, there exists two (possibly infinite) series

a(s) and b(s) which are convergent at s = ω and have
non-negative series coefficients. Moreover, a(s) will be
chosen in such a way that all of its coefficients and a(1)
are rational numbers. As γ(0) > 0, a0 and b0 can be
made non-zero. The relationship a(s)Γ(s) = (1 − s)b(s)
implies that

∑m
k=0 akΓm−k = bm−bm−1, where we define

b−1 = 0 for simplicity.
Let h̄(t) =

∑∞

m=0 am(t − ωm)+, a function which is a
sum of a finite number of terms for any fixed t. Let

δ̄(t) =

n
∑

i=1

yih̄

(

t

yi

)

− xih̄

(

t

xi

)

=
∑

k

Γkω
kh̄(tω−k) ,

=

∞
∑

m=0

(bm − bm−1)(t− ωm)+ . (14)

It can be shown that δ̄(t) ≥ 0 for all t ≥ 0, but better
lower bounds can be placed as follows: (i) For t ≤ ω, we
have δ̄(t) = b0(t − 1)+ ≥ 0. (ii) For t ≥ ω, there is an
integer N ≥ 1 such that ωN ≤ t ≤ ωN+1 and we have

δ̄(t) = bN(t−ωN )+ (ω− 1)

N−1
∑

m=0

bmω
m ≥ (ω− 1)b0 (15)

i.e., a strictly positive lower bound.
Let ǫ = (ω − 1)b0/(

∑

k |Γk|ωk). Since a(ω) < ∞, we
can find an integer M(≥ 1) such that

∑∞

m=M amω
m <

ǫ/2. Define A =
∑∞

m=M am. This is a rational number
and satisfies the inequality AωM < ǫ/2. Consider the
function

h(t) =

M−1
∑

m=0

am(t− ωm)+ +A(t− ωM )+ . (16)

The following bounds can be placed on |h̄(t) − h(t)|: (i)
If t ≤ ωM we have h(t) = h̄(t). (ii) If t ≥ ωM , there is
an N ≥M such that ωN ≤ t ≤ ωN+1 and

∣

∣h̄(t)− h(t)
∣

∣ =

∣

∣

∣

∣

∣

AωM −
N
∑

m=M

amω
m −

∞
∑

m=N+1

amt

∣

∣

∣

∣

∣

≤ AωM +

∞
∑

m=M

amω
m < ǫ . (17)
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As a result, the following function

δ(t) =

n
∑

i=1

yih

(

t

yi

)

− xih

(

t

xi

)

=
∑

k

Γkω
kh(tω−k) ,

= δ̄(t) +
∑

k

Γkω
k(h(tω−k)− h̄(tω−k)) (18)

is non-negative everywhere since (i) for t ≤ ω we have
δ(t) = δ̄(t) ≥ 0 and (ii) for t ≥ ω we have δ(t) > δ̄(t) −
∑

k |Γk|ωkǫ = δ̄(t)− (ω − 1)b0 ≥ 0.
Let N be a sufficiently large integer so that all of

Na0,Na1, . . . ,NaM−1,NA are integers. Schmidt coef-
ficients of the catalyst sequence c will be chosen as ωm,
repeated Nam times (for 0 ≤ m ≤ M − 1), and as ωM ,
repeated NA times. Then Hc(t) = Nh(t) is the char-
acteristic function of c and the non-negativity of δ(t) is
equivalent to x ⊗ c ≺w y ⊗ c. This proves our assertion
that x ≺w

T y.�
Case B. y has strictly positive elements.
Proof: As x and y have no common elements, the

inequalities (4) imply that x↑1 > y↑1 . Let, θ =
minν∈[−∞,1]Aν(x)/Aν (y). Since the end points are in-
cluded, the minimum exists and therefore θ > 1. Let
ω = θ1/3 and define two n-element sequences x̄ and ȳ as
ȳi = ωαi and x̄i = ωβi where

αi =

]

ln yi
lnω

[

, βi =

[

lnxi
lnω

]

, (19)

[t] is the largest integer smaller than t and ]t[ is the small-
est integer greater than t. Using ]t[ − 1 < t ≤]t[ and
[t] ≤ t < [t] + 1, we get

ȳi
ω
< yi ≤ ȳi , x̄i ≤ xi < ωx̄i . (20)

Then for any ν ∈ [−∞, 1] we have

Aν(x̄) >
1

ω
Aν(x) ≥

θ

ω
Aν(y) >

θ

ω2
Aν(ȳ) . (21)

As a result, Aν(x̄) > Aν(ȳ) for all ν ∈ [−∞, 1]; x̄ and
ȳ fulfills the conditions of case A, and therefore x̄ ≺w

T ȳ.
Finally, the inequalities (20) imply x ≺w x̄ and ȳ ≺w y.
All of these prove our assertion that x ≺w

T y.�
Case C. y has zero elements.
The proof will be carried out by replacing all zero el-

ements of y with a small value ǫ in such a way that this
case is reduced to case B. Suppose that y has exactly m
entries equal to 0 (0 < m < n). Note that the inequali-
ties (4) are automatically satisfied for ν ≤ 0. Using the
premise that (4) are satisfied for ν ∈ (0, 1], we can deduce
that the function

Jν =

(

∑n
i=1 x

ν
i −∑n

i=m+1 y
ν
i

m

)

1

ν

, (22)

is strictly positive for all ν ∈ (0, 1]. Moreover, it has

a positive limit J0 =
(
∏

x/
∏n

i=m+1 yi
)1/m

at the end

point ν = 0. As a result, Jmin = minν∈[0,1] Jν exists
and is non-zero as the minimum is taken over a compact
interval. Let ǫ be a positive number such that

ǫ < min

(

Jmin, yn

(

x1
yn

)
n

m

)

, (23)

and define a new sequence ȳ as ȳ1 = · · · = ȳm = ǫ and
ȳi = yi for all i > m. It is obvious that ȳ ≺w y. Showing
that x ≺w

T ȳ will complete the proof. For this purpose,
we look at the power means. (i) For ν ∈ (0, 1], it is trivial
to check that Jν > ǫ is equivalent to Aν(x) > Aν(ȳ). (ii)
For ν = 0 we have

A0(x)

A0(ȳ)
=

(
∏n

i=1 xi)
1

n

(

ǫm
∏n

i=m+1 yi
)

1

n

≥ x1
yn

(yn
ǫ

)
m

n

> 1 . (24)

(iii) For ν < 0, we use Bernoulli’s inequality, which states
that αr − 1 ≥ r(α− 1) for all r ≥ 1 and α > 0, as follows

m(ǫν − yνn) > myνn

(

(

x1
yn

)ν n

m

− 1

)

(25)

≥ myνn
n

m

((

x1
yn

)ν

− 1

)

(26)

= n(xν1 − yνn) , (27)

which implies that

n
∑

i=1

ȳνi = mǫν +

n
∑

i=m+1

yνi ≥ mǫν + (n−m)yνn (28)

> nxν1 ≥
n
∑

i=1

xνi (29)

The result Aν(x) > Aν(ȳ) follows from here. As power
mean inequalities are satisfied for all ν ∈ (−∞, 1], we
have x ≺w

T ȳ by the result in case B, which completes the
proof. �
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