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Abstract: The Gaussian graphical model (GGM) is a powerful tool to describe the 
relationship between the nodes via the inverse of the covariance matrix in a com-
plex biological system. But the inference of this matrix is problematic because of its 
high dimension and sparsity. From previous analyses, it has been shown that the 
Bernstein and Szasz polynomials can improve the accuracy of the estimate if they 
are used in advance of the inference as a processing step of the data. Hereby in this 
study, we consider whether any type of the Bernstein operators such as the Bleiman 
Butzer Hahn, Meyer-König, and Zeller operators can be performed for the improve-
ment of the accuracy or only the Bernstein and the Szasz polynomials can satisfy 
this condition. From the findings of the Monte Carlo runs, we detect that the high-
est accuracies in GGM can be obtained under the Bernstein and Szasz polynomials, 
rather than all other types of the Bernstein polynomials, from small to high-dimen-
sional biological networks.
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1. Introduction
The approximation theory is concerned with the study of how well given functions can be proxi-
mated by basic functions. In this theory, it is usual to apply the approximating functions in the form 
of linear positive operators, such as the Bernstein, Szasz–Mirakyan polynomials, the Bleiman Butzer 
Hahn (BBH) operator, Meyer-König and Zeller (MKZ) operator. From previous works, it is known that 
the Bernstein and Szasz polynomials can significantly improve the accuracy of estimates from the 
point of view of their inference via the Gaussian graphical model (GGM) (Purutçuoğlu, Ağraz & Wit, 
2015). Therefore, here we investigate whether the strong alternatives of the Bernstein polynomials, 
i.e. the Bleiman and Hahn operator and the Meyer-König and Zeller operator, are as successful as the 
Bernstein polynomials and can be used alternately.

The Gaussian graphical model is a probabilistic and undirected statistical model for the complex 
biological networks under the normally distributed random multivariate variables whose depend-
ency structure is represented by a graph (Dempster, 1972). In Figure 1, we represent the structure of 
the filtered yeast interactome (FYI) network (Han et al., 2004) as an example of realistically complex 
biological systems that GGM can handle with. Hereby, in GGM, we assume that the observations fol-
low a multivariate normal distribution with a mean vector � and the variance–covariance matrix Σ, 
and the conditional independent structure of the observations can be described via a set of nodes 
and edges constructing an undirected network by means of the inverse of the covariance matrix, 
also called the precision Θ = Σ−1. In Θ, the non-zero entries indicate the interactions between nodes, 
i.e. genes, and zero entries imply no interaction between the selected pair of nodes.

On the other hand, the Bernstein operators which cover the Bernstein and Szasz polynomials are 
the approximations that are based on the binomial and the Poisson distribution, respectively. But in 
the literature, different Bernstein-type operators are presented as well. Specifically, the Bleiman–
Butzer Hahn (BBH) and the Meyer-König and Zeller (MKZ) operators which are derived from the 
Bernstein operators are the most well-known ones. The theoretical properties of the BBH operator 
(Agratini, 1996) and MKZ operator (Abel, 1995; Becker, 1977) have been studied extensively.

In biological networks, the Bernstein polynomials enable us to transform the data in a new range 
(Lorentz, 1953; Bernstein, 1912). Accordingly, in this study, we consider to implement the Bernstein 
polynomials, the BBH operator and the MKZ operator in different dimensional biological systems 
before estimating the model parameters of GGM.

Figure 1. The main component 
of the FYI network (Han et al., 
2004).
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Accordingly, in the organization of this paper, we introduce GGM and different types of operators 
in Section 2. In Section 3, we report our outputs based on the Monte Carlo studies. Finally, in Section 4, 
we summarize our results and discuss our future works.

2. Methods

2.1. Gaussian graphical model
The biological system is an expression between components of the complex biological networks and 
the interactions between components in this system can be probabilistically represented by the 
Gaussian graphical model. In this modeling approach, the nodes are indicated as X = (X1,… ,Xp) 
under the assumption that the state vector X has a multivariate Gaussian (normal) distribution via

in which � is a p-dimensional mean vector and Σ shows the (p × p) variance–covariance matrix for 
the p-dimensional normal density of the random variable X with n samples per nodes, i.e. genes. 
Hereby, the p-dimensional normal density of X shown in Equation (1) can be denoted by the follow-
ing probability density function.

In Equation (2), Σ is symmetric and invertible matrix, and its inverse called the precision, Θ, indicates 
the dependency structure between two nodes. Accordingly, in GGM, if there exists an edge between 
two nodes, i.e. Θij = Θji ≠ 0, these two nodes are not conditionally independent given other nodes 
(Whittaker, 1990). In other words, the non-zero entries of the off-diagonal entries of Θ imply a physi-
cal or functional interaction between the nodes (Dempster, 1972; Wermuth, 1976; Whittaker, 1990). 
In Figure 2, we draw a small network having five nodes in which X1 is conditionally independent on 
X3 for given X2. Similarly, X3 is conditionally independent on X5 for given X2 and X4 in the same 
figure.

There are lots of techniques to estimate entries of the precision matrix in GGM. The neighborhood 
selection method with the lasso regression (Meinshaussen & Bühlmann, 2006) is one of the compu-
tationally efficient approaches for sparse and high-dimensional graphs. This method belongs to the 
class of the covariance selection approaches that is based on non-parametric calculation. In this 
model, given that the set of nodes and the number of nodes in the graph are denoted by Φ and 
|Φ(n)|, respectively, the neighborhood of the node p in Φ is the smallest subset of the node Φ ⧵ p. 
Since each state of the node, i.e. gene, p, Xp, is defined as conditionally independent on the state of 
all remaining nodes, X

−p, an optimal prediction of the vector of the regression coefficient of Xp in the 
lasso regression (Tibshirani, 1996), �p, can be found by the following expression.

(1)X ∼ N(�,Σ)

(2)f (X) =
1

(2�)n∕2|Σ|1∕2
exp

[
−
1

2
(X − �)

�
Σ−1(X − �)

]
.

(3)�
p = argmin

�p=0
E

(
Xp −

∑

k∈Φ(n)

�kXk

)2

.

Figure 2. Simple representation 
of the relationship between five 
nodes in a system.
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In Equation (3), Φ denotes the set of nodes with n number of observations each, E(⋅) shows the 
expectation of the given random variable, and Θp

k
 stands for Θp

k
= −Σkp∕Σpp. Here, the best predictor 

for Xp is detected as a linear function of variables in the set of neighbors of the node (Meinshaussen 
& Bühlmann, 2006).

Furthermore, the graphical lasso, also named as glasso, approach (Friedman, Hastie, & Tibshiran, 
2008), is another common technique in inference of biological networks. Briefly, this method con-
trols the type I and type II errors by detecting the probability under very low levels when the penal-
ized likelihood expression is defined as below.

In Equation (4), || ⋅ ||1 shows the l1-norm, which is the sum of the absolute value of the given ele-
ment, and Tr(⋅) presents the trace. S indicates the sample covariance matrix S = Θ−1. Accordingly, in 
inference of S in Equation (4) as an unbiased estimator of Σ in Equation (2), the sample covariance 
matrix is applied, i.e. Θ̂ = S via

Here, sij denotes the ith row and the jth entry of S and n is the total sample size per gene as stated 
previously. Finally, xik stands for the kth sample of the ith gene and x̄(j) refers to the mean term for 
the ith gene having totally n observations.

On the other hand, different researchers have also investigated other parametric solutions of this 
problem. But the main challenge under these calculations is the high dimension of genes (nodes) 
with respect to the observations per gene, denoted by n, i.e. n << p. This inequality causes a singular 
covariance matrix, resulting in multiple of solutions if we perform the standard maximum likelihood 
technique in inference of model parameters. Hereby, in order to unravel this problem, different types 
of penalized methods are also suggested besides the neighborhood selection and glasso approach-
es as described above. These methods are based on distinct optimization approaches of the lasso 
regression in the estimation of Θ. We can also list grouped lasso (Yuan & Lin, citeyuan), elastic net 
method (Zou & Hastie, 2005), fused lasso (Tibshirani, Saunders, Rosset, Zhu, & Knight, 2005), adap-
tive lasso (Zou, 2006), coordinate-wise descent algorithm within the l1-penalized lasso (Friedman, 
Hastie, & Tibshiran, 2007), and multivariate methods with scout algorithm (Witten & Tibshirani, 
2009) approaches as the other most well-known approaches used in GGM. All these methods mainly 
suggest similar model construction for the penalized maximum likelihood function defined for the 
lasso regression by either the l1 norm or l2-norm as the penalizing term. On the other side, recently, 
certain semi-parametric approaches such as the non-paranormal SKEPTIC algorithm (Liu, Han, Yuan, 
Lafferty, & Wasserman, 2012) and fully parametric approaches via Bayesian techniques such as the 
birth-death Markov chain Monte Carlo (MCMC) (Muhammadi & Wit, 2014) approach are proposed in 
order to estimate Θ without using any optimization methods. In the literature of GGM, different 
types of Monte Carlo approaches have been also performed. Atay-Kayis and Massam (2005) apply 
Monte Carlo methods in the calculation of Θ when the network graph in GGM is non-decomposable. 
Dobra, Lenkoski, and Rodriguez (2011) and Wang and Li (2012) introduce the reversible jump MCMC 
and Dauwels, Yu, Xu, and Wang (2013) implement the Monte Carlo expectation maximization meth-
od within copula GGM. Whereas among all these alternatives, the neighborhood selection approach, 
suggested by Meinshaussen and Bühlmann (2006), is one of the most common techniques due to its 
simplicity in inference. Hence, in our analyses, we prefer this method and perform it in junction with 
Monte Carlo simulations in order to evaluate the performance of different estimates.

(4)max
Θ

[log(∣ Θ ∣) − Tr(SΘ) − � ∥ Θ ∥1].

(5)
sij =

1

n

n∑

k=1

(xik − x̄
(i))(x

j

k
− x̄(j)).
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2.2. Bernstein polynomials
The Bernstein polynomial was introduced by Sergey Natanovich Bernstein as a new proof of the 
Weierstrass approximation theorem. This polynomial privileges in the approximation theory since it 
applies the constructive new polynomials to prove the Weierstrass approximation instead of polyno-
mials that are already known as mathematicians.

For the mathematical expression of these polynomials, let N be the set of positive integers for 
every function f :[0, 1] → R. Thus, the Bernstein polynomial for the nth degree is defined by

where bk,n is called the Bernstein basis polynomial and can shown as

for k = 0, 1,… ,n and 
(n
k

)
 binomial coefficient.

If f :[0, 1] → R is a continuous function, then the sequence of the Bernstein polynomials Bn con-
verges uniformly to f on [0, 1],

The Bernstein polynomial (Lorentz, 1953) has certain properties such as the positivity, symmetry, 
and the degree raising. The first characteristic means bk:n = bn−k:n while i = 1,… ,n. On the other 
hand, the second feature presents bk:n(x) > 0 and finally, the third one implies that any lower de-
gree Bernstein polynomial is written as a linear combination of the nth Bernstein polynomials.

The generalized version of the Bernstein operator is called the Szas-Mirakyan operator and is de-
fined as

where x ∈ [0, 1] and the function f is defined on an infinite interval R+ = [0,∞).

2.3. Butzer Hahn operator
Bleiman, Butzer and Hahn (BBH) operator (Bleiman, Butzer, & Hahn, 1980) which is defined by the 
Bernstein-type can be represented as below for the nth degree with the k basis polynomials for the 
value x.

For Equation (9), the following inequality is satisfied.

Equation (10) implies that the BBH operator is linear and bounded for x ∈ [0,∞) when 

(1 + x)−n
n∑
k=0

�n
k

�
xk = 1. Here, CB[0,∞) is the class of the real-valued function f defined within the 

interval [0,∞) and for all functions of f in this interval, lim Ln(f ;x) = f (x) for each x ∈ [0,∞) when 
n→ ∞.

(6)Bn(f ;t) =

n∑

k=0

f (
k

n
)bk,n(t),

(7)
bk,n(t) =

(
n

k

)
(1 − t)n−ktk

(8)Sn(f ;x) = e
−nx

∞∑

k=0

f

(
k

n

)
(nx)k

k!
,

(9)Ln(f ;x) =
1

(1 + x)n

n∑

k=0

(
n

k

)
xkf

(
k

n + 1 − k

)
.

(10)|Ln(f ;x)| ≤ ||f ||CB (f ∈ CB[0,∞)).
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Additionally, the property of the uniform approximation of the BBH operator has been studied 
(Totik, 1984) when f belongs to C[0,∞] for the continuous function on [0,∞). Also Mercer (1989) has 
independently derived the Voronovskaya-type theorem which gives an asymptotic error term for the 
Bernstein polynomials for the functions which are twice differentiable as follows.

for all f ∈ C2[0,∞) with f (x) = O(x) when x → ∞, and f
��

(x) is the second derivative of the 
function.

Abel (1996) has extended this study by giving the complete asymptotic expansion for the BBH 
operator as the following form.

n→ ∞. Here, ck represents all the coefficients from k = 0 to k = n.

The Szasz operator is the limiting operator of BBH (Khan, 1988) and Ln(f ;x) ≥ Ln+1(f ;x) ≥ … f (x) if f 
is convex (Khan, Nevai, & Pinkus, 1991). Ln(f ;x) is convex itself if f is a non-increasing convex 
function.

Jayasri and Sitaraman (1993) have determined that Ln is a pointwise approximation process in 
which the largest subclass of C[0,∞) for the Bernstein-type of operator.

Then, the following function class is introduced in the study of Hermann, Szbados, and Tandori 
(1991).

He has proved that if f belongs to , then for each x > 0, the pointwise convergence is limn→∞
Lnf = f  

on [0,∞). Moreover, for some a > 0, f (x) = eax, then limx→∞
Ln(f ;x) = ∞. Also the operator Ln is 

arisen from the random variable with n observations, Xn, which has the Bernoulli distribution as 
below.

for the parameters p = x∕(1 + x), q = 1∕(1 + x) and k = 0, 1,… ,n.

2.4. Meyer-König and Zeller operator
The operator

is known as the Meyer-König and Zeller (MKZ) operator when

for the nth degree and the kth basis polynomial for the value of x as stated previously.

(11)lim
n→∞

n((Ln(f ;x) − f (x)) =
x(1 + x)2

2
f

��

(x)

(12)Ln(f ;x) = f (x) +

∞∑

k=1

ck(f ;x)(n + 1)
−k

(13) = f ∈ C[0,∞]: log(|f (x)| + 1) = o(x).

(14)P({Xn = k|(n − k + 1)}) =
(
n

k

)
pkqn−k

(15)Mn(f ;x) =

∞∑

k=0

f

(
k

n + k + 1

)
mn+1,k(x)

(16)mn,k(x) =

(
n + k

k

)
xk(1 − x)n+1



Page 8 of 11

Ağraz & Purutçuoğlu, Cogent Mathematics (2016), 3: 1154706
http://dx.doi.org/10.1080/23311835.2016.1154706

These operators are known as the Bernstein-type of operators. Cheney and Sharma (1996) have 
defined this operator as a power series of the Bernstein operators.

The MKZ operator can also be obtained from the negative binomial distribution via

3. Application
In the assessment of the polynomials’ results, we consider four different scenarios. In the first sce-
nario, we estimate the precision matrix Θ from the simulated data-sets under different kinds of the 
Bernstein polynomials and the Bernstein-type of operators, which are the MKZ operator and the BBH 
operator. For the analyses of the model, we generate 50, 100, and 500 dimensional data-sets in 
which each gene has 20 observations. Then, we set all the off-diagonal entries of Θ to 0.9 arbitrarily 
and generate scale-free networks by using the huge package in the R programme language. Then, 
in order to evaluate whether the entry of the off-diagonal terms has any effect in inference, we 
change it via moderately small and small values too. Hereby, in the second and the third scenarios, 
the off-diagonal elements of the precision matrix set to 0.7 and 0.5, respectively, when the networks 
are scale-free. Finally, as the fourth plan, we change the sparsity of the system from the scale-free-
ness to the hubs property since the former typically indicates a high sparsity level around 90% or 
above and the latter implies relatively a lower sparsity level at around 80–90%. On the other hand, 
in our analyses, we have not controlled the performance of methods lower than these sparsities 
levels as the high sparsity is one of the main features of biological systems (Barabasi & Otiva, 
Barabasi04).

Accordingly, in all scenarios, we initially generate a data-set for the true network and keep its true 
path for the best model selection in further steps. Later, we transform this actual data-set via the 
Bernstein polynomial, the Szasz polynomial, the MKZ operator, and the BBH operator. Finally, all 
these non-transformed and transformed data are used to estimate the precision matrices by using 
the neighborhood selection (NB) method. In the application, we choose NB among alternatives due 
to its computational gain. For the assessment, we calculate the F-measure and the precision for 
each run as shown below.

In Equation (18), TP (true positive) indicates the number of correctly classified objects that have posi-
tive labels and FN (false negative) shows the number of misclassified objects that have negative la-
bels and finally, Recall is calculated as Recall = TP∕(TP + FN).

Then, we repeat the calculation of the underlying statistics for 1000 Monte Carlo runs and their 
means are computed. The results are presented in Table 1.

From Table 1, it is seen that for low dimensions, the Bernstein polynomials give better results than 
others, in particular, the Szasz polynomials have the highest F-measure. We obtain the same results 
for the precision values as well. Moreover, we detect that when the dimension of the matrix in-
creases, the F-measure and the precision value decrease. Furthermore, as shown in Tables 2 and 3, 
we observe similar findings in the sense the Szasz polynomials typically produce better F-measure 
and precision even though we decrease the correlation between genes (by off-diagonal entries 0.7 
and 0.5). Whereas under these scenarios, it is found that the MKZ operator is as good as the Szasz 
operator in terms of the accuracy of the estimates under certain conditions. Finally when we evalu-
ate the outputs of Tables 2–4, we see that the results of both the Szasz polynomial and the MKZ 
operator are very close to each other and overperform with respect to the remaining operators.

(17)Mn(f ;x) = (1 − x)n+1
∞∑

k=0

(
n + k

k

)
f

(
k

n + k

)
xk.

(18)Precision =
TP

TP + FP
and F-measure = 2

Precision × Recall

Precision + Recall
.
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On conclusion, all these outputs imply that when the sparsity of networks decreases, all Bernstein-
type of operators compute similar results and the Szasz polynomial as well as the MKZ operator are 
slightly better than others. On the contrary, if the sparsity level raises as mostly observed in 

Table 3. Comparison of the F-measure and the precision values computed with/without 
operators in inference of � with 0.5 off-diagonal entries under scale-free networks
Measure Dimension 

of �
No operator Bernstein 

polynomial
Szasz 

polynomial
BBH 

operator
MKZ 

operator
F-measure (50 × 50) Not Computable 0.0703 0.0710 0.0702 0.0716

(100 × 100) Not Computable 0.0356 0.0365 0.0362 0.0367

(500 × 500) Not Computable 0.0077 0.0080 0.0077 0.0080

Precision (50 × 50) Not Computable 0.0404 0.0402 0.0402 0.0403

(100 × 100) Not Computable 0.0198 0.0199 0.0200 0.0199

(500 × 500) Not Computable 0.0040 0.0040 0.0039 0.0040

Table 1. Comparison of the F-measure and the precision values computed with/without 
operators in inference of � with 0.9 off-diagonal entries under scale-free networks
Measure Dimension 

of �
No operator Bernstein 

polynomial
Szasz 

polynomial
BBH 

operator
MKZ 

operator
F-measure (50 × 50) 0.0014 0.1714 0.1590 0.1132 0.1492

(100 × 100) 0.0001 0.0904 0.0863 0.0594 0.0812

(500 × 500) 0.0000 0.0171 0.0171 0.0094 0.0163

Precision (50 × 50) Not Computable 0.4852 0.4789 0.3794 0.4729

(100 × 100) Not Computable 0.4769 0.4749 0.4601 0.4699

(500 × 500) Not Computable 0.4663 0.4682 0.4466 0.4624

Table 2. Comparison of the F-measure and the precision values computed with/without 
operators in inference of � with 0.7 off-diagonal entries under scale-free networks
Measure Dimension 

of �
No operator Bernstein 

polynomial
Szasz 

polynomial
BBH 

operator
MKZ 

operator
F-measure (50 × 50) Not Computable 0.0699 0.0711 0.0704 0.0712

(100 × 100) Not Computable 0.0361 0.0366 0.0362 0.0368

(500 × 500) Not Computable 0.0077 0.0083 0.0078 0.0080

Precision (50 × 50) Not Computable 0.0403 0.0403 0.0404 0.0401

(100 × 100) Not Computable 0.0201 0.0200 0.0200 0.0200

(500 × 500) Not Computable 0.0040 0.0040 0.0040 0.0040

Table 4. Comparison of the F-measure and the precision values computed with/without 
operators in inference of � with 0.9 off-diagonal entries under hubs networks
Measure Dimension 

of �
No operator Bernstein 

polynomial
Szasz 

polynomial
BBH 

operator
MKZ 

operator
F-measure (50 × 50) Not Computable 0.0668 0.0687 0.0677 0.0691

(100 × 100) Not Computable 0.0352 0.0365 0.0358 0.0366

(500 × 500) Not Computable 0.0074 0.0076 0.0075 0.0076

Precision (50 × 50) Not Computable 0.0383 0.0387 0.0386 0.0387

(100 × 100) Not Computable 0.0196 0.0198 0.0198 0.0198

(500 × 500) Not Computable 0.0038 0.0038 0.0038 0.0038
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biological networks, the operators have different accuracy values and the performance of the 
Bernstein polynomials, especially, the Szasz polynomial, becomes better.

4. Discussion
In this study, we have compared all well-known Bernstein-type of operators to detect which alterna-
tive produces the highest accuracy if it is applied with GGM. For this purpose, we have analyzed the 
Monte Carlo results of the Bernstein polynomials, BBH and MKZ operators. The results have indicated 
that the Bernstein polynomials have the highest accuracies if they are performed in advance of the 
inference of the model parameters of GGM and the MKZ operator can be another good alternative if the 
sparsity level of the system decreases. But for all choices of operators, we have found that these opera-
tors can improve the accuracies of estimates for different dimensional biochemical systems if they are 
implemented as the pre-processing step before the inference of the precision matrix. As the extension 
of this study, we consider other approximation methods such as the Fourier transformations in such a 
way that the distributional feature of the observations can be embedded to the new transformed data 
in order to smooth the original data-set smartly and get estimates with higher accuracy.
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