
Received April 9, 2019, accepted May 7, 2019, date of publication May 20, 2019, date of current version June 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917722

Density-Aware, Energy- and Spectrum-Efficient
Small Cell Scheduling
SHAHRAM MOLLAHASANI , (Student Member, IEEE), AND ERTAN ONUR , (Member, IEEE)
Department of Computer Engineering, Middle East Technical University, 06800 Ankara, Turkey

Corresponding author: Shahram Mollahasani (shahram.mollahasani@ceng.metu.edu.tr)

This work was supported in part by the TÜBİTAK under Grant 215E127.

ABSTRACT Future mobile networks have to be densified by employing small cells to handle the upsurge in
traffic load. Although the amount of energy each small cell consumes is low, the total energy consumption of
a large-scale network may be enormous. To enhance energy efficiency, we have to adapt the number of active
base stations to the offered traffic load. Deactivating base stations may cause coverage holes, degrade the
quality of service and throughput while redundant base stations waste energy. That is why we have to adapt
the network to an effective density. In this paper, we show that achieving an optimal solution for adapting
the density of base stations to the demand is NP-hard. We propose a solution that consists of two heuristic
algorithms: a base station density adaptation algorithm and a cell-zooming algorithm that determines which
base stations must be kept active and adapts transmit power of base stations to enhance throughput, energy,
and spectral efficiency. We employ a multi-access edge cloud for taking a snapshot of the network state in
nearly real time with a wider perspective and for collecting network state over a large area. We show that the
proposed algorithm conserves energy up to 12% while the spectral efficiency and network throughput can
be enhanced up to 30% and 26% in comparison with recent works, respectively.

INDEX TERMS 5G mobile networks, densification, density-aware networking, energy-efficiency, green
networks, multi-access edge cloud (MEC), self-organizing networks.

I. INTRODUCTION
With the emergence of multimedia applications such as
online games, video streaming, and social networks, users
expect a faster network with a higher throughput. To sat-
isfy users and their increasing traffic demands, we need
to enhance the network throughput by 1000 times in the
next 15 years [1]. Among several solutions for this purpose,
it is recommended to enhance the spectral efficiency [2].
Although spectral efficiency and capacity can be improved by
increasing density of base stations (BSs), energy consump-
tion will also increase [3]. To keep the energy consumption
at the same level, energy efficiency is also needed to be
increased by 1000 times in future mobile networks. Jointly
satisfying these conflicting goals is one of the most signifi-
cant challenges of future networks.

Until 2016, over 14 million small cells are deployed in
Long Term Evolution (LTE) networks and this number has
increased for about 270 percent in 2017 [4]. In heterogeneous
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networks (HetNets), by employing small cells in addition
to macro cells, spectral and energy efficiency (EE) can be
enhanced simultaneously [5]. By increasing density of small
cells, the distance between base stations and user equip-
ment (UE) can be reduced, which can enhance network
area throughput and reduce power consumption. However,
increasing density of small cells implies more infrastructure
and hardware deployment, which increases the overall circuit
energy consumption in the network [6].

Because of mobile/nomadic BSs such as drone cells,
user-controlled based BSs (indoor small cells) and sleep
scheduling of BSs, the network density may dynamically
change in time and space. On the one hand, by increasing
the density of small cells, we need to adapt BS density to the
network condition for maximizing energy efficiency in the
network. On the other hand, future networks need to be smart
to adapt themselves to BS density for maintaining the quality
of service (QoS) under various conditions when the density of
BSs dynamically changes. For instance, when a BS is turned
off in a HetNet, the associated traffic load of the deactivated
BS needs to be transferred over to other cells. The demand can
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be different at each cell because of heterogeneity. Therefore,
the impact of turning off a BS on the neighboring cells have
to be considered in an adaptive fashion. Turning off a BS
may also cause coverage holes that requires the assistance of
neighboring cells for providing service to blind spots. In case
of network expansion or occasional events (such as a football
match), the number (density) of BSsmay need to be increased
permanently or temporarily. Human intervention may not be
possible in a large-scale HetNet. Therefore, future networks
need to be equipped with flexible algorithms that can adapt
network parameters such as coverage or transmit power to the
density of BSs to dynamically react over any changes in the
network state.

The main idea behind our approach is adapting density of
BSs to the network parameters such as coverage and transmit
power to provide a highly flexible scheduling model which
can enhance energy and spectral efficiency and maintain QoS
continuously in the whole network for different conditions.
We assume the QoS can be maintained when the minimum
throughput by each UE can be satisfied by the network. In this
paper, we define a joint heuristic sleep scheduling and power
allocation algorithm for saving energy while satisfying the
throughput requirement of users and maintaining the cover-
age in dynamic heterogeneous networks by considering the
density of BSs and employing MEC in the network archi-
tecture. The main advantages of this work with respect to
old energy efficient techniques are employing MECs in the
network architecture and providing a self-organized network
which can adapt network parameters including BS transmit
power and density of BSs to the network state, that can
be categorized as one of the basic requirements of 5G net-
works. Employing MEC platforms provide higher flexibility,
processing power and support multi-tenancy in cellular net-
works, and can provide self-adaptability in dynamic networks
where in addition of density of UEs, density of BSs can be
also changed. The overall contributions of this paper are as
follows.
• We formulate density-, energy- and spectrum-aware
base station scheduling problem (DESAS) in Section II
and we show that providing an optimal solution to this
problem for adapting density of BSs to network param-
eters such as coverage and transmit power to reduce
energy consumption and enhance spectral efficiency in
the network is NP-hard.

• We propose a heuristic solution named as BS density
and power adaptation algorithm (BDPA) that consists
of two sub-algorithms named by BS density adapta-
tion (BDA) and power adaptation (PA) in Section III.
These algorithms can jointly reduce the amount of power
consumption in the network through minimizing the
number of active BSs with respect to the cells’ load
and can enhance the throughput and the coverage in
the network by applying a cell-zooming technique in
each cell in a distributed manner by adapting transmit
power of BSs based on channel conditions and effective
density.

TABLE 1. List of symbols.

• We define a framework for future network infrastruc-
tures that employs MECs that facilitate reduction of
latency and access a larger amount of data about the state
of the network for management and control purposes.
On one side, a global optimization is nearly impossi-
ble since the DESAS problem is an NP-hard problem.
On the other side, solutions carried out individually by
base stations lack the required information for achieving
an optimal solution. Therefore, we assert that solutions
designed on MECs by employing a divide-and-conquer
approach are appropriate candidates as we discuss in
Section III-B.

We validate the BDPA algorithm and compare it with the
low-power wake-up radio (LP-WUR) algorithm [7] where
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FIGURE 1. Illustration of a network architecture where multi-access edge clouds are employed for self organization.

base stations activated or deactivated by UEs’ request
and the cooperative inter-cell interference control (C-ICIC)
algorithm [8], which energy consumption is optimized by
collaborating among neighbor cells, in Section IV. We eval-
uate and categorized other power management and energy
efficient models in Section V to highlight the advantages of
the BDPA algorithm with respect to them. We conclude our
paper in section VI.

II. DENSITY-, ENERGY- AND SPECTRUM-AWARE BASE
STATION SCHEDULING PROBLEM (DESAS)
We define the system model and the density-, energy- and
spectrum-aware base station scheduling problem (DESAS)
based on the system model presented in this section. The
nomenclature used in this paper is presented in Table 1.

The set M = {1, 2, . . . ,T , . . . ,M} represents M BSs
including T macro BSs and S small cells. The setN represents
N UEs. BSs and UEs are uniform randomly distributed in a
two-tier LTE-like environment as shown in Fig.1. We assume
that no power control is employed in the system and we
only focus on the downlink transmission. In LTE-systems [2],
BSs schedule their users in 1ms subframes. A UE is

associated to the BS from which it receives the strongest
Signal-to-Interference-plus-Noise Ratio (SINR). The experi-
enced SINR by UE i from its serving BS j is

SINRij =
gijPij

σ 2 +
∑M

k=1,k 6=j gikPik
dB, (1)

where Pij and gij are the downlink transmit power assigned
by BS j to UE i and the channel gain between UE i and
BS j, respectively. The amount of noise power is σ 2 and∑M

k=1,k 6=j gikPik =
∑

k 6=j Iik is the total received interference
by UE i from other BSs.

By considering power is distributed uniformly among
resource blocks (RBs) [9], the amount of allocated power in
W to each RB can be obtained as:

Pτj =
Pj
τj
, (2)

where Pj is the maximum transmit power of BS j and τj is the
total number of available RBs in BS j. Then, the number of
RBs that has to be allocated to UE i from BS j to satisfy the
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user’s required throughput R∗ij is

τ ∗ij =
R∗ij

bτ log2(1+ SINRij)
, (3)

where the denominator provides the maximum achievable
data rate and bτ is the bandwidth of a RB in the network,
which is 180 kHz in LTE [10]. By obtaining Pτj and τ ∗ij
from (2) and (3) respectively, we can calculate the minimum
amount of power in W that has to be allocated by BS j to UE
i as

P∗ij = Pτjτ
∗
ij . (4)

The dynamic power consumption of BS j can then be
computed as

Pj = β
∑
i∈N

Pij + P0, (5)

where the constant β ≥ 1 is the inverse of power amplifier
efficiency to evaluate amplifier losses and P0 is the fixed
operational power consumed for backhaul signaling and cool-
ing including losses. Although the most influential compo-
nent of energy consumption in macro cells is the static power,
it is not the case for small cells. In small cells, the main part
of energy is consumed by the radio transceiver unit due to
the absence of cooling system and low-power amplifier [11].
Therefore, we did not analyze the effect of P0 in this paper.
By considering this fact, we do not need to turn off the
small cells completely. While the transmitter of BSs (which
consume themajor part of energy in small cells) will be turned
off completely, other small cells’ modules remain active for
rapid response to the network condition (we do it per TTI
which implicitly sets the timescale to 1 ms). That is why
P0 is considered in the problem formulations. Generally,
P0 is around 500 W and 15 W for macro and small cells,
respectively [10]. This model can be expanded by including
switching power consumption which is out of scope of this
work [12], [13]. Because in our opponents (LP-WUR and
C-ICIC) switching power is also not considered. Therefore,
for fairness, we did not apply the switching power effect over
our power consumption model in this work and we set it a
future work item.

The QoS provided to the users can be increased if the
amount of interference is lowered. Therefore, we aim in the
DESAS at enhancing the received SINR to reach a required
threshold TSINR,

gijPij
σ 2 +

∑
k 6=j Iik

≥ TSINR.

Maximization of energy- and spectral-efficiency can be
achieved through minimization of power consumption and
the number of required RBs while satisfying UEs’ throughput
requirements. Therefore, we formulate the DESAS problem
given an initial xij assignment as

finding xij,Pij, zj

to minimize
∑
i∈N

∑
j∈M

xij
(
αPPij + αSτij

)
(6a)

subject to
∑
j∈M

xij = 1, ∀i ∈ N, (6b)

∑
i∈N

xijτij ≤ τj, ∀j ∈M, (6c)

τij ≥ τ
∗
ij , ∀i ∈ N , ∀j ∈M, (6d)

xij ≤ zj, (6e)

where

xij =

{
1 if UE i is assigned to BS j and zj = 1
0 otherwise

The objective of the DESAS problem is to minimize energy
consumption and to reduce the number of required RBs by
finding UEs should be assigned to which BSs (xij), how
much power need to be assigned by BSs to their associ-
ated UEs (Pij) and which BSs should be kept active (zj)
while maintaining the throughput and satisfying UEs require-
ments. In (6a), we employ normalization coefficients αP and
αS defined as wPρP and wSρS for energy- and spectral-
efficiency, respectively [14]; w is a weight for adding a
preference among energy- and spectral-efficiency, and ρ is
a normalization factor. DESAS is a UE-to-BS assignment
problemwhere each UE has to be served by only one BS (6b).
To make sure we can assign a UE to a BS, the correspond-
ing BS should have enough available capacity to satisfy the
requested RBs by UE (6c) and the minimum required RBs of
users have to be satisfied (6d). A UE can be assigned to a BS
only when the BS is active (6e).

The DESAS problem can be reduced to the generalized
assignment problem with a space complexity of O(2N×M +
2N×M + 2M ) which is an NP-hard problem [15]. By using
classical knapsack terminology, we can describe the general-
ized assignment problem (GAP) [15] as assigning item i to
knapsack j with a profit value of Pij. When item i is assigned
to knapsack j it has a weight and each knapsack has a capacity.
In the DESAS problem, (αPPij + αSτij) can be considered as
profit value of assigning UE i to BS j, τij is the weight of
UE i in case it is assigned to BS j and the capacity of BS j is
represented as τj. Since the DESAS problem is an NP-hard
problem, a global solution to the DESAS is not feasible and
practicable. We consequently resort to dividing the DESAS
into two separate problems with a lower complexity that we
present in the next two sections. These two subproblems are
briefly:

• BS density adaptation (BDA) problem defines how den-
sity of BSs can be controlled based on network capacity
and traffic load to conserve energy. By solving the BDA
problem, we identify which BSs can be turned off while
the minimum required throughput can still be satisfied.

• Power adaptation (PA) problem defines how the trans-
mission power of BSs can be adapted by considering the
density of BSs while maintaining coverage.
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FIGURE 2. The overall methodology.

We firstly formulate these problems to evaluate their com-
plexities. After that, we propose heuristic solutions to them.
The overall methodology of this paper is presented in Fig. 2.

A. BS DENSITY ADAPTATION (BDA) PROBLEM
Let the minimum number of RBs that have to be allocated to
UE i by BS j be τ ∗ij . Then, the minimum required bandwidth
of BS j to satisfy its associated UEs is denoted as B∗j (Hz)
becomes

B∗j =
∑
i∈N

B∗ij =
∑
i∈N

τ ∗ijbτ . (7)

By adapting density of BSs, network resources can be
used more efficiently by balancing load among cells and then
redundant BSs can be turned off. We have to control BS
density for maximizing energy efficiency while preserving
throughput. The number of active BSs can be minimized by
finding out the whether or not a BS should be active (zj)
subject to QoS constraints. Therefore, we define the BDA
problem as

finding xij, zj

to minimize
∑
j∈M

zj (8a)

subject to
∑
i∈N

xijBij ≤ Bj, ∀j ∈M, (8b)

xijBij ≥ B∗ij, ∀j ∈M, (8c)∑
j∈M

xij = 1, ∀i ∈ N, (8d)

given xij =

{
1 if UE i is assigned to BS j and zj = 1
0 otherwise

(8e)

In the BDA problem, we try to minimize the number of
active BSs (8a) by making sure that the amount of bandwidth
allocated to UEs are always smaller than the bandwidth (8b)
allocated to BSs. In other words, the minimum required

bandwidth by each UE must be satisfied by its corresponding
BS (8c). UE iwill initially be assigned to BS j if the amount of
received SINR value is the highest with respect to its neighbor
cells (xij = 1). This is carried out for only initializing the sys-
tem model and after that UE assignment will be considered
as the optimization value in this paper.

The BDA problem is a binary integer linear pro-
gram (BILP) with a search space complexity of O(2N×M +
2M ), that is NP-hard [16], [17] with a smaller search space
complexity compared to the DESAS problem. Turning off or
on a BS impacts other network parameters such as available
bandwidth in other cells or received interference. In case the
effect of activation and deactivation of BSs is considered
constant, this problem can be reduced to the well-known bin
packing problem [18]. In the bin packing problem, the goal
is to minimize the number of required bins to be used for
packing objects with different sizes and values. In the BDA
problem, objects are UEs with different bandwidth require-
ments (values) and bins are active BSs whose count we try
to minimize. Therefore, the BDA problem can be reduced
to a multi-dimensional bin packing problem that is NP-hard.
To solve this problem, we need to define a utilization factor
for each cell to predict network behavior in case of activation
and deactivation of a BS. The corresponding utilization ratio
will be introduced in the next section.

B. POWER ADAPTATION (PA) PROBLEM
In the PA problem, we want to adapt transmit power by
considering the effective BS density to maintain network
coverage and to prevent coverage holes while satisfying UEs’
traffic requirements. This problem can be formulated as the
minimization of overall power which is allocated by BS j to
its associated UEs.

Assume the overall density of small BSs and density of
UEs in the network are represented as λb and λu, respectively
where generally λu ≥ λb. We assume a UE is served by the
BS that provides the highest SINR value. The bandwidth per
user depends on the density of UEs (λu) and the size of cells.
For the sake of simplicity, we assume the whole bandwidth
(B) is divided among UEs homogeneously; i.e., Bu = Bλb

λu
.

Therefore, the average rate per UE i is

Rij = BuE
[
log2(1+ SINRij)

]
. (9)

We define the coverage probability Pc(TSINR) as the prob-
ability of the received SINRij by UE i from its closest BS j to
be greater than a threshold value TSINR,

Pc(TSINR) = Prob
(
SINRij > TSINR

)
.

In the PA problem, we want to find a solution to maximize
the energy efficiency while enhancing the spectral efficiency
(φ) without degrading the provided QoS level in terms of
network coverage and UEs’ throughput. To maintain the net-
work coverage and satisfy the UEs’ throughput requirement,
the maximization of energy efficiency can be converted to
the minimization of overall power consumption including the
transmit power (Pij) for all UEs and the operational power

65856 VOLUME 7, 2019



S. Mollahasani, E. Onur: Density-Aware, Energy- and Spectrum-Efficient Small Cell Scheduling

(P0) in the whole network. Given an initial UE-to-BS assign-
ment xij, we formulate the PA problem as

finding xij,Pij

to minimize
∑
i∈N

∑
j∈M

xij
(
(Pij + P0)

)
(10a)

subject to Pc(Pij) > (1− ε)Pmaxc , (10b)

Rij(Pij) > min
{
R, φmaxBu(λb)

}
, (10c)

xij ∈ {0, 1} , ∀i ∈ N, ∀j ∈M, (10d)∑
j∈M

xij = 1, ∀i ∈ N, (10e)

The objective is to minimize the overall power consumption
in the network given xij where xij = 1 if UE i is connected to
BS j, and zero otherwise (10d), and each UE can be connect to
just one BS (10e). We need to make sure that the probability
of coverage for all UEs should be always higher than an
acceptable outage value if the power allocated by BS j to
UE i is set to Pij. By considering Pmaxc as the probability
of coverage when there is no interference, we want Pc(Pij)
(coverage probability in practice) to be greater than ε less
of Pmaxc to achieve the required coverage and to satisfy the
throughput requirement of UEs.

By considering an interference limited environment,
we assume the maximum achievable spectral efficiency is
φmax . When the bandwidth allocated to a UE in a network
with density λb is Bu(λb), the maximum achievable data rate
becomes φmaxBu(λb). This is the upper bound for the UEs’
demand rate, R. Then, Ri(Pj) is the achievable rate by UE i
from its associated BS j when the transmission power of the
BS is equal to Pj. It must always be equal or larger than the
UEs’ demand rate R (10c).
The PA problem, similar to the DESAS problem, can be

reduced to the GAP. The overall power that is going to be
assigned to UEs is the profit value, allocated rate to UE i
(Ri(Pj)) when transmit power is set to Pj is the weight of
assigned power and the maximum achievable data rate by
BS j (φmaxBu(λb)) can be considered as the capacity in the
PA problem. Therefore, the PA problem can be reduced to
generalized assignment problem with the space complex-
ity of O(2N×M + 2M ) which is known to be an NP-hard
problem [19] with a smaller search space compared to the
DESAS problem.

III. BS DENSITY AND POWER ADAPTATION (BDPA)
ALGORITHM
We first need to evaluate various scenarios that we may face
in a dynamic network to justify the BDPA algorithm and
show how can we tackle the problems defined in the previous
section by adapting density and transmit power of BSs to the
network state.

A. SCENARIOS
Wedefine four different scenarios that wemay facewhile run-
ning our algorithm among small cells. These four scenarios

(S1, S2, S3, S4) and the effect of applying BDPA algorithm
is depicted in the left and right side of Fig. 3 respectively.
We assumed in the figures that macro BSs are connected to a
MEC.

• Scenario S1: As it can be seen in Fig. 3a, when the
traffic load in some of small cells is low and in case their
assigned UEs are transferred to the associated macro
cell, the utilization ratio of macro BS (that we define in
Section III-C) will still remain under the threshold value.
In this case, we can turn off redundant small cells and
transfer their load to the macro cells.

• Scenario S2: Small cells can cause interference to
each other that may degrade UE satisfaction as shown
in Fig.3b. To enhance QoS and save energy, we may turn
off interferer BSs and transfer their UEs to a neighbor
BSs with a higher SINR value if the utilization ratio
of the neighboring BS still remains below the expected
threshold.

• Scenario S3: In the third scenario (Fig.3c), when a small
cell’s load is below the threshold and if its neighboring
small cells can handle its associated UEs without caus-
ing any degradation in the coverage and the throughput,
and if the macro cell is overloaded, then that small cell
can be turned off and its neighbors need to expand their
coverage area by amplifying their transmit power until
the required received SINR can be obtained for all UEs.

• Scenario S4: Maintaining QoS may have a higher pri-
ority in comparison to saving energy. If the received
SINR in a BS is below the minimum required received
SINR value to satisfy UEs, the traffic load needs to be
distributed to the neighboring cells to enhance the QoS
level. As it is shown in Fig. 3d, other cells can boost
their transmit power to expand their coverage area for
providing service to the unsatisfied UEs located at the
edges. The system may force those UEs to handover to
their neighboring cells for balancing the load.

In these scenarios, the main goals are enhancing UEs QoS by
lowering received interference and increasing UEs through-
put while the transmit power of BSs and the density of active
BSs are optimized.

B. DISTRIBUTED, CENTRALIZED OR DECENTRALIZED
SOLUTION?
For solving the DESAS problem, there are basically three
approaches. One is to design a centralized approach where
the input size to the problem is the number of BSs. The other
approach is the fully distributed approach where each BS
tries to solve the problem individually. Since the DESAS is
an NP-hard problem, a centralized solution is not feasible in
practice, because of the huge search space. When the number
of BS’s the increases, the solution space grows exponentially.
On the other hand, scheduling BSs for conserving energymay
affect the overall network throughput if it is done individually
by each BSs in a distributed fashion. Since proposing a fully
centralized or a distributed solution is not feasible, we design
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FIGURE 3. Four different scenarios (S1, S2, S3, S4) that we may face in a
HetNet (on the left) and the effect of the BDPA algorithm over these
scenarios (on the right). (a) Energy conservation by moving load from
small to macro BSs. (b) Reducing interference (INF) by adapting BS
density. (c) Cell-zooming for conserving energy.(d) Cell-zooming for user
satisfaction.

a hybrid solution using multi-access edge clouds (MECs) to
augment the capabilities of BSs. We off-load some manage-
ment and control tasks such as coverage control and sleep
scheduling from the core network to the edges of the network.

MECs, by accessingmultiple BSs and communicatingwith
each other, have a larger perspective (accessing data which is
not limited to just one cell) over the network state in compari-
son to distributed models. The overall cost to collect network
state for a MEC is lower than a centralized model since the
divide-and-conquer approach is employed. Although central-
ized models have the largest perspective over the network
state in comparison toMEC and fully distributedmodels, they
are not scalable; the problems become intractable as the net-
work grows. Since MECs are located to the edge of network
and close to the BSs, they can collect information from cells
as fast as fully distributedmodels while the delay for collating
the information at the core network is huge. With a similar
argumentation, we can claim that the amount of processing
power and energy needed by centralized models are large in
comparison to MECs. All in all, although centralized models
can allocate resources optimally, reaching the optimal result
may not always be feasible if the size of network is too large.
Therefore, by employing MEC we can reach a sub-optimal
solution faster with a lower amount of energy and processing
power. The overall comparison among decentralized, MEC
and fully centralized solutions are summarized in Table 2.

We assume a two-tiered HetNet where under the macro
BS’s coverage, there are a number of small cells. In the BDPA
algorithm, macro BSs will always be up and operational, and
the proposed scheduling model will be executed over small
cells to maintain the network coverage. The BDPA algorithm
consists of BDA and PA algorithms to solve the DESAS
problem (8a-10a).

C. BS DENSITY ADAPTATION (BDA) ALGORITHM
Let’s assume the total number of available RBs in BSj during
the time interval T is represented as τj(T ). The resource
utilization ratio of BS j can be defined as the percentage of
allocated resource blocks to satisfy the minimum required
throughput in that BS is defined as

Aj =

∑N
i=1 τij

τj(T )
=

∑N
i=1

R∗ij
bτ log2(1+SINRij)
bj
bτ
T

, (11)

where bj is the total available bandwidth of BS j. To incorpo-
rate the resource utilization ratio, we can redefine SINR in (1)
as

SINRij =
gijPij

σ 2 +
∑M

k=1,k 6=j AjgikPik
, (12)

We need to prevent coverage holes when BSs are turned
off. By employing MEC, we can calculate the probability of
network coverage for different SINR values by considering
the density of BSs (λb). In this paper, we validate our results
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TABLE 2. The comparison of implementing a fully distributed, a decentralized or a centralized solution to the DESAS problem.

by employing the probability of coverage, PC (TSINR) as pro-
posed in [20],

PC (TSINR) =
2
γ

∫
∞

0
t
2
γ
−1e−tTN0α

−
2
γ
e−t

2
γ

×

− 2
γ

Tt
2
γ F(1, 1− 2

γ
; 2− 2

γ
;−T )

1− 2
γ

 dt, (13)

where

α =
λbπE[(PdSd )

2
γ ]

K 2

is the distribution of shadowing Sd that is considered as
arbitrary except E[S

2
γ ] < ∞, and F(a, b; c; z) is the

hyper-geometric function [20]. In this model, T is the
received SINR value in the network, K = 6910 km−1 for
urban environment, which can be obtained from the COST
Walfisch-Ikegami model and γ is a path-loss exponent. Here,
E[(PdSd )

2
γ ] is the propagation invariance which Sd and Pd

are independent random vectors. Sd represent the effect of
propagation of a signal from its origin at Sd and Pd is the
transmit power of that signal. The proposed model can be
easily evaluated numerically if we consider the noise power
zero (N0 = 0) as follows:

PC (TSINR)=

− 2
γ

Tt
2
γ F(1, 1− 2

γ
; 2− 2

γ
;−T )

1− 2
γ

−1 . (14)

In this model, BSs are distributed based on Poissonmodel and
by considering this fact that BSs are not completely turned
off (they are always aware of the network condition through
the MEC in order to be activated and deactivated during each
time interval), the Poisson distribution assumptionwill still be
valid throughout the life-cycle of the network. By obtaining
PC from (13), we can find the corresponding required SINR
value to keepPC > TSINR. In (12), SINR depends on the activ-
ity ratio of cells. Therefore, we can determine the maximum
activity ratio each BS can tolerate to keep the PC above the
network threshold by knowing the required minimum SINR
value.

For adapting density of small BSs, we need to make sure
user’s traffic requirements are satisfied and coverage can still
be preserved. For offloading the traffic when a small cell is
deactivated, we need to evaluate the capacity of neighboring
small cells and the macro BS to find out whether or not they

can handle the offloaded traffic. We also need to analyze the
effect of applying the scheduling algorithm over the network
coverage to prevent holes.

The pseudocode of the proposed BDPA algorithm is pre-
sented in Algorithm 1. Due to heterogeneity of the network
and variations of BS density, we need to calculate a threshold
SINR value to maintain network coverage and minimum cell
utilization factor (Amin) in each run (lines 2-4). A MEC may
access data from a wider range of base stations and it has
a larger computation power than base stations. Therefore,
the density of BSs can be estimated by using a density esti-
mator at theMEC [21]. By obtaining density of BSs, the min-
imum TSINR based on the required probability of coverage
(Pc) can be computed; then, it can be used to calculate the
minimum cell utilization factor for the next step. We can
obtain the minimum required throughput in each small cell
(R∗ij) by comparing the achievable throughput in the basic
model (a network where density and power adaptation is not
employed) and set it as R∗ij in the BDPA algorithm. We then
check the utilization factor of each BS to compare with Amin
(line 5). If utilization factor of BS j is above the threshold and
if its associatedmacroBS has enough capacity (Amj) to handle
BS j load (line 6) we can turn off that base station and transfer
its traffic load to its associated macro BS. If macro BS is
overloaded, we can transfer BS j’s load to one of its neighbors,
if possible (lines 12-19). However, if its neighbor cannot
handle BS j’s traffic load, we need to keep this BS on and use
our power adaptation algorithm (PA()) that will be explained
in the next section. If the utilization factor of BS j is below
the threshold and by running our power adaptation algorithm
the utilization factor of BS j still remains below the threshold,
we can turn on redundant BSs and recalculate Amin until we
make sure the required QoS (users’ traffic requirements) can
be satisfied (lines 27-39).

The computational complexity of the joint BDPA algo-
rithm is O((Nmacro + Nsmall)× τtot ). Due to the distribution
of computational tasks among MECs, each MEC is respon-
sible only for part of BSs and the BDPA algorithm runs in
polynomial time.

D. POWER ADAPTATION (PA) ALGORITHM
To maintain coverage and reduce interference in a network in
addition of considering the capacity of other cells, we employ
the cell zooming technique that we partially presented in [22].
In this work, we expand or reduce the cell size for enhancing
the overall network throughput.
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Algorithm 1 The BS Density and Power Adaptation
Algorithm

1 for j = 1:All BSs connected to MEC do
2 λ← density of BSs
3 TSINR← find TSINR such that P(TSINR, λ) ≥ Tcov

4 Amin←

∑N
i=1

R∗ij
bτ log2(1+SINRij)

bτ
bj
T

5 if Amin ≤ Aj then
6 if Amin ≤ Aj + Amj ≤ 1 then
7 Turn off BS j
8 λ← Nsmall−1

Area
9 DeactivatedBSs+ 1

10 end
11 else
12 Find a neighbor small cell k
13 with the highest received SINR
14 if Amin ≤ Aj + Ak ≤ 1 then
15 if SINRk ≥ TSINR then
16 Turn off BS j
17 λ← Nsmall−1

Area
18 DeactivatedBSs+ 1
19 end
20 else
21 #Our heuristic cell-zooming

#algorithm needs to be run to
#maintain QoS in the network

22 PA()
23 end
24 end
25 end
26 end
27 else
28 PA()
29 if Aj < Amin &&
30 DeactivatedBSs > 0 then
31 while Aj ≥ Amin or DeactivatedBSs > 0

do
32 Turn on a BS
33 λ← Nsmall+1

Area
34 DeactivatedBSs− 1
35 TSINR← recalculate TSINR

36 Amin←

∑N
i=1

R∗ij
bτ log2(1+SINRij)

bτ
bj
T

37 end
38 end
39 end
40 end

In the first step, based on the determined SINR threshold
from (13), we need to adapt transmit power of BSs by find-
ing out an adequate threshold value (TSINR) which can keep
PC above the minimum requirement of network operators
(Fig.4, step a) for enhancing the network throughput while the

FIGURE 4. The mobile edge tasks flow chart.

FIGURE 5. The BLER-SINR map for different CQI value.

coverage in the whole network is preserved. In the second
step, the appropriate modulation and coding scheme (MCS)
can be obtained based on the channel quality indicator (CQI)
value that can be obtained by BSs from their associated UEs
(Fig.4, step b) [23].

After obtaining TSINR, we need to find the correspond-
ing CQI value based on the channel condition. In the third
step (Fig.4, step c), the SINR values can be mapped to
their corresponding CQI levels by calculating the block error
rate (BLER) for each CQI level as it is shown in Fig. 5.
In Fig. 5, we calculate the BLER for each CQI value to find
the corresponding SINR value when the BLER reach to 10%.
The corresponding SINR-CQI map is shown in Table 3.

In the last step of the flowchart shown in Fig. 4, at step d,
the MEC needs to determine an appropriate CQI value to sat-
isfy network coverage and enhance the throughput simultane-
ously (TCQI ). There is a trade-off between choosing high CQI
value and maintaining the network coverage. To maintain the
network coverage, we need to use a lower MCS to make sure
the received signal is interpretable by the receivers even in
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TABLE 3. The SNR-CQI map table.

FIGURE 6. The effect of applying fluctuation reduction over the PA
algorithm.

low quality channel conditions (low received SINR value).
By decreasing the MCS, the size of transport block and
the number of bits per symbol will be decreased which can
drop the network throughput significantly. Therefore, MEC
by considering the probability of coverage and SINR-CQI
map which are obtained from previous steps, can choose
an appropriate threshold value (TCQI ) and inform BSs to
adapt their modulation and coding schemes and their power
consumption based on it (Fig.4, step e).

This procedure has to be repeated in case of any changes
in the network topology such as increasing the amount of
maximum transmit power, type of base stations, density of
BSs or environmental conditions. In Fig. 4 the summary
of mobile edge tasks is presented.

When all base stations are informed about the threshold
value which is obtained in the previous step by the MEC;
each base station employs the power allocation algorithm
presented in Algorithm 2 that is based on the received CQI
feedback from it’s UEs. BSs compare CQI measurements of
user-specific reference signals [24] with the threshold value
(line 5) to increase or decrease the power allocation to each
RB individually per transmit time interval (1 ms).

In the basic power allocation model where power is allo-
cated to each UE homogeneously, UEs located at the edges
experience a high amount of interference from neighboring
base stations. The amount of power allocated to UEs located
at the cell-center has to be reduced to overcome the interfer-
ence effect over UEs located at the edges in the PA algorithm.

Each base station independently monitors the feedback
from active UEs. When the amount of received CQI value
is higher than the threshold, the BS will reduce the power

(P) continuously until it makes sure the allocated power is
higher than the minimum possible transmission power (Pmin)
and the new receivedCQI value is still equal or higher than the
threshold (lines 15-18). To enhance the network throughput,
BSs need to allocate more power to the UEs located at the
edges in comparison with other UEs. Therefore, if the amount
of received feedback from a UE is less than the threshold,
BSs will consider it as the edge UE. In this case, BSs need
to amplify the allocated power for 1% (1) until they make
sure the new CQI feedback is higher than the threshold and
the amount of allocated power is still below the maximum
transmission power (Pmax) (lines 6-9). By choosing a larger
(1) value, the precision of the PA algorithm can reduce, but
the algorithm will converge faster. BSs periodically com-
municate with MECs to adapt their transmission powers by
any changes happen in the network condition. To decrease
the convergence time in our algorithm because mainly large
portion of UEs are located close to the BSs; at first, we reduce
the power to the half then we run the algorithm to decrease
the power adaptively based on UEs conditions (line 13).
To reduce the fluctuation during power allocation, BSs main-
tain the history of last 10 power allocation to their associated
UEs. In case, the amount of power allocated to a UE after
power reduction for about (1) is not lower than the average
of power which have been allocated to the UE in the last
10 time slots (Pavg) (line 12), BSs will allocate the same
power as the previous step. In Fig. 6, we present the effect
of applying fluctuation reduction (FR) over the proposed
algorithm. As we can see, the overall power consumption in
the network will converge after 50 ms and by applying FR
over our algorithm; the power fluctuation is reduced.

IV. RESULTS AND DISCUSSION
For the evaluation, we use the Vienna-LTE simulator which is
a system level simulator to implement the downlink channel
model and the network environment of a multi-user OFDMA
system such as LTE [25]. In this simulator, collisions on the
random-access channel and other parameters such as noise,
interference, shadowing, fading, antenna size, BSs height,
number of transceivers, angle of antennas, handover, channel
model, traffic model, walking model are considered based on
real-life LTE networks and applied in the proposed algorithm.
We modified the power allocation model and developed our
scheduling module in this simulator.

A. SIMULATION MODELS AND PARAMETERS
The scheduling algorithm is implemented for sparse and
dense small cell scenarios to show its capabilities in dynamic
networks. We simulate two different network scenarios:

• Sparse network: where the density of BSs varies
between 5 to 20 BS/km2, and 100 UEs are uniform
randomly distributed in the region of interest.

• Dense network: the density of BSs varies between 20 to
100 BS/km2, and 1000 UEs are uniform randomly dis-
tributed in the region of interest.
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Algorithm 2 PA Algorithm

1 Receive the threshold value from MEC
2 for All available RBs do
3 Pmax ← Pmax = Sector Maximum Downlink Power

Number of Available RBs
4 Pmin← minimum applicable power per RB
5 if CQI ≤ TCQI then
6 while P ≤ Pmax and CQI < Threshold do
7 P← P+1
8 CQI ← Request for a new CQI feedback
9 end

10 end
11 if CQI ≥ TCQI then
12 if P−1 ≤ Pavg then
13 P← P

2
14 CQI ← Request for a new CQI feedback
15 while P ≤ Pmin and CQI < Threshold do
16 P← P−1
17 CQI ←

Request for a new CQI feedback
18 end
19 end
20 end
21 end

To provide a fair comparison among the BDPA algorithm,
the LP-WUR [7] and the C-ICIC [8] are described in sections
IV.D.1 and IV.D.2, respectively, we employed different types
of bursty traffic loads in our simulation which are modeled
based on real-life LTE networks [26]. Simulation parameters
and traffic models are summarized in Table 4 and Table 5,
respectively.

B. VIENNA SIMULATOR, IMPLEMENTATION DETAILS
Vienna LTE system level simulator consists of different mod-
ules including antennas, channel models, network generation,
schedulers, traffic models, walking models and etc. Each
BS includes three sectors and in each sector, small cells are
implemented. UEs and BSs are distributed uniform randomly
in the region of interest. A wide variety of schedulers exist
in this simulator such as best CQI, proportional fair, round
robin, and max-min. All of these schedulers will be invoked
through lteScheduler.m file. To make the BDPA algorithm
applicable over different scheduling models, we implement
our algorithm in the scheduler coordinator (lteScheduler.m)
under the power allocationmodule.We alsomodify the traffic
and the mobility models for different scenarios as explained
in the sequel.

C. WHAT’S HAPPENING AT MEC?
Our main aim is reducing the amount of energy consumption
in the network by gathering information at the MEC to apply
the BDPA algorithm. In MEC, by considering the density of
BSs, the appropriate TSINR and TCQI values which can be used
as the threshold value to maintain minimum throughput and

TABLE 4. Simulation parameters and their values.

TABLE 5. Traffic types in OFDMA-based networks [26].

coverage requirements in the network, needs to be obtained
through (13).

In Fig.7, the probability of coverage for various SINR
thresholds is presented. We also examine three different BS
densities (10, 50, 100 BS/km2) to show how TSINR can be
changed under various conditions. As we can see, when
the BS density is low (10 BS/km2), if we set TSINR at -
10 dB the probability of coverage will be around 57%. How-
ever, by increasing the density of BSs to 50 BS/km2 and
100 BS/km2, the probability of coverage will be boosted
up to 98% and 100%, respectively. By evaluating Fig.7 we
can find out if BS density is very low, we may face with
too much coverage holes which can degrade the QoS in the
network. Moreover, by increasing the density of BSs the
amount of received interference will also increase, but this
improvement will be negligible when the BS density reaches
to its optimum level. Therefore, we need to adapt density of
BSs to the network condition to enhance QoS and prevent
resource wastage in the network.

The SNIR threshold (TSINR), which is found at the edge
cloud will be used by the BDA algorithm and by employing
the snapshot of the network condition, it has to be mapped
to a CQI value since BSs characterize the channels’ quality
by using 4-bit CQI values. Therefore, by evaluating BLER
in the network, the SINR value which is obtained from the
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FIGURE 7. The probability of coverage for different SINR thresholds.

previous step can be mapped to its corresponding CQI level
(Fig.5) to achieve (TCQI ) which will be forwarded to BSs to
be used in the PA algorithm. Therefore, the BDPA algorithm
will be invoked to optimize the network resources when the
corresponding information is received through MECs.

D. VALIDATION OF THE BDPA ALGORITHM
We validate the BDPA algorithm in this section and com-
pare it with the a sleep scheduling technique that we call as
the LP-WUR technique which employs low-power wake-up
receivers [7]. We also compare our results with a cooperative
interference inter-cell control (C-ICIC) model which jointly
allocates power and resource among UEs to enhance energy
consumption and network throughput [8]. In the LP-WUR,
density of BSs are adapted based on UEs request, while in
the C-ICIC energy consumption will be optimized by collab-
oration of neighbor BSs with each other. Therefore, we can
compare the effect optimizing energy consumption based on
UEs request or collaboration of neighbor cells with a MEC
based architecture (BDPA) in this paper.We present its details
in the sequel. We evaluate throughput, spectral efficiency,
energy efficiency, and the impact of mobility and user density
on the performance of the BDPA algorithm in this section.

1) LP-WUR SLEEP SCHEDULING TECHNIQUE
By equipping senders and receivers with wake-up receivers,
an on-demand energy-efficient UE-controlled sleep sched-
uler is presented in [7] that we call as LP-WUR technique.
For comparing the BDPA performance we implemented the
LP-WUR technique in the Vienna simulator as well. Due to a
low amount of power consumption in wake-up radio modules
(10 µW approximately), they can be always in the active
mode to listen to channels. Therefore, the wake-up radio can
trigger a BSs for transmission whenever a wake-up signal
is successfully received and small cells can go to the sleep
mode when the transmission is terminated. To implement
LP-WUR, we trace communications amongUEs and BSs and
we examine energy consumption, throughput and spectral

efficiency for this algorithm, whenever a packet is exchanged
between UEs and BSs.

2) COOPERATIVE ICIC (C-ICIC) TECHNIQUE
In this model, authors introduced C-ICIC technique which
can enhance the received SINR and exploits communication
channel by reducing the inter-cell interference (ICI) effect
between adjacent BSs [8]. In the C-ICIC, UEs are classified
into a bad radio (BR) group if they are negatively affected due
to the ICI (by considering the amount of received wideband
CQI feedback), while the rest of UEs will be classified as
a good radio (GR). In the C-ICIC, satisfaction functions
for UES, cells, sectors are defined. Then, resource blocks
and power allocation are based on the satisfaction functions.
C- ICIC is a distributed technique facilitating cooperation
among adjacent cells.

E. MONTE-CARLO SIMULATION RESULTS
In this section, we present the quality of service, spectral
efficiency, energy consumption results. We further evaluate
the impact of user density and mobility.

1) QUALITY OF SERVICE (QOS)
As it is explained previously, QoS can be maintained when
the minimum required throughput in each small cell (R∗ij)
can be satisfied. In this work, for increasing the system
efficiency with respect to our opponents (LP-WUR and
C-ICIC), we defined R∗ij as the mean throughput which can
be achieved in in LP-WUR and C-ICIC. In Fig.8 and Fig.9,
we compare themean throughput of the BDPA algorithmwith
the LP-WUR and the C-ICIC techniques in sparse and dense
network scenarios, respectively. Throughput can be affected
by increasing density of UEs and BSs in the network, due to
higher transmission rates in the network. As we can see, when
BS density is low (Fig.8) the maximum achievable through-
put by the BDPA, the LP-WUR and the C-ICIC algorithms
are around 10 Mbps, 8.5 Mbps and 9 Mbps, respectively.
These values are boosted up to 15 Mbps and 11 Mbps when
BS density is increased (Fig.9). In both scenarios, we can
achieve a higher network throughput in different conditions
by employing the BDPA algorithm. Because, in the BPDA
algorithm by considering the capacity of each cell and reduc-
ing the number of active BSs, the total amount of interference
received by UEs will be reduced which increases channel
quality and improves the overall network throughput. More-
over, unlike the C-ICIC, the BDPA by employing MEC in its
architecture can have a higher perspective over the network
which can maintain network coverage and adapt BSs density
while transmission power is reduced. With the power adap-
tation feature of the BDPA algorithm, the received SINR for
UEs located at the cell borders will be enhanced that improves
the network throughput compared to the LP-WUR and the
C-ICIC technique. The proposed algorithm can provide a
larger network throughput in dense networks and can enhance
QoS up to 26% in comparison to the LP-WUR and the C-ICIC
techniques.
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FIGURE 8. The effect of applying the BDPA algorithm on network
throughput in a sparse network with 100 UEs for different BS densities.

FIGURE 9. The effect of applying the BDPA algorithm on network
throughput in a dense network with 1000 UEs for different BS densities.

2) SPECTRAL EFFICIENCY
We present the effect of applying the BDPA algorithm on
the spectral efficiency in Fig.10 and Fig.11. Spectral effi-
ciency can be enhanced by using a high order MCS which
is possible when the interference in the network is low and
the network has enough capacity to handle the traffic load.
In both cases (sparse and dense) the spectral efficiency will
reduce by increasing BS density due to the high amount
of interference. The highest spectral efficiency in a sparse
network for the BDPA, the LP-WUR and the C-ICIC are
when BS density is 5 BS/km2 (Fig.10) and it is about 11
bps/Hz, 9 bps/Hz and 8.9 bps/Hz, respectively. Additionally,
in the dense network (1000 UEs) the highest spectral effi-
ciency for the BDPA, the LP-WUR and the C-ICIC can be
achieved is when BS density is 20 BS/km2 and it is about
to 35 bps/Hz, 27 bps/Hz and 28 bps/Hz, respectively. Due to
the larger number of deactivated BSs by the BDPA algorithm
(which can reduce the interference in the network), the aver-
age spectral efficiency per cell can be enhanced by 30%.

FIGURE 10. The effect of applying the BDPA algorithm in a sparse
network with 100 UEs on spectral efficiency for different BSs’ densities.

FIGURE 11. The effect of applying the BDPA algorithm in a dense network
with 1000 UEs on spectral efficiency for different BSs’ densities.

The BDPA algorithm, by adapting density of BSs and dis-
tributing their load to other cells, can use resources more
efficiently in comparison to the LP-WUR and the C-ICIC
techniques. Although BSs are only activated whenever UEs
request in the LP-WUR technique, they can be activated with
even a single UE request. Therefore, the LP-WUR technique
cannot use resources efficiently and spectral efficiency will
always be lower than that of the BDPA algorithm. TheC-ICIC
adjusts transmit power in two levels based on UEs class
(BR and GR) while in the BDPA, power can be adjusted
at different levels based UEs condition which can distribute
power among UEs more efficiently. Therefore, the BDPA
can provide higher throughput and spectral efficiency with
respect to the C-ICIC.

3) ENERGY CONSUMPTION
To evaluate the energy efficiency of the BDPA algorithm,
we analyze the amount of energy consumption for different

65864 VOLUME 7, 2019



S. Mollahasani, E. Onur: Density-Aware, Energy- and Spectrum-Efficient Small Cell Scheduling

FIGURE 12. The effect of applying the BDPA algorithm on energy
consumption in a sparse network with 100 UEs and bursty traffic for
different BSs’ densities.

FIGURE 13. The effect of applying the BDPA algorithm on energy
consumption in a dense network with 1000 UEs and bursty traffic for
different BSs’ densities.

numbers of UEs and BSs in Fig.12 and Fig.13. As it is shown,
by increasing BS density the amount of energy consumption
in both scenarios will increase. When the network is sparse
(Fig.12) and BS density is 20 BS/km2, the BDPA, LP-WUR
and C-ICIC algorithms consume almost same amount of
power for about 12000 W; while, the overall power con-
sumption in the dense scenario (Fig.13) will increase up to
13400 W, 14100 W and 13600 W, respectively when BS
density is 100 BS/km2. In all cases, the highest amount of
energy is conserved in the BDPA algorithm due to the low
number of active BSs during each transmission in comparison
with [7] and [8]. As we can see in these figures, by adapting
MCS in the network based on our power adaptation model
and offloading BSs, we can always achieve less energy con-
sumption in comparison to the LP-WUR and the C-ICIC tech-
niques. The BDPA algorithm can conserve a higher amount of
energy in dense networks and can save up to 5%more energy

FIGURE 14. The effect of applying the BDPA algorithm on energy
consumption in a dense network when traffic load is high for different BS
density.

FIGURE 15. The effect of applying the BDPA algorithm on network
throughput when density of BSs is fixed at 50 BS/km2 and UEs’ density is
varied between 100 to 500.

with respect to the LP-WUR technique which means 3 kW
per second or 98.55 Tera-Watt per year. The amount of energy
conservation will be larger in ultra-dense networks.

Moreover, in the LP-WUR technique, when we have a
continuous traffic load all BSs need to be in the active mode
to provide service for their associated UEs. However, in the
BDPA algorithm, network resources will be used in an effi-
cient manner by offloading the traffic of low-load BSs to
neighboring cells and deactivating them to conserve more
energy. As we can see in Fig.14, the proposed algorithm can
conserve up to 12%more energy when the traffic load is high.

4) USER DENSITY
In dynamic networks, in addition of variation in density
of BSs, UE density will also vary in a day. By keeping
the density of BSs constant (50 BS/km2), we evaluate
the effect of UE density on throughput, spectral effi-
ciency and power consumption in Fig.15, Fig.16 and Fig.17,
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FIGURE 16. The effect of applying the BDPA algorithm on spectral
efficiency when density of BSs is fixed at 50 BS/km2 and UEs’ density is
varied between 100 to 500.

FIGURE 17. The effect of applying the BDPA algorithm on power
consumption when density of BSs is fixed at 50 BS/km2 and UEs’ density
is varied between 100 to 500.

respectively. As we can see, in all of these cases, the
BDPA algorithm can achieve higher performance in com-
parison to the LP-WUR and the C-ICIC techniques. When
the density of UEs are low, they have almost the same
performance. As we can see, by increasing UE population,
the BDPA algorithm produces better results. In the BDPA
algorithm, to satisfy UE constraints such as throughput, when
UE density is low and based on the UEs locations we may
need to keep more BSs in the active mode in comparison to
the LP-WUR and the C-ICIC technique. However, by increas-
ing UEs’ density the amount of data transmission will also
increase, and LP-WUR needs to turn on and off BSs more
frequently. At this point, the BDPA can be more efficient by
distributing load among cells and deactivating redundant BSs.
Moreover, in BDPA by enhancing SINR (12), we can enhance
the received interference byUEsmore accurately with respect

FIGURE 18. The effect of applying proposed algorithm on network
throughput in a sparse network with 100 UEs for varied velocities.

to the C-ICIC. Therefore, the overall throughput and spectral
efficiency will be enhanced while the energy consumption
can be maintained in comparison with the C-ICIC.

5) MOBILITY
To provide a real-life condition in our simulation, themobility
of UEs for different speeds are also considered. The density of
UEs and density of BSs are 100 and 20 BS/km2, respectively
and we evaluate 3 different speeds for UEs (5 km/h, 20 km/h
and 40 km/h) to simulate pedestrians, cyclists and drivers in
our analysis. As it is shown in Fig.18, the proposed algorithm
can achieve a higher network throughput in all cases com-
pared to the LP-WUR and the C-ICIC techniques. The main
reason that BDPA can perform better is equipping BDPAwith
MEC and providing higher perspective over network state in
comparison with the LP-WUR and the C-ICIC techniques.
Therefore, the BDPA algorithm can predict faster and more
accurate when a BS needs to be turned off or vice versa.

V. RELATED WORK
In a mobile network, a portion of energy is consumed dynam-
ically by the BSs depending on the amount of the traffic load
while another portion of energy is statically consumed in
some components such as cooling systems, power supplies
or for signal processing. In this paper, the main focus is on
dynamic power consumption in BSs. Power consumption in
BSs can be managed by utilizing their resources and adapting
density of BSs and transmit power of BSs to the network
condition.

Green networking and energy-efficiency have motivated
researchers, and their works can be categorized into three
main classes: (1) Efficient resource allocation models, (2)
Load balancing models, and (3) Bandwidth enhancement
models. We will briefly survey these categories in relation to
our work in the sequel.

To reduce the energy consumption in BSs by turn-
ing off BSs’ transceivers in idle times, discontinuous
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transmission (DTX) models can be employed in the net-
work architecture [29], [30]. In DTX based models Mul-
ticast Broadcasting Single Frequency Network (MBSFN)
sub-frames are allocated by considering traffic load in the
network [31]. Although applying DTX schemes can reduce
the energy consumption significantly, DTX does not use-
ful during peak load due to the lack of empty sub-frames
and it causes a delay for packet delivery [5]. Moreover,
by equipping UEs and BSs with LP-WUR, delay for activa-
tion and deactivation of BSs can be reduced and BSs can be
switched off during their idle periods [7]. Another method for
enhancing energy efficiency is the aggregation of RBs [32].
By employing carrier aggregation schemes, the amount of
overheads during communication will be reduced, which can
increase energy conservation in the network. Another scheme
for reducing power consumption in the network is adapting
BSs’ transmit power to satisfy QoS constraints byminimizing
block error rate (BLER) in the network [33]. Also, energy
efficiency can be increased by optimizing resource allocation
in OFDMA-based networks [34], [35]. In the BDPA algo-
rithm, in addition of adapting BSs transmit power, we adapt
density of BSs to network parameters such as throughput and
coverage to optimize the network resources more efficiently.
Moreover, resource allocation is optimized by increasing
cells’ utilization factor and deactivating redundant BSs at
the same time. Therefore, by adapting density and transmit
power of BSs and utilizing the network resources, we simul-
taneously enhanced the resource management, throughput
and coverage in the network from different perspectives.
In [36], a joint user scheduling and power control mecha-
nism is proposed which can enhance energy efficiency in
ultra-dense networks. Although, in [36], transmit power of
base stations and UE allocation are optimized, the density
of BSs considered as a pre-configured value which may
not applicable in dynamic networks where the density of
small cells dynamically changes in time and space.Moreover,
by implementing the proposed algorithm in a system level
LTE network, we considered the real-life network parameters
including traffic models, mobility models and etc. which
are not analyzed in the mentioned work. In [37], an energy
efficient on-off switching model is proposed where BSs are
turned off or on by considering the amount of traffic load
in the network. Unlike [37], the main focus is on the effect
of increasing density of small cells in future heterogeneous
networks in this paper. Moreover, the proposed algorithm in
addition of considering the traffic load and the density of UE
dynamicity, it also considers dynamic BSs where the density
of BSs may also fluctuate. In the BDPA, network parameters
(transmit power) will be adapted to the density of active BSs
(PA algorithm) and the density of BSs will be also adapted to
the network condition while the QoS (network throughput)
can be maintained (BA algorithm).

Moreover, energy can be also conserved by applying load
balancing schemes such as distance-aware models in the net-
work architecture [38], [39]. By employing distance-aware
models, when two BSs are competing with each other for

registering UEs in their cells, a BS can be switched off
when it has a larger distance to UEs and lower traffic load
with respect to other BSs. Energy efficiency can be also
improved by applying traffic-aware models to adapt energy
consumption by considering traffic variations with respect
to time in the network [40]. Energy efficiency can be also
achieved by applying UE migration techniques to reduce the
number of active BSs with the low traffic load which can
be implemented in a distributed or centralized manner [41].
In centralized models, by analyzing traffic load among BSs,
a BS with the highest load will be determined. After that,
in case the selected BS has enough bandwidth for satis-
fying its neighbor UEs, UEs from a BS with light traffic
load will be migrated and the selected BS will be turned
off. In contrast, in distributed models, a BS needs to find
its pair in a way that the selected BS has a lower traffic
load and its traffic load can be handled by its peer. There-
fore, by applying UE migration techniques the amount of
energy conservation will be increased significantly in the
network [42], [43]. In this work, we employed a combina-
tion of these methods with a heuristic and fast solution to
enhance the network performance. In our scheduling model,
we equipped our algorithm with a UE mitigation technique
to provide load balancing in the network; but, unlike [38]
and [39], UEs are not transferred to other cells just by con-
sidering the distance to their neighbor BSs. We consider cell
utilization factor and received SINR value to find out the best
candidate among BSs to mitigate UEs. We also employ a
cell-zooming technique to maintain throughput and prevent
any coverage holes in the network. Moreover, the BDPA
algorithm, unlike [40], can enhance the network performance
and energy conservation even when the traffic load is high
as it is explained in Fig.14 due to the resource utilization
technique which is employed in this algorithm. Last but not
least, our scheduling model is faster than [41] due to its lower
complexity and employing MEC instead of a centralized
solution.

Bandwidth expansion models can be also employed for
enhancing energy efficiency in the network [44], [45]. For
instance, in time compression mode (Tcom) algorithm,
energy is conserved by reducing overhead caused by con-
trol signals during transmission. Moreover, in Tcom by
applying high order modulation and coding schemes, RBs
are compressed in either of frequency and time domain
which can expand the bandwidth in networks. Therefore,
BSs can handle their load faster and signal overhead will
be reduced, which can cause energy conservation in the
network [46]. In [44] and [45] expanding bandwidth for UEs
located at the edge of cells may not possible due to the
high amount of interference received by them from their
neighbor cells. In this work, by employing a cell-zooming
technique we enhance communication for UEs located at
the edges by minimizing interference from other cells
and providing high order MCS which can expand band-
width in each cell individually by considering the network
condition.
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Moreover, networks can be also optimized by employ-
ing MEC platforms in their architectures. Employing
MEC platforms provide high flexibility and supporting
multi-tenancy in the cellular networks, which can deliver
a wide variety of services including cloud computing, net-
work slicing, network function virtualization (NFV) and
software-defined networks (SDN) [47]. Due to the hetero-
geneity of future networks, coordination of dynamic net-
work is difficult which in recent works, authors tackle this
issue by employing MEC platforms in networks [48], [49].
MEC can also enable an agile and simple solution to main-
tain connectivity and enhance service management in the
future networks [50]. In recent researches, energy efficiency
through MEC platforms is achieved by offloading processing
loads from UEs to MECs which can alleviate UEs resource
constraints [51]. MEC by providing higher computational
power can also be used for enhancing routing data among
UEs which can reduce the energy consumption in the net-
work [52]–[54]. Moreover, MECs by having higher per-
spective over the network condition can enhance QoS and
interference which can enhance power conservation in the
networks [55]. The main advantages of the BDPA algorithm
are employing MEC in a distributed manner, implementing
it in a system level simulator by considering real-life net-
work parameters (antenna type, height and angle, channel
model, shadowing, fading, scheduling, traffic load and etc.)
and enhancing the energy efficiency and the throughput by
adapting network parameters including transmit power and
density of BSs to each other simultaneously through theMEC
platform.

VI. CONCLUSION
In this paper, we proposed a density-aware, energy-efficient
and spectrum-efficient sleep scheduling technique by apply-
ing two heuristic algorithms to conserve energy and enhance
the quality of service including users’ throughput and sat-
isfying the required network coverage simultaneously in a
heterogeneous network. Base station density is adapted by
considering cell capacities and by balancing traffic load
among cells. We prevent coverage holes and enhance net-
work throughput by applying a cell-zooming technique and
improving signal-to-interference-plus-noise ratio for users
located at cells borders. We provide higher processing power
and higher perspective over the network state in comparison
to individual base stations by equipping the network with
multi-access edge cloud. The proposed model is examined
with a system level simulator to provide reliable results.
All in all, we find out future networks can become smarter
and more efficient if we consider BS density in our models
and adapt it to the network condition. This work can be
extended by considering themobility of base stations in future
work.
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