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Abstract

Forecasting with longitudinal data has been rarely studied. Most of the available
studies are for continuous response and all of them are for univariate response. In this
study, we consider forecasting multivariate longitudinalbinary data. Five different mod-
els including simple ones, univariate and multivariate marginal models, and complex
ones, marginally specified models, are studied to forecast such data. Model forecasting
abilities are illustrated via a real life data set and a simulation study. The simulation
study includes a model independent data generation to provide a fair environment for
model competitions. Independent variables are forecast aswell as the dependent ones
to mimic the real life cases best. Several accuracy measuresare considered to compare
model forecasting abilities. Results show that complex models yield better forecasts.

Keywords: comparative studies; dichotomous data; exponential smoothing; forecasting
competitions; marginalised models; medical statistics.

1 Introduction

Longitudinal data comprise measurements which are taken repeatedly over time from same
individuals/firms/units/cases/animals. This type of data is common in many research areas,
e.g. medical studies, clinical trials, economical studies, social sciences, psychiatry, edu-
cational and behavioral sciences, industry, etc. Longitudinal data have many advantages
compared to both time series and cross sectional data (Diggle et al., 2002; Ilk, 2008).

∗Correspondence to:̈Ozgür Asar, Lancaster Medical School, Faculty of Health and Medicine, Lancaster
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Observations in longitudinal data are typically dependent. In related studies, often mul-
tiple response variables of each study subject are collected, which yields multivariate longi-
tudinal data. Multivariate longitudinal data consist of three dependence structures: within,
between and cross response dependencies and these structures should be taken into account
to have valid statistical inferences.

As an example for multivariate longitudinal data, we will consider the Mother’s Stress
and Children’s Morbidity (MSCM) study data set (Alexander and Markowitz, 1986). In
this study, 167 mothers and their pre-school children were followed through 28 days. At
each day, mothers’ stress (0=absence, 1=presence) and their children’s illness (0=absence,
1=presence) statuses were recorded, yielding a bivariate longitudinal binary data. In addition
to these response variables, some demographic and family information, e.g. employment sta-
tus of mothers (0=unemployed, 1=employed), health status of children at baseline (0=very
poor/poor, 1=fair, 2=good, 3=very good) and the size of their household (0=2-3 people,
1=more than 3 people) were collected.

There are three traditional models for longitudinal data analysis: marginal, transition and
random effects models (Diggle et al., 2002). Recently, marginally specified (marginalised)
models (Heagerty, 1999, 2002) have become popular due to their advantages over the tra-
ditional ones. For instance, they incorporate marginal, transition and random effects infer-
ences at the same time (Ilk and Daniels, 2007; Asar et al., 2014). Additionally, they secure
the robustness of the marginal mean parameters under dependence structure misspecification
(Heagerty and Kurland, 2001). Nonetheless, they require more computational time to obtain
the parameter estimates compared to the aforementioned traditional ones.

Forecasting might be regarded as the prediction of future events. It might be a life-saver
and/or increase quality of life, e.g. in medical and social studies. For instance, we can fore-
cast the mothers’ stress and their children’s illness statuses in the MSCM study. Moreover,
we can incorporate the relationships of the response variables with the explanatory ones
while achieving these forecasts via the longitudinal models. These would help taking pre-
cautions based on subject and/or sub-group characteristics (e.g. employed vs. unemployed
mothers). Eventually, infants might be precluded to have illness and mothers’ life quality
could be increased.

In forecasting, one of the key suggestions is constructing simple models. The other
suggestion is forecasting data for near future, as the forecast accuracy might decrease when
forecasting data for far future. For instance, Diggle (1990, p. 189) showed that the variance
of the forecast increases as the lag between forecast and available data time points increases.

Forecasting is common in time series literature, e.g. see Nobre et al. (2001) and Burkom
et al. (2007), but it is rare for longitudinal data (Baltagi,2008). This might be due to
the spans of these two research areas; it is well-known that the first has a longer history.
Moreover, in some time series studies, e.g. in applied macroeconomics and financial econo-
metrics, the main aim of data collection and model building is forecasting Harris and Sollis
(2003, p. 10). On the other hand, in longitudinal studies, the main interest is mostly on
understanding the relationships between the dependent andthe independent variables and/or
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drawing subject-specific inferences, by measuring the change. Nevertheless, forecasting
with longitudinal data might be more informative and richercompared to the one with time
series data. For example, longitudinal data models, specifically random effects models, al-
low subject-specific forecasts in addition to the explanation of how the forecasts are related
to independent variables.

Most of the available forecasting studies for longitudinaldata have an econometric per-
spective; a literature survey of such studies up to 2008 could be found in Baltagi (2008).
Moreover, most of these studies are for continuous responseand all of them are for univari-
ate response. For instance, Baadsgaard et al. (2004) considered forecasting health statuses
of pig herds. Related data consisted of 15 Danish pig herds with 12 month follow-ups.
They mainly considered the comparison of the forecasting abilities of single moving aver-
age method and a Bayesian state space model. Related resultsshowed that these methods
performed similar. Frees and Miller (2004) concentrated onforecasting Wisconsin Lottery
Sales. Data were available for 40 weeks (April, 1998 - January, 1999) for 50 different postal
codes located in Wisconsin. They mainly considered simple and complex versions of ran-
dom effects models. Results indicated that complex models did not outperform the simpler
ones in terms of forecasting, even though they did so in termsof model building. Aslan
(2010) considered a simulation study on forecasting univariate longitudinal binary data. The
author mainly concentrated on the comparison of forecasting abilities of 21 different fore-
casting methods including simple methods, e.g. moving and non-moving mean, median and
mode and complex models, e.g. marginal, transition, randomeffects and marginalised tran-
sition models (Heagerty, 2002). This study considered a model independent data simulation
scenario which permits the models to fairly compete. It further considered forecasting the
covariates. Results showed that random intercept and transition models performed the best
in terms of forecasting.

In this study, we considered forecastingmultivariate longitudinal binary data. We mainly
concentrated on comparing forecasting performances of univariate and multivariate marginal
models and two marginally specified models. Our main motivating question of interest was
whether marginalised models yield better forecasts compared to the simpler ones. We be-
lieve that answering this question is important since marginalised models require more time
and effort during both model building and forecasting, e.g. they require forecasting the time
varying parameters and/or the use of iterative numerical methods. MSCM data set wereused
to illustrate this comparison in real life. Moreover, results were compared via a simulation
study. Following Aslan (2010), we considered a model independent data generation process
and we forecast the independent variables as well.

The remainder of the paper is organised as follows. In Section 2, we provide the details
of the models, related forecasting methodologies and the accuracy measures. Section 3 pro-
vides the details of the MSCM data set and the related forecasting results. Section 4 provides
the details of data generation and the forecasting results of the simulation study. The paper
is closed with conclusion and discussion.
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2 Methods

2.1 Models

We mainly considered five different models to forecast multivariate longitudinal binarydata.
Here, we briefly presented the modelling frames and some of their distinguishing features
due to page limits. Details can be found in the related references cited below.

2.1.1 Univariate marginal models

The modelling framework of univariate marginal models (UMM) is given by

logit P(Yit = 1|Xit) = Xit β, (1)

whereYit is the (univariate) response for subjecti (i = 1, . . . ,N) at timet (t = 1, . . . , T ); Xit

are the associated set of covariates,β are the regression parameters to be estimated and logit
is the log of odds. A popular approach to obtain the estimatesof β, β̂, is the generalized esti-
mating equations (GEE; Diggle et al., 2002; Liang and Zeger,1986; Zeger and Liang, 1986).
In this approach, a working variance-covariance structureis used for the repeated observa-
tions to take the within response dependency into account during the parameter estimation
process.

UMM considers building separate univariate models for eachlongitudinal responses one
by one, with possibly different set of covariates for different responses. In other words,
it only considers within response dependency and ignores the between and cross response
dependencies.

2.1.2 Multivariate marginal models with response specific parameters

Multivariate marginal models with response specific parameters (MMM1; Shelton et al.,
2004; Asar and Ilk, 2013) is an extension of UMM to multivariate response data. The related
model formulation is given by

logit P(Yit j = 1|Xit) = Xit β j, (2)

whereYit j is the jth ( j = 1, . . . , k) response for subjecti at timet, Xit are the common set of
covariates for multiple responses andβ j are the response specific regression parameters.

MMM1 uses GEE for parameter estimation and takes within, between and cross re-
sponse dependencies into account via working variance-covariance structure of the multiple
responses.
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2.1.3 Multivariate marginal models with shared regressionparameters

Asar and Ilk (2014) proposed multivariate marginal models with shared regression param-
eters (MMM2) by extending the MMM1 formulation in terms of covariate set specification
and regression parameter assumption. The modelling framework of MMM2 is given by

logit P(Yit j = 1|Xit j) = Xit j β, (3)

whereXit j are the response specific set of covariates andβ are the regression parameters that
are shared across multiple responses. We can still allow multiple responses to have their own
intercepts by including response type indicator variable(s) in the design matrix. Similarly, we
can allow them to have their own slopes by including the interactions of these indicator vari-
ables with covariates. By this setup, we can build more parsimonious multivariate marginal
models compared to MMM1 as well as equivalent ones. Similar to MMM1, MMM2 uses
GEE for parameter estimation and considers the aforementioned three dependence structures
via working variance-covariance structure of the multivariate responses.

2.1.4 Marginalised multivariate random effects models

Marginalised multivariate random effects models (MMREM) were proposed by Lee et al.
(2009) to analyse multivariate longitudinal binary data. The framework includes two level
logistic regression models which are given by

logit P(Yit j = 1|Xit) = Xit β j, (4)

logit P(Yit j = 1|Xit, bit j) = ∆it j + bit j. (5)

Here,bit j’s are the subject, time and response specific random effects. The random effects of
subjecti are assumed to follow a multivariate normal distribution, i.e.,bi = (bi11, . . . , bi1k, . . . ,

biT1, . . . , biTk)T ∼ N(0,Σ) with Σ = Σ1 ⊗ Σ2, where⊗ corresponds to Kronecker product.
On the one hand,Σ1 is a within response correlation matrix having an AR-1 structure, i.e.,
structured by only one transition parameter,γ. On the other hand,Σ2 is a variance-covariance
matrix of multiple responses structured by (k × (k + 1))/2 covariance parameters.∆it j is the
subject, time and response specific intercept that takes thenon-linear relationship between
(4) and (5) into account. It is deterministic function of other model parameters and obtained
by solving the following convolution equation:

P(Yit j = 1|Xit) =
∫

bit j

P(Yit j = 1|Xit, bit j) dF(bit j). (6)

The orthogonalization of the random effects by settingbi = Σ
1/2
1 ⊗ Σ

1/2
2 Ci, whereCi is a

(T × k) × 1 matrix with identical elements ofzi, wherezi ∼ N(0, 1), yields (5) to have the
following re-parametrised form:
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logit P(Yit j = 1|zi, Xit) = ∆it j + rk(t−1)+ jCi, (7)

whererk(t−1)+ j is the (k(t − 1)+ j)th row ofΣ1/2 = Σ
1/2
1 ⊗ Σ

1/2
2 .

MMREM takes the aforementioned three dependence structures into account. The pa-
rameter estimates are obtained by maximum likelihood estimation (MLE). Empirical Bayesian
estimators ofzi can be found in Asar (2012, Chapter 2.4.3) which were not originally derived
in Lee et al. (2009).

2.1.5 Probit normal marginalised transition random effects models

Asar et al. (2014) proposed probit normal marginalised transition random effects models
(PNMTREM) by extending the work of Ilk and Daniels (2007). Here, we only consid-
ered first order PNMTREM, i.e., PNMTREM(1), during our forecasting studies. General
model specifications could be found in these references. Themodelling formulation of PN-
MTREM(1) for t ≥ 2 is given by

P(Yit j = 1|Xit j) = Φ(Xit jβ), (8)

P(Yit j = 1|yi,t−1, j, Xit j) = Φ(∆it j + αtZit jyi,t−1, j), (9)

P(Yit j = 1|yi,t−1, j, Xit j, bit) = Φ(∆∗it j + λ jbit). (10)

Here,αt is a transition parameter vector that captures the relationship betweenYit j andYi,t−1, j.
Zit j is typically a subset of covariates,Xit j, bit’s are the subject and time specific random
effects withbit ∼ N(0, σ2

t ) and bit = σtzi, λ j’s are the response specific parameters with
λ1 = 1 for identifiability reasons andΦ(.) is the cumulative distribution function of standard
normal. ∆it j is the subject, time and response specific intercept that takes the non-linear
relationship between (8) and (9). It is a deterministic function of model parameters and can
be obtained by solving

P(Yit j = 1|Xit j) =
∑

yi,t−1, j

P(Yit j = 1|yi,t−1, j, Xit j)P(Yi,t−1, j|Xi,t−1, j). (11)

Similarly,∆∗it j takes the non-linear relationship between (9) and (10) and can be obtained by
solving

P(Yit j = 1|yi,t−1, j, Xit j) =
∫

bit

P(Yit j = 1|yi,t−1, j, Xit j, bit)dF(bit). (12)

Since no history data are available at hand, a different model is assumed for baseline time
point (t = 1). It also has a marginalised modelling structure and related framework is given
by
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P(Yi1 j = 1|Xi1 j) = Φ(Xi1 jβ
∗), (13)

P(Yi1 j = 1|Xi1 j, bi1) = Φ(∆∗i1 j + λ
∗
jbi1), (14)

whereβ∗ captures the relationship between the covariates and the mean response att = 1,
∆∗i1 j takes the non-linear relationship between (13) and (14), tobe calculated by solving a
convolution equation which can be seen by settingt = 1 and omittingYi,t−1, j in (12), bi1 is
the subject specific random effects withbi1 ∼ N(0, σ2

1) andbit = σ1zi andλ∗j is the response-
specific parameters withλ∗1 = 1 for identifiability.

Parameters of PNMTREM(1) are estimated by MLE and the modelling framework con-
siders within and between response dependencies. However it does not directly take the
cross response dependencies into account. Thezi’s are estimated by Empirical Bayesian es-
timation and the details can be found in Asar (2012, AppendixB.5).

2.2 Forecasting methodologies

2.2.1 Independent variables

Independent variables in longitudinal data might be time varying or time invariant. Time
invariant variables are not needed to be forecast, since related observations are constant over
time. On the other hand, future values of the former type are random variables indeed and
need to be forecast. Nonetheless, forecasting is not neededfor some time varying variables
which are deterministic functions of time, e.g. age. In forecasting literature, people usu-
ally assume that the independent variables are known and only forecast the dependent ones.
However, in real life the time variant covariates are unknown as well and should be forecast.

It might be beneficial to first consider forecasting the independent variables, since the
forecasting methodologies of dependent variables rely on complete design matrices, i.e.,X̂it

at t = (T + 1), . . . , (T + m) assuming we intend to dom step ahead forecasting.
Methods relying on the history of independent variables might be the best choices to

forecast longitudinal independent variables. Alternative methods, e.g. the ones accommo-
dating the relationship with other independent variables might be considered, but there are
some difficulties while using such methods. For instance, if the related variables include
time varying ones, we need their future values as well. Thesemethods might not be the best
choice anyway, since we expect low correlations between theindependent variables.

All the independent variables were time invariant in the MSCM data set. On the other
hand, we assumed time varying independent variables in the simulation study. All of the
independent variables were assumed to follow Gaussian distribution and the correlations
among these variables were assumed to be low. We mainly considered first and second order
transition models, TM(1) and TM(2), to forecast the independent variables in the simulation
study. Other methods that rely on the history of the independent variables were considered
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in Aslan (2010), e.g. moving average and random effects models. But the author reported
that these alternatives did not yield better forecasts compared to TM(1) and TM(2).

The modelling formulation of TM(1) for Gaussian data is given by

Xitl = β0 + β1Xi,t−1,l + ǫitl, (15)

whereǫitl ∼ N(0, σ2) andl is the covariate index for any time varying covariate.
Similarly, the framework of TM(2) can be given by

Xitl = β0 + β1Xi,t−1,l + β2Xi,t−2,l + ǫitl. (16)

The forecasting methodology of TM(1) can be briefly explained as obtaininĝβ0 andβ̂1,
by using the available data (t = 1, . . . , T ) and replacing them in (15) together witĥXi,t−1 for
(T + 2), . . . , (T + m). Forecasting methodologies of TM(2) is similar to the one for TM(1).

2.2.2 Dependent variables

The forecasting methodologies of UMM, MMM1 and MMM2 are similar to each other.
Therefore, here we only illustrate the one for UMM. It can be summarised as follows: Obtain
the estimates ofβ, β̂, based on the available data for each response, possibly with different
sets of independent variables. Then the forecasts of the success probabilities, ˆpit = P̂(Yit =

1|X̂it), can be obtained by replacing them in (1) together withX̂it.
Forecasting with MMREM and PNMTREM(1) are more complex compared to the above

models due to their complex structures. For instance, MMREMand PNMTREM(1) include
time varying parameters, i.e.∆it j in MMREM andαt, σ

2
t ,∆it j and∆∗it j in PNMTREM(1) and

we need to forecast these parameters as well. Related forecasting methodologies are quite
different and illustrated below separately.

- MMREM

1. Obtain the estimates ofβ j, Σ
1/2
1 , Σ1/2

2 andzi.

2. ExtendΣ1/2
1 from aT × T matrix to a (T + m) × (T + m) matrix,Σ1/2

1,new, based on the

estimate of the transition parameter,γ. SinceΣ1/2
2 is time invariant, no extension is

needed for this matrix.
3. ObtainΣ1/2

new = Σ
1/2
1,new ⊗ Σ

1/2
2 .

4. Obtain the forecast of∆it j, ∆̂it j, by solving the non-linear equation given in (6) via
40-points Gauss-Hermite Quadratures and Newton-Raphson algorithm in terms of∆it j

based onX̂it, β̂ j, Σ̂
1/2
2 for t = (T + 1), . . . , (T + m). Note that (6) is free ofγ (Lee et al.,

2009, p. 1287) and therefore, we do not need ˆγ to obtain∆̂it j.
5. Obtain the forecast of the success probability, ˆpit j = P̂(Yit j = 1|ẑi, X̂it) by using (7).
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We considered different methodologies while calculating ˆpit j. Whereas the first one
(MMREM1) relied on using the columns 1 to (T + m) of Σ1/2

1,new, the second (MMREM2)
relied on using columns (T + 1) to (T +m) of it. Alternative models were also considered by
using different estimation methods forzi’s. For instance, the third model (MMREM3) relied
on generatingzi’s from independent standard normal distributionsK times, and calculating
K differentp̂it j’s for each subjects and taking median of these quantities. We preferred me-
dian, since empirical investigations of success probabilities for randomly selected subjects
suggested highly right-skewed distributions for the MSCM data set. We suggested study-
ing percentage differences in the accuracy measures for successiveK values, e.g.K = 30
vs. K = 50, K = 50 vs. K = 80 and so on, and selecting the one for which the percentage
changes were reasonable, i.e., causing little changes which were not worth increasingK. The
last method with MMREM (MMREM4) relied on only usinĝ∆it j while calculating ˆpit j’s, i.e.,
takingzi = 0. This simplified the calculations at a cost of rather unrealistic assumption that
all subjects are average.

- PNMTREM(1)

1. Obtain the estimates ofβ, αt, σt, zi.
2. Obtain forecasts ofαt andσt for t = (T + 1), . . . , (T + m) by exponential smoothing

methods (Hyndman and Khandakar, 2008) for the MSCM data set (8 time points for
model building) and simple moving averages method for the simulated datasets (4 time
points for model building).

3. Obtain the forecast of∆∗it j, ∆̂
∗
it j, as given in (12).

4. Obtain the forecast of ˆpit j by using (10).
5. Dichotomise ˆpi,t−1, j by considering a classification rule such thatŶi,t−1, j = 1 if p̂i,t−1, j ≥

c j and 0 otherwise fort = (T + 2), . . . , (T + m) wherec j is a cutoff value.

The dichotomization in step 5 was only necessary in PNMTREM(1), since we need
history data in (9). Eight different forecasting methodologies were considered for PN-
MTREM(1). These methodologies were produced by mainly combining estimation ofzi

while calculating the ˆpit j and handlingYi,t−1, j in (9) atday = 26, 27 and 28. Whereas the for-
mer included two options, using the Empirical Bayes estimates ofzi, ẑi, and assigningzi = 0,
the latter included four options, settingc j = 0.5 to dichotomise ˆpi,t−1, j, using the true values
of Yi,t−1, j instead of dichotomizing ˆpi,t−1, j, using empirical proportions of the responses as
the c j and simulating the responses from independent Bernoulli distributions with success
probabilities, ˆpi,t−1, j. For instance, combining the two options of estimation ofzi and the first
option of handlingYi,t−1, j yielded the following two forecasting methodologies: using ẑi and
settingc j = 0.5 and assumingzi = 0 and settingc j = 0.5. We specifically call these method-
ologies as PNMTREM1 and PNMTREM2, respectively. Remainingsix methodologies were
produced by following similar strategies. We preferred notto give specific names to them
to avoid unnecessary abbreviations, since we reported onlythe results of PNMTREM1 and
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PNMTREM2 in the third section. Nonetheless, all the resultswill be discussed in the same
section.

2.3 Accuracy measures

We considered several accuracy measures to compare the model performances. Specifically,
two different accuracy measures were considered for dependent binary variables, and two
different accuracy measures were considered for independent continuous variables. Below
we discuss these measures.

2.3.1 Binary data accuracy measures

The first accuracy measure we considered for binary data was the expected proportion of
correct prediction (ePCP) which was proposed by Herron (1999). ePCP considers the calcu-
lation of average probability of estimating the actual observations, i.e., it considers (1− p̂it j)
whenYit j = 0 and p̂it j whenYit j = 1, where ˆpit j is the estimated success probability. The
calculation of ePCP is given by

ePCPt j =
1
N

N
∑

i=1

(

yit j p̂it j + (1− yit j) (1− p̂it j)
)

. (17)

The interval in which the possible values of ePCP lie is [0, 1] and larger values indicate better
performance.

The second binary accuracy measure we considered was the area under the receiver oper-
ating characteristics (AUROC) curve. AUROC considers all the possiblec j (between 0 and
1) and dichotomises the estimated success probabilities as0 or 1 with respect to these values.
Then, the area under the curve which is drawn by placing falsepositive rate (FPR) on the
x-axis and true positive rate (TPR) on the y-axis is considered as the corresponding accuracy
measure. Here, while TPR is calculated by the ratio of the number of cases which is assigned
as positive (1, here) and is actually observed to be 1 to the total number of actual positives,
FPR is calculated by the ratio of the number of cases which areassigned as positive (1, here)
and is actually observed to be 0 to the total number of actual negatives. AUROC can take
values between 0 and 1 and larger values indicate better performance.

2.3.2 Continuous data accuracy measures

We preferred one scale dependent and one scale independent accuracy measures for contin-
uous data, following Hyndman (2006) and Hyndman and Koehler(2006). The scale depen-
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dent measure is mean absolute error (MAE) which can be calculated by

MAE t =
1
N

N
∑

i=1

|eit |, (18)

whereeit is the forecast error and calculated byeit = Xit − X̂it. MAE has some advantages
over the other scale dependent measures, e.g. mean squared (MSE) and root mean squared
(RMSE) errors. For instance, MAE is in the same scale of data (unlike MSE) and is not
heavily affected from outliers (unlike MSE and RMSE; Hyndman and Koehler, 2006).

The scale independent accuracy measure is mean absolute scaled error (MASE) proposed
by Hyndman and Koehler (2006). Related calculation is givenby

MASEt =
1
N

N
∑

i=1

|eit|

1
T−1

∑T
h=2 |Xih − Xi,h−1|

. (19)

Lower values of MAE and MASE indicate better model performance.

3 Forecasting mother’s stress and children’s morbidity

3.1 Data

In MSCM study, 167 mothers and their pre-school children (aged between 18 months-5
years) were enrolled mainly to understand the relationshipbetween mother’s employment
status and the pediatric care usage. In a baseline interview, some demographic and family
information were collected through the following variables: the marriage status, education
level and employment status of mothers, the health status ofmothers and children at baseline
and the size of the household (Table 1). After the baseline interview, mothers were asked to
keep the records of their stress and their children’s illness statuses with a 28-day health di-
ary. These variables were dichotomised later as stress status of mothers (stress: 0=absence,
1=presence) and illness status of children (illness: 0=absence, 1=presence).

Table 1 is about here.

Empirical investigations of the within-subject association structures of both responses
suggested extremely weak within-response dependencies inthe period of days 1 to 16.
Therefore, we only considered the period of days 17 to 28. Nonetheless, we calculated
the averages of responses for the period of days 1 to 16, and considered these as two new
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independent variables (bstress and billness, respectively in Table 1), to capture the individ-
ual characteristics of mothers and their children. Standardised time (week in Table 1) and
the interactions between time and some independent variables were included as additional
covariates.

We partitioned the MSCM data set (days 17 to 28) into two: 1) model building (days
17 to 24), and 2) forecast validation (days 25 to 28) parts. Once the aforementioned models
were built for the former time period, forecastings were done based on the systems indicated
by these models.

3.2 Results

We checked the existence of multicollinearity problems by variance inflation factor, via
pooled (over time points) logistic regression models. Results (not shown here) showed that
none of the related values were greater than 1.394 which indicated no multicollinearity prob-
lems.

We built several models to explain the MSCM data set in the period of days 17 to 24.
Due to page limits, we could not include the modelling results here, but provide some details
below. There is poverty in model selection with GEE, since itdoes not define a genuine likeli-
hood function. Therefore, we built several UMM’s and MMM1’swith different independent
variable sets and working variance-covariance structure assumptions. We did forecasting
with each of these models and best results were reported here. On the other hand, we built
a model with MMM2 based on the results of MMM1. This MMM2 permitted estimating
five less parameters compared to its mother MMM1. We were ableto use well established
model selection methods, e.g. likelihood ratio test for MMREM and PNMTREM(1), since
the parameters of these models were estimated via MLE. Forecastings were done by these
best models.

We reported some features of the models in Table 2, includingthe names and availability
of the related R (R Core Development Team, 2013) packages andcomputational details. The
model building processes of UMM, MMM1 and MMM2 took very short computing times.
On the other hand, MMREM and PNMTREM(1) took more computational times for the
same data set (MSCM). All of these models were fitted on a personal computer with 4.00
GB RAM and 2.53 GHz processor.

Table 2 is about here.

As it was mentioned earlier, we considered generatingzi’s from independent standard
normal distributionsK times while forecasting with MMREM and call this method as MM-
REM3. We consideredK = 30, 50, 80, 100, 120, 150, 180, 200, 250, 300, 400, 500, 750, 1000
and calculated percentage differences in accuracy measures for successive replication amounts,
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e.g. K = 30 vs K = 50. Related percentage differences (not shown here) directed us to
chooseK = 150 for response=stress andK = 250 for response=illness. The reason for
greaterK for response=illness might be due to the fact that the response has a greater vari-
ance. For instance, the variance parameter estimates of stress and illness were found to be
2.07 and 4.56 by MMREM, respectively.

We observed that the choice of how to handleYi,t−1, j in (9) atday = 26, 27 and 28 while
forecasting with PNMTREM(1) is decisive rather than the choice of using ˆzi or assigning
zi. As expected using the observed responses in place of dichotomizingYi,t−1, j yielded the
best results. However, we preferred not to report these results here since this approach does
not reflect the real life cases in which we do not observe theseresponses for these time
points. The second best results were attained by the use ofc j = 0.5 to dichotomiseYi,t−1, j

and the results of this approach were reported here, i.e., the results of PNMTREM1 and
PNMTREM2. Simulating the responses from Bernoulli distributions followed this approach.
Empiricalc j yielded very poor results, especially in terms of ePCP.

Based on several accuracy measures, e.g. RMSE and MAE, and several model selec-
tion criterion, e.g. Akaike Information Criterion and Bayesian Information Criterion, we
used exponential smoothing with additive error, no trend, no seasonality to forecastαt and
exponential smoothing with additive error, additive trend, no seasonality to forecastσt.

Model building (days 17 to 24) and forecasting (days 25 to 28)results of mother’s stress
and children’s illness are presented in Tables 3 and 4, respectively. For model building pe-
riod, the marginalised models, namely, MMREM and PMTREM(1)seemed to perform better
compared to UMM, MMM1 and MMM2. For instance, for response=stress MMREM3 and
MMREM4 outperformed these marginal models; the corresponding ePCP values were 0.844
and 0.842 for MMREM’s versus 0.799 and 0.800 for the marginalmodels. Moreover, the
AUROC values of MMREM1 and MMREM2 were found to be 0.82 as opposed to 0.72 for
marginal models. Note that MMREM1 and MMREM2 were identicalmodels at days 17
to 24 indeed. PNMTREM1 followed these models with an AUROC value of 0.804. Sim-
ilar model ranking was observed for response=illness. For instance, in terms of ePCP all
the MMREM’s and PNMTREM1 seemed to outperform the others. Interms of AUROC,
MMREM1, MMREM2 and PNMTREM1 seemed to be the best models.

For forecasting time period, marginally specified models also outperformed the marginal
models for both of the responses. In terms of ePCP, MMREM’s seemed to be the best per-
forming models. For instance, the ePCP values of MMREM4 wereall higher than 0.860
and for response=illness at day 28 it was found to be 0.917. PNMTREM’s seemed tobe
the worst performing ones in terms of this accuracy measure for the forecasting time peri-
ods. This worst performance of PNMTREM’s is less apparent for response=stress, which
is the response with lower variance. In terms of AUROC, PNMTREM’s, especially PN-
MTREM2, outperformed the other models. For instance, the AUROC value of this method
for response=stress at day 27 was found to be 0.843. On the other hand, the AUROC values
for other methods were lower; the lowest was found to be 0.719belonging to MMREM4.
UMM and MMM’s were among the worst performing methods in terms of both ePCP and
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AUROC in most cases and these models had similar forecastingperformances.

Table 3 is about here.

Table 4 is about here.

4 A simulation assessment

Forecasting results of MSCM data set suggested that marginalised models yielded improved
forecasts. Additionally, the results of UMM seemed to be worst in general, yet these results
were close to the ones for MMM’s. This results was our expectation. However empirical in-
vestigations of dependence between responses suggested a weak dependence between stress
and illness at the period of days 17 to 28, e.g. Spearman rank correlation was found to be
0.13. Based on these, we needed to investigate the forecasting performances of the models
under different scenarios and conducted a simulation study.

4.1 Data generation

In the simulation study, we assumed that there were 500 subjects (i = 1, . . . , 500) who were
followed repeatedly over 8 time points (t = 1, . . . , 8). At each follow up, six different vari-
ables were assumed to be collected. Among them, two were assumed to be the responses
(k = 1, 2) and four were assumed to be the covariates. Among the covariates, while two (X1

andX3) were assumed to be time invariant, other two (X2 andX4) were assumed to be time
varying. We mainly considered that all of the variables, including the responses, were con-
tinuous and generated them from a multivariate normal distribution with a specified mean
and variance-covariance combination. Specifically, all the variables were assumed to have
mean 0. Moreover, we assumed that while the continuous versions of the response variables,
Y∗1 andY∗2, had variances of 1.5 and 2.5, the explanatory variables,X1, X2, X3 andX4, had
variances of 8, 2.5, 15 and 25, respectively. We further assumed high autocorrelations for
responses; as well as high correlations between responses and covariates; mild correlations
between responses; and low correlations between covariates (Table 5). Although the cor-
relations in Table 5 seemed quite high, e.g.cor(Y∗t , Y

∗
t−1) = 0.9, they decreased after data

generation and dichotomization to obtain the response variables. The continuous versions of
the response variables were dichotomised according to the following rule: classifyYit j as 1
if Y∗it j ≥ 0, and 0 otherwise.

Table 5 is about here.
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4.2 Results

4.2.1 Independent variables

As it was stated earlier, we first forecast the independent variables. Results forX2 are pre-
sented in Table 6. These results were calculated over 10,000replications and obtaining all
of the them took 26.3 minutes. Mean and standard error (SE) of10,000 MAE and MASE
values were calculated and reported in this table.

Table 6 is about here.

MAE values indicated that TM(1) and TM(2) performed very similar in terms of fore-
castingX2. While the mean values were very close to each other, standard errors were same
for forecasting period. For instance, whereas fort = 6 the mean MAE was found to be 0.917
for TM(1), it was found to be 0.914 for TM(2). Moreover, theirstandard errors were found
to be 0.031. Note that although the standard errors of MAE of TM(1) and TM(2) for model
building periods seemed to be slightly different, they were not directly comparable, since
while the former considers 2nd, 3rd and 4th time points in themodel building period, i.e.,
1,500 observations, the latter considers only 3rd and 4th time points, i.e., 1,000 observations.
MASE values indicated that TM(1) performed better in terms of forecastingX2 compared to
TM(2) (Table 6).

Recall that whileX2 was assumed to have a variance of 2.5 during the simulation process,
X4 had a variance of 25. However, increase in the variance of theindependent variables did
not seem to effect the performances of TM(1) and TM(2). Similar toX2, while MASE results
of X4 indicated that TM(1) performed better in terms of forecasting X4 compared to TM(2),
MAE results indicated similar performance (results are notshown here).

Notice that we estimated one more parameter in TM(2) compared to TM(1) and the es-
timation of this extra parameter seemed to be redundant since it did not contribute to the
forecasting accuracy. Therefore, TM(1) was preferred in terms of forecasting the indepen-
dent variables during our simulation studies. These results were in agreement with the ones
reported in Aslan (2010) in which the results were based onlyon mean squared error (MSE).

4.2.2 Dependent variables

After forecasting the independent variables, we considered forecasting the bivariate longi-
tudinal binary responses,Y1 andY2. Based on the forecasting performances of the models
on MSCM data set, we selected UMM, MMM1, MMREM2, MMREM4, PNMTREM1 and
PNMTREM2. We did not consider MMM2 for the simulation study on forecasting, since the
results of MMM1 and MMM2 seemed to be very similar for the MSCMdata set. Moreover,
model fitting of MMM2 requires more computational time compared to MMM1 (Table 2).
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Simulation results on forecastingY1 are presented in Table 7. We preferred not to show
the results ofY2 here due to page limits. Indeed, these results seemed to be slightly better
than the ones forY1, but indicated same model rankings. The simulation study were repli-
cated 100 times and one replication (the last one) took 11.7 minutes. Mean and standard error
(SE) of the ePCP and AUROC values of these 100 simulation replications were reported.

Table 7 is about here.

In the model building period, times 1 to 4, MMREM2 and PNMTREM1 seemed to be
the best methods in terms both ePCP and AUROC. For instance, for Y1 while the ePCP
and AUROC values of the former model were found to be 0.811 and0.924, these values
for the latter model were found to be 0.766 and 0.905 (Table 7). These results seemed
to be even better forY2, especially for MMREM2; the corresponding ePCP and AUROC
values for MMREM2 were found to be 0.872 and 0.966. For forecasting time periods, ePCP
and AUROC indicated different best models similar to the forecasting with MSCM data
set. Specifically, ePCP indicated that MMREM2 & MMREM4 were the best performed
methods. For instance, forY1 at time 6, while the ePCP values of MMREM2 & MMREM4
were found to be 0.708 and 0.670, respectively, these valueswere found to be 0.605 for
both UMM & MMM1, and 0.566 and 0.555 for PNMTREM1 & PNMTREM2. In terms of
AUROC, MMREM2 and PNMTREM1 seemed to be the best models. For instance, forY1 at
time 8, the AUROC values of these models were found to be 0.734and 0.755, respectively.
On the other hand, while the AUROC values of UMM, MMM1 & MMREM4were found
to be 0.683, it was found to be 0.706 for PNMTREM2. The standard errors of ePCP and
AUROC values for all of the models seemed to be similar.

For one-step forecasts, i.e., time=5, PNMTREM’s seemed to perform similar to UMM
and MMM1 in terms of ePCP. Moreover, at this time point, PNMTREM’s seemed to be better
than MMREM’s in terms of AUROC. For instance, forY1, the AUROC values of PNTREM1
and MMREM2 were 0.891 and 0.812, respectively.

To sum up, complex models, especially MMREM2 and PNMTREM1, outperformed in
model building process. It was observed that MMREM2 was one of the leading methods in
both modelling and forecasting procedure, and was computationally efficient as well. How-
ever, PNMTREM’s, especially PNMTREM1, seemed to be promising in terms of one-step
ahead forecasts.

5 Conclusion and discussion

In this study, we considered forecasting multivariate longitudinal binary data. We mainly
considered the comparison of five different models in terms of forecasting such data. Among
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them whereas two (MMREM and PNMTREM(1)) are complex models,the others (UMM,
MMM1 and MMM2) are relatively simpler ones. The forecastingabilities of these models
were assessed via a real life data (MSCM) and a simulation study. The simulation datasets
were generated under a model independent scenario to provide a fair model competition.
To best mimic the real life forecasting problems, we considered forecasting the independent
variables as well as the dependent ones. The forecasts, for both dependent and independent
variables, were checked via several accuracy measures.

Both real life and simulation examples showed that complex models outperformed dur-
ing the model building process in terms of all the accuracy measures. For the forecasting
period, the complex models again outperformed the simpler models. We observed that while
AUROC suggests PNMTREM(1), ePCP suggests MMREM as the best forecasting method.
This is most probably due to different characteristics of these accuracy measures. In other
words, these measures consider different aspects of forecasts. To illustrate, while ePCP con-
siders the averaged probability with respect to actual observations, AUROC considers clas-
sification of the forecast probabilities according to several threshold values. Based on these,
it can be said that the latter is more robust to threshold values. Hence, we can conclude that
while the forecast results of PNMTREM(1) are more robust, MMREM results are better on
the average. UMM and MMM’s were among the worst performing methods in terms of both
ePCP and AUROC. Surprisingly, UMM and MMM’s performed similar in terms of both
model building and forecasting. Moreover, these complex models are now available to the
practitioners via R packages or codes.

The computational efficiencies of models in terms of parameter estimation and forecast-
ing procedures are also important in real life. We observed that while the marginal models
took a few seconds for parameter estimation, the marginalised models took longer compu-
tational times. Moreover, the forecasting procedures of the former models are quite simpler
compared to the latter ones. For instance, we do not need to forecast extra time varying pa-
rameters for the former ones, i.e., they avoid the use of numerical methods and exponential
smoothing. Nevertheless, the gains in the forecasts directed us to prefer the complex models
for forecasting purposes.

The use of the forecast values of the independent variables,instead of using supposedly
the observed ones, yielded decreases in the accuracy measures. However, this did not change
the model rankings (Aslan, 2010). We observed that the response variance was affecting the
forecasting results, but it did not change the model rankings. Specifically, we observed
higher accuracy measures for the responses with higher variances, i.e., children’s illness in
the MSCM data set andY2 in the simulation study. Nevertheless, they indicated samemodel
rankings with the mother’s stress andY1.

In this study, we mainly considered forecasting bivariate response. A natural extension
of it might be forecasting more than two responses.
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Table 1: List of the variables in the MSCM study and the related explanations.

Variable Explanation
stress mother’s stress status: 0=absence, 1=presence
illness child’s illness status: 0=absence, 1=presence
married marriage status of the mother: 0=other, 1=married
education mother’s education level: 0=less than high school,

1=at least high school graduate
employed mother’s employment status: 0=unemployed, 1=employed
chlth child’s health status at baseline: 0=very poor/poor,

1=fair, 2=good, 3=very good
mhlth mother’s health status at baseline: 0=very poor/poor,

1=fair, 2=good, 3=very good
housize size of the household: 0=2-3 people, 1=more than 3 people
bstress baseline stress: average value of the mother’s stress

status for the first 16 days
billness baseline illness: average value of the child’s illness

status for the first 16 days
week a time variable calculated as (day-22)/7
mhlth*week interaction between mother’s health status at baseline and time
housize*week interaction between size of the household andtime
billness*week interaction between baseline illness and time

Table 2: Model building with MSCM data set.
Model Package Function Reference Computational Time for MSCM
UMM gee gee Carey (2012) < 1 sec
MMM1 mmm mmm Asar and Ilk (2013) < 1 sec
MMM2 mmm2 mmm2 Asar and Ilk (2014)< 1 sec
MMREM From author findmle+ FORTRAN dll’s Lee et al. (2009) ≈ 7-8 mins
PNMTREM(1) pnmtrem pnmtrem1 Asar et al. (2014) ≈ 30-40 mins
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Table 3: Forecast results for mothers’ stress.
Model Day ePCP AUROC Day ePCP AUROC
UMM (Exch)

17 to 24

0.799 0.726

27

0.858 0.790
MMM1 (Exch) 0.799 0.726 0.855 0.747
MMM2 (Exch) 0.800 0.722 0.861 0.780
MMREM1 0.828 0.821 0.851 0.757
MMREM2 0.828 0.821 0.884 0.754
MMREM3 0.844 0.712 0.903 0.735
MMREM4 0.842 0.721 0.900 0.719
PNMTREM1 0.824 0.804 0.662 0.764
PNMTREM2 0.829 0.712 0.754 0.843
UMM (Exch)

25

0.823 0.678

28

0.846 0.709
MMM1 (Exch) 0.821 0.641 0.842 0.670
MMM2 (Exch) 0.823 0.657 0.845 0.690
MMREM1 0.831 0.775 0.830 0.585
MMREM2 0.866 0.759 0.859 0.595
MMREM3 0.868 0.675 0.899 0.661
MMREM4 0.867 0.695 0.886 0.651
PNMTREM1 0.688 0.761 0.625 0.608
PNMTREM2 0.723 0.743 0.732 0.735
UMM (Exch)

26

0.829 0.704

25 to 28

0.839 0.718
MMM1 (Exch) 0.828 0.704 0.841 0.687
MMM2 (Exch) 0.829 0.715 0.840 0.708
MMREM1 0.836 0.811 0.837 0.729
MMREM2 0.865 0.803 0.868 0.711
MMREM3 0.871 0.728 0.883 0.699
MMREM4 0.869 0.725 0.880 0.698
PNMTREM1 0.685 0.819 0.665 0.736
PNMTREM2 0.711 0.731 0.730 0.759

Note: MMREM1 and MMREM2 are identical for model building periods.
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Table 4: Forecast results for children’s illness.
Model Day ePCP AUROC Day ePCP AUROC
UMM (AR-1)

17 to 24

0.815 0.719

27

0.793 0.560
MMM1 (Exch) 0.815 0.720 0.800 0.562
MMM2 (Exch) 0.815 0.719 0.800 0.575
MMREM1 0.868 0.878 0.759 0.656
MMREM2 0.868 0.878 0.873 0.677
MMREM3 0.881 0.697 0.907 0.662
MMREM4 0.882 0.705 0.908 0.665
PNMTREM1 0.855 0.814 0.526 0.686
PNMTREM2 0.851 0.691 0.605 0.741
UMM (AR-1)

25

0.779 0.640

28

0.799 0.687
MMM1 (Exch) 0.782 0.632 0.807 0.685
MMM2 (Exch) 0.781 0.608 0.805 0.674
MMREM1 0.785 0.736 0.761 0.622
MMREM2 0.856 0.674 0.853 0.647
MMREM3 0.857 0.570 0.911 0.683
MMREM4 0.860 0.582 0.917 0.686
PNMTREM1 0.629 0.798 0.514 0.638
PNMTREM2 0.652 0.783 0.605 0.772
UMM (AR-1)

26

0.797 0.623

25 to 28

0.792 0.617
MMM1 (Exch) 0.802 0.627 0.798 0.616
MMM2 (Exch) 0.801 0.614 0.800 0.608
MMREM1 0.764 0.677 0.767 0.675
MMREM2 0.875 0.725 0.864 0.657
MMREM3 0.893 0.670 0.892 0.636
MMREM4 0.895 0.688 0.895 0.645
PNMTREM1 0.555 0.713 0.556 0.701
PNMTREM2 0.624 0.791 0.621 0.765

Note: MMREM1 and MMREM2 are identical for model building periods.
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Table 5: A summary of the assumed correlation structure.

Time lag Y∗t , Y
∗
t′ Xt, Xt′ Y∗t , Xt Y∗t1, Y∗t2 Xtl, Xtl′

0 1.00 1.00 0.80 0.60 0.20
1 0.90 0.88 0.70 0.55 0.18
2 0.80 0.76 0.60 0.45 0.16
3 0.70 0.64 0.50 0.40 0.14
4 0.60 0.52 0.40 0.35 0.12
5 0.50 0.40 0.30 0.30 0.10
6 0.40 0.28 0.20 0.25 0.08
7 0.30 0.16 0.10 0.20 0.06

Table 6: Forecasting results ofX2.

TM(1) TM(2)
MAE MASE MAE MASE

Time Mean SE Mean SE Time Mean SE Mean SE
2 to 4 0.671 0.013 0.993 0.012 3 to 4 0.668 0.016 1.046 0.057

5 0.671 0.023 1.242 0.068 5 0.670 0.023 1.531 0.175
6 0.917 0.031 1.692 0.092 6 0.914 0.031 2.086 0.326
7 1.084 0.037 1.996 0.111 7 1.079 0.037 2.457 0.317
8 1.208 0.041 2.223 0.123 8 1.201 0.041 2.728 0.335

5 to 8 0.970 0.025 1.788 0.085 5 to 8 0.966 0.025 2.200 0.262

Note: X2 had variance of 2.5. Results were calculated over 10,000 replications.
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Table 7: Forecasting results ofY1 over 100 replications.
ePCP AUROC ePCP AUROC

Model Time Mean SE Mean SE Time Mean SE Mean SE
UMM (Uns)

1 to 4

0.648 0.011 0.810 0.013

7

0.585 0.012 0.713 0.025
MMM1 (Uns) 0.649 0.011 0.810 0.014 0.585 0.012 0.713 0.025
MMREM2 0.811 0.011 0.924 0.008 0.683 0.018 0.768 0.023
MMREM4 0.721 0.013 0.810 0.014 0.644 0.019 0.712 0.024
PNMTREM1 0.766 0.009 0.905 0.008 0.552 0.021 0.764 0.023
PNMTREM2 0.740 0.010 0.870 0.009 0.544 0.020 0.714 0.025
UMM (Uns)

5

0.625 0.012 0.778 0.019

8

0.569 0.012 0.683 0.027
MMM1 (Uns) 0.626 0.012 0.778 0.019 0.569 0.012 0.683 0.027
MMREM2 0.720 0.016 0.812 0.017 0.658 0.019 0.734 0.026
MMREM4 0.694 0.017 0.778 0.019 0.622 0.020 0.683 0.027
PNMTREM1 0.639 0.016 0.891 0.015 0.547 0.021 0.755 0.029
PNMTREM2 0.622 0.016 0.884 0.016 0.539 0.020 0.706 0.029
UMM (Uns)

6

0.605 0.011 0.747 0.020

5 to 8

0.596 0.011 0.732 0.019
MMM1 (Uns) 0.605 0.011 0.747 0.020 0.596 0.010 0.732 0.019
MMREM2 0.708 0.016 0.800 0.018 0.692 0.013 0.779 0.016
MMREM4 0.670 0.016 0.747 0.020 0.658 0.015 0.732 0.018
PNMTREM1 0.566 0.020 0.802 0.019 0.573 0.016 0.801 0.016
PNMTREM2 0.555 0.020 0.748 0.021 0.563 0.016 0.761 0.017

Note: Uns denotes unstructured working variance-covariance structure assumption.
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