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Abstract

We study the emergent role of many-body effects on a two dimensional electron
gas (2DEG) within the Thomas-Fermi-Poisson approximation, including both the
exchange and correlation interactions in the presence of a strong perpendicular
magnetic field. It is shown that, the indirect interactions widen the odd-integer
incompressible strips spatially, whereas the even-integer filling factors almost remain
unaffected.
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Since the discovery of quantum Hall effect [1] much effort has been devoted to
understand the peculiar transport properties of the low dimensional systems in
the presence of (Landau) quantizing strong magnetic fields. In the single par-
ticle, noninteracting electron picture, the two-fold degenerate Landau states
are split only due to the Zeeman effect. The Coulomb interaction enriched
generalization of the single particle picture introduces the compressible and
incompressible fluids as a consequence of the energy gaps. Namely if the Fermi
energy is pinned one of the spin-split Landau levels, due to high density of
states, a metal-like compressible state is formed, otherwise a quasi-insulating
incompressible state exists. Since the semi-conducting materials in which the
experiments are performed, have a reduced g∗-factor (i.e. ≃ −.44 for GaAs)
it was quite surprising to observe odd integer quantized Hall plateaus, which
is a direct indication of spin resolved transport. Soon after the experimental
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observations, the spin effects were attributed to indirect interactions that en-
hances the effective g∗-factor. These many body effects were left untouched
in the pioneering work of Chklovskii et al [2], which ended in a considerably
large discrepancy between their non-self-consistent theoretical predictions and
experiments considering high-resolution images of Hall samples [3,4,5] demon-
strating that the strip widths are several times larger than the model.

As evidenced by these measurements, the single-particle picture is not suffi-
cient to describe the behavior of the system. In the presence of exchange and
correlation effects, which stem from many-body interactions, the spin gap in a
two-dimensional electron system (2DES) is expected to be enhanced compared
to the single particle Zeeman energy [6]. A strong evidence of enhanced spin
splitting as obtained in several theoretical treatments [6,7,8] is the enlarge-
ment of incompressible strips, visible as plateaus in the spatial filling factor
profile. This enhancement is expected to be much more pronounced in odd
integer Hall plateaus [7] due to polarization effects. Inclusion of the Coulomb
interaction beyond the classical Hartree approximation, i.e. both the exchange
and correlation interactions, is possible within the direct diagonalization tech-
niques [9], prohibitively demanding for the systems under investigation [10]
or quantum Monte-Carlo techniques [11]. Another affordable yet accurate al-
ternative for studying exchange and correlation effects is the density functional
theory formalism (DFT) [11,12,13]. The most common treatment of exchange
and correlation in DFT of spin-polarized systems is the so-called local spin
density approximation (LSDA) [14]. The goal of the present paper is to il-
lustrate the effect of addition of exchange and correlation on the spin gap
through an LSDA-corrected self-consistent Thomas-Fermi Poisson approxima-
tion (TFPA) [15,16,17,18]. To be clear with LSDA, we note that the exchange
part is exact, however, we use the Tanatar-Ceperly parametrization to describe
the correlation part, of course other parameterizations are also possible [19].
The Attaccalite parametrization is shown to be in good agreement with the
previous ones, at least for the systems under consideration [20].

We investigate the exchange and correlation interactions in a two dimensional
electron gas confined in a GaAs/AlGaAs hetero-junction, under the conditions
of integer quantized Hall effect. Spin-split incompressible strips (ISs) with
integer filling factor are first studied using an empirical effective g factor [10]
then a simplified density functional approach is utilized to obtain quantitative
results. We consider a two dimensional electron gas (2DEG) with translation
invariance in the y− direction and an electron density nel(x) confined to the
interval −d < x < d, in the plane z = 0.

The Coulomb interaction between electrons is separated into a classical Hartree
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Fig. 1. The width of the first incompressible strip (ν = 1) without the exchange
and correlation as a function of bulk Lande-g∗ factor at T = 0.05 K, in a sample of
width 3µm, and for magnetic fields B = 4.1 T (dotted line) B = 7.1 T (solid line).

and an exchange-correlation potential. The effective potential is then

V (x) = VH(x) + Vbg(x) + VZ + Vx(x) + Vc(x). (1)

The first term in Eq. 1 is the Hartree potential, obtained at each step of the
self-consistent TFPA calculations through the solution of the Poisson equation,

VH(x) =
2e2

κ̄

+d
∫

−d

dx′nel(x
′)K(x, x′), (2)

where −e is the electron charge, κ̄ = 12.4 is the average background dielectric
constant of GaAs and K(x, x′) is the kernel satisfying the given boundary
conditions, V (−d) = V (d) = 0. In our study we use the kernel and background
potential from Ref. [2,17,18,21]

K(x, x′) = ln

∣
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√

(d2 − x2)(d2 − x′2) + d2 − x′x

(x− x′)d

∣

∣

∣

∣

∣

∣

. (3)

The background term Vbg(x) in Eq. 1 describes the external electrostatic con-
finement potential composed of gates and donors modelled by a smooth func-
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Fig. 2. The variation of filling factor obtained from experimental effective Landé−g∗

Factor [10] ignoring Vxc (dashed line) and bulk Landé−g∗ factor including Vxc (solid
line). Calculations are performed at default temperature and at B = 4.7 T.

tional form,

Vbg(x) = −E0
bg

√

1− (x/d)2, E0
bg = 2πe2n0d/κ̄, (4)

where E0
bg is the depth of the potential in a positive background charge density

en0. The third term is the Zeeman energy and reads VZ = g∗σµBB, where
g∗ is the effective Landé-g factor, µB = e~/2me is the Bohr magneton and
σ = ±1

2
is the spin. The last two terms in Eq. 1 are respectively the exchange

and correlation potentials in LSDA. In the present work we use the Tanatar
and Ceperley parametrization [11] with polarization dependent exchange and
correlation potentials. In this parametrization, Vx(x) acts differently on the
two spin channels while Vc(x) has a unified form for both channels.

The solution of the TFPA involves the self-consistent determination of the
effective potential given in Eq. 1 for a density

nel(x) =
∫

dED(E)f(E + V (x)− µ∗), (5)

obtained in the approximation of a slowly-varying potential valid in the case
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Fig. 3. Electronic ground state filling factors, neglecting Vxc (dashed line) and in-
cluding Vxc (solid line) calculated for a sample width of 2d = 3µm, at temperature
T = 0.05 K and for magnetic fields (a) B = 1.8 T (b) B = 7.1 T.

in consideration where the magnetic length is larger than the characteristic
length of the potential. Here, f(ǫ) is the Fermi function, D(E) and µ∗ are the
density of states (DOS) and the constant equilibrium electrochemical potential
respectively.

In order to motivate the importance of g∗-factor enhancement, we present a
preliminary calculation of the first incompressible strip (IS-1) width that in
the presence of only the Zeeman term, ignoring exchange and correlation. In
Fig. 1, we show the width of IS-1 while increasing the value of g∗ factor as a free
parameter. The width increases significantly until it reaches a value of approx-
imately 4. For g∗ factors larger than this value the self consistency implies an
electrostatic stability which prevents formation of larger incompressible strips
(thick solid line). However, in lower magnetic fields, the smaller incompressible
strip width of IS-1 width grows approximately linearly without reaching satu-
ration (thin broken line). The effect is even more striking when the IS widths
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Fig. 4. Calculated Hall and longitudinal resistances versus scaled magnetic field
~ωc/E0, ignoring Vxc (solid line) and including Vxc (dashed line). Sample width of
2d = 3µm and for a magnetic field of B = 7.1 T, at default temperature.

are calculated in the presence and absence of exchange and correlation and
compared, where we fixed the value of g∗. In Fig. 2, we present the local filling
factor ν(x) for the bulk and experimentally determined g∗ factor of 5.2 [10].
The figure concludes that, the inclusion of the indirect interactions spatially
enlarges the IS-1 beyond the empirically estimated value of g∗, which we at-
tribute to the incomplete treatment of correlation effects within our simplified
DFT approach.

The filling factor calculated in the presence of the LSDA for a magnetic field
of B = 7.1 T is displayed in Fig. 3(a). At this value of the magnetic field
(chosen so as to give a single, wide incompressible strip) the increase in the
strip width in the presence of Vxc is clearly seen. As the magnetic field is
lowered to yield more ISs, the odd-integer strips (IS-1 and IS-3 in Fig. 3(b))
continue to be enhanced while those corresponding to even integers (IS-2 and
IS-4 in Fig. 3(b)) remain mostly unchanged. This behavior is due to the nearly
full spin polarization for the odd-integer ISs. Since the exchange-correlation
effect often grows with increasing polarization, its effect is more pronounced
for the fully polarized odd-integer ISs. On the other hand, the even-integer,

6



spin-compromised ISs are effected only to a small extent.

At a final step we show our transport results obtained within a local ver-
sion of the Ohm’s law [22] where the local conductivity tensor entities are
assumed to take a simple analytical form [10], σl(x) = e2

h
(ν(x) − [|ν(x)|])2

and σH(x) =
e
2

h
ν(x). The global resistances are obtained by utilizing the equa-

tion of continuity and translation invariance in the presence of a fixed imposed
external current. Fig. 4 presents the calculated resistances with and without
including indirect interactions. One can clearly observe that, the existence of
Vxc enlarges the ν = 1 Hall plateau drastically, which is exactly the case in
the experiments [5].

We have calculated the filling factor profile of 2DESs in the presence of a strong
magnetic field using the self-consistent TFPA. The exchange-correlation po-
tential, included within the Tanatar-Ceperley parametrization of LSDA is ob-
served to enhance the IS widths at integer filling. Our method provides a fully
self-consistent calculation scheme to obtain even and odd integer quantized
Hall plateaus, displaying clear differences in width enhancement due to spin
polarization. The results indicate that the enhancement effect is much more
pronounced in odd-integer fillings due to the possibility of polarization while
the even-integer, spin-compromised plateaus are hardly affected. The distin-
guishing part of this work relays on the fact that, without any complicated
numerical (e.g. parallel computing) or analytical (e.g. localization) methods
we can obtain the odd integer quantized Hall plateaus in a good qualitative
agreement with the experiments.
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