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Abstract

We calculate the transition formfactors for the B → Kℓ
+
ℓ
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work of the light cone QCD sum rules. The invariant dilepton mass distribution
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parison analysis of our results with traditional sum rules method predictions on the
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1 Introduction

Experimental observation [1] of the inclusive and exclusive radiative decays B → Xsγ and
B → Kγ stimulated the study of rare B decays on a new footing. These Flavor Changing
Neutral Current (FCNC) b → s transitions in the Standard Model (SM) do not occur at
the tree level and appear only at the loop level. Therefore the study of these rare B-
meson decays can provide a means of testing the detailed structure of the SM at the loop
level. These decays are also very useful for extracting the values of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements [2], as well as for establishing new physics beyond the
SM [3].

Currently, the main interest on rare B-meson decays is focused on decays for which
the SM predicts large branching ratios and can be potentially measurable in the near
future. The rare B → Kℓ+ℓ−and B → K∗ℓ+ℓ− decays are such decays. The experimental
situation for these decays is very promising [4], with e+e− and hadron colliders focusing
only on the observation of exclusive modes with ℓ = e, µ and τ final states, respectively.
At quark level the process b → sℓ+ℓ− takes place via electromagnetic and Z penguin and
W box diagrams and are described by three independent Wilson coefficients C7, C9 and
C10. Investigations allow us to study different structures, described by the above mentioned
Wilson coefficients. In the SM, the measurement of the forward-backward asymmetry and
invariant dilepton mass distribution in b → qℓ+ℓ− (q = s, d) provide information on
the short distance contributions dominated by the top quark loops and are essential in
separating the short distance FCNC process from the contributing long distance effects [5]
and also are very sensitive to the contributions from new physics [6]. Recently it has been
emphasized by Hewett [7] that the longitudinal lepton polarization, which is another parity
violating observable, is also an important asymmetry and that the lepton polarization in
b→ sℓ+ℓ− will be measurable with the high statistics available at the B-factories currently
under construction. However, in calculating the Branching ratios and other observables
in hadron level, i.e. for B → Kℓ+ℓ−decay, we have the problem of computing the matrix
element of the effective Hamiltonian, Heff , between the states B and K. This problem is
related to the non-perturbative sector of QCD.

These matrix elements, in the framework of different approaches such as chiral theory
[8], three point QCD sum rules method [9], relativistic quark model by the light-front
formalism [10, 11], have been investigated. The aim of this work is the calculation of these
matrix elements in light cone QCD sum rules method and to study the lepton polarization
asymmetry for the exclusive B → Kℓ+ℓ−decays.

The effective Hamiltonian for the b → sℓ+ℓ− decay, including QCD corrections [12–14]
can be written as

Heff =
4GF√

2
VtbV

∗
ts

10
∑

i=1

Ci(µ)Oi(µ) , (1)

which is evolved from the electroweak scale down to µ ∼ mb by the renormalization group
equations. Here Vij represent the relevant CKM matrix elements, and Oi are a complete
set of renormalized dimension 5 and 6 operators involving light fields which govern the
b → s transitions and Ci(µ) are the Wilson coefficients for the corresponding operators.
The explicit forms of Ci(µ) and Oi(µ) can be found in [12–14]. For b → sℓ+ℓ− decay, this
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effective Hamiltonian leads to the matrix element

M =
GFα√
2π
VtbV

∗
ts

[

Ceff
9 s̄γµLb ℓ̄γ

µℓ+ C10s̄γµLb ℓ̄γ
µγ5ℓ− 2

C7

p2
s̄iσµνp

ν(mbR +msL)b ℓ̄γ
µℓ

]

, (2)

where p2 is the invariant dilepton mass, and L(R) = [1− (+)γ5] /2 are the projection
operators. The coefficient Ceff

9 (µ, p2) ≡ C9(µ) + Y (µ, p2), where the function Y contains
the contributions from the one loop matrix element of the four-quark operators, can be
found in [12–14]. Note that the function Y (µ, p2) contains both real and imaginary parts
(the imaginary part arises when the c-quark in the loop is on the mass shell).

The B → Kℓ+ℓ−decay also receives large long distance contributions from the cascade
process B → KJ/ψ(ψ′) → Kℓ+ℓ−. These contributions are taken into account by intro-
ducing a Breit-Wigner form of the resonance propagator and this procedure leads to an
additional contribution to Ceff

9 of the form [15]

− 3π

α2

∑

V=J/ψ, ψ′

mV Γ(V → ℓ+ℓ−)

(q2 −m2
V )− imV ΓV

.

As we noted earlier, in order to calculate the branching ratios for the exclusive B →
Kℓ+ℓ−decays, the matrix elements 〈K|s̄γµ(1 − γ5)q|B〉 and 〈K|s̄iσµνpν(1 + γ5)q|B〉 must
be calculated. These matrix elements can be parametrized in terms of the formfactors as
follows (see also [9]):

〈K(q) |s̄γµ(1− γ5)q|B(p+ q)〉 = 2qµf
+(p2) +

[

f+(p2) + f−(p2)
]

pµ , (3)

〈K(q) |s̄iσµνpν(1 + γ5)q|B(p+ q)〉 =
[

Pµp
2 − pµ(Pp)

] fT (p
2)

mB +mK

, (4)

where p+ q and q are the momentum of B and K and Pµ = (p + 2q)µ.

2 Sum rules for the B → K transition formfactors

According to the QCD sum rules ideology, in order to calculate these formfactors, we
start by considering the representation of a suitable correlator function in hadron and
quark–gluon languages. For this purpose, we consider the following matrix elements of the
T–product of two currents between the vacuum state and the K–meson:

Π(1)
µ (p, q) = i

∫

d4x eipx〈K(q)|T{s̄(x)γµ(1− γ5)b(x) b̄(0)iγ5q(0)}|0〉 , (5)

Π(2)
µ (p, q) = i

∫

d4x eipx〈K(q)|T{s̄(x)iσµνpν(1 + γ5)b(x) b̄(0)iγ5q(0)}|0〉 , (6)

where q is K–meson momentum and p is the transfer momentum.
The hadronic (physical) part of eqs.(5) and (6) is obtained by inserting a complete set

of states including the B–meson ground state, and higher states with B–meson quantum
number:
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Π(1)
µ (p, q) =

= 〈K(q)|s̄(x)γµ(1− γ5)b(x)|B(p + q)〉 1

m2
B − (p+ q)2

〈B(p+ q)|b̄(0)iγ5q(0)|0〉+

+
∑

h

〈K(q)|s̄(x)γµ(1− γ5)b(x)|h(p+ q)〉 1

m2
B − (p+ q)2

〈h(p+ q)|b̄(0)iγ5q(0)|0〉

= F1(p
2, (p+ q)2)qµ + F2(p

2, (p+ q)2)pµ , (7)

Π(2)
µ (p, q) =

= 〈K(q)|s̄(x)iσµνpν(1 + γ5)b(x)|B(p+ q)〉 1

m2
B − (p+ q)2

〈B(p+ q)|b̄(0)iγ5q(0)|0〉+

+
∑

h

〈K(q)|s̄(x)iσµνpν(1 + γ5)b(x)|h(p + q)〉 1

m2
B − (p+ q)2

〈h(p+ q)|b̄(0)iγ5q(0)|0〉

= F3((p+ q)2, p2)
[

Pµp
2 − pµ(Pp)

]

, (8)

where Pµ = (p + 2q)µ. Then, for the invariant amplitudes Fi, one can write a general
dispersion relation in the B meson momentum squared, (p+ q)2, as:

Fi(p
2, (p+ q)2)) =

∫ ∞

m2

b

ρi(p
2, s)ds

s− (p+ q)2
, (9)

where the spectral densities are given by

ρ1(p
2, s) = δ(s−m2

B)2f
+(p2)

m2
BfB
mb

+ ρh1(p
2, s) , (10)

ρ2(p
2, s) = δ(s−m2

B)
[

f+(p2) + f−(p2)
] m2

BfB
mb

+ ρh2(p
2, s) , (11)

ρ3(p
2, s) = δ(s−m2

B)
fT (p

2)

mB +mK

m2
BfB
mb

+ ρh3(p
2, s) . (12)

The first terms in eqs.(10), (11) and (12) represent the ground state B–meson contribution
and follow from eqs.(5) and (6) by inserting the matrix elements given in eqs.(3), (4) and
by replacing

〈B|b̄iγ5q|0〉 =
fBm

2
B

mb

, (13)

in which we neglect the mass of the light quarks. In eqs.(10)-(12), ρhi (p
2, s) represent the

spectral density of the higher resonances and of the continuum of states. In accordance with
the QCD sum rules method we invoke the quark–hadron duality prescription and replace
the spectral density ρhi by

ρhi (p
2, s) =

1

π
ImFQCD

i (p2, s)Θ(s− s0) , (14)
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where ImFQCD
i (p2, s) is obtained from the imaginary part of the correlator functions calcu-

lated in QCD starting from some threshold s0. In order to suppress the higher states and
continuum contributions, we follow the standard procedure in the QCD sum rules method
and apply Borel transformation B̂ on the variable (p+ q)2 to the dispersion integral to get,

Fi(p
2,M2) = B̂Fi(p

2, (p+ q)2)

=
∫ ∞

m2

b

ρi(p
2, s)e−s/M

2

ds . (15)

Using eqs.(10)-(12) and (14) we get

F1(p
2,M2) = 2f+(p2)

m2
BfB
mb

e−m
2

B
/M2

+
1

π

∫ ∞

s0
ImFQCD

1 (p2, s)e−s/M
2

ds , (16)

F2(p
2,M2) =

[

f+(p2) + f−(p2)
] m2

BfB
mb

e−m
2

B
/M2

+

+
1

π

∫ ∞

s0
ImFQCD

2 (p2, s)e−s/M
2

ds , (17)

F3(p
2,M2) =

fT (p
2)

MB +mK

m2
BfB
mb

e−m
2

B
/M2

+
1

π

∫ ∞

s0
ImFQCD

3 (p2, s)e−s/M
2

ds . (18)

The main problem is then the calculation of the correlator functions (5) and (6) in QCD.
After applying the Borel transformation, the result can be written in the following form:

Fi(p
2,M2) =

1

π

∫ ∞

m2

b

ImFQCD
i (p2, s)e−s/M

2

ds . (19)

Equating the Fi in eq.(19) to the corresponding Fi in eqs.(16)-(18), we arrive at the sum
rules for the formfactors, which describe the B → K transition:

f+(p2) =
mb

2πfBm2
B

∫ s0

m2

b

ImFQCD
1 (p2, s)e−(s−m2

B
)/M2

ds , (20)

f+(p2) + f−(p2) =
mb

πfBm2
B

∫ s0

m2

b

ImFQCD
2 (p2, s)e−(s−m2

B
)/M2

ds , (21)

fT (p
2) =

mb

πfBm
2
B

(mB +mK)
∫ s0

m2

b

ImFQCD
3 (p2, s)e−(s−m2

B
)/M2

ds . (22)

One can calculate ImFQCD
i (p2, s), in the deep Euclidean region, where both p2 and (p+ q)2

are negative and large. The leading contribution to the operator product expansion comes
from the contraction of the b–quark operators expressed in eqs.(5) and (6) to the free
b–quark propagator

〈0|T{b(x)b̄(0)}|0〉 = −i
∫

d4k

(2π)4
e−ikx

6k +mb

m2
b − k2

.
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Then we have

Π(1)
µ (p, q) = i

∫

d4x d4k

(2π)4(m2
b − k2)

ei(p−k)x ×

×〈K(q)| [−mbs̄γµ(1− γ5)q + s̄γµ 6k(1 + γ5)q] |0〉 , (23)

Π(2)
µ (p, q) = −

∫

d4x d4k

(2π)4(m2
b − k2)

ei(p−k)xpν ×

×〈K(q)| [−s̄σµν 6k(1− γ5)q +mbs̄σµν(1 + γ5)q] |0〉 . (24)

Note that, as can be seen from eqs.(23) and (24), the problem is reduced to the calculation
of the matrix elements of the gauge–invariant, nonlocal operators sandwiched in between
the vacuum and the K meson states. These matrix elements define the K meson light cone
wave functions. Following [16–17], we define the K–meson wave functions as:

〈K(q)|s̄(x)γµ(1− γ5)q(0)|0〉 = iqµfK

∫ 1

0
du eiuqx

[

ϕK(u) + x2g1(u)
]

−

−fK
(

xµ −
x2qµ
qx

)

∫ 1

0
du eiuqxg2(u) . (25)

In eq.(25) ϕK(u) is the leading twist two, g1(u) and g2(u) are the twist four K meson wave
functions, respectively. The second matrix element of eq.(23), can be split into two matrix
elements using the identity γµγν = gµν − iσµν , and the result can be evaluated using the
twist three wave functions defined as [16–19]:

〈K(q)|s̄(x)iγ5q(0)|0〉 =
fKm

2
K

ms +mq

∫ 1

0
du eiuqxϕp(u) , (26)

〈K(q)|s̄(x)σµν(1 + γ5)q(0)|0〉 = i(qµxν − qνxµ)
fKm

2
K

6(ms +mq)

∫ 1

0
du eiuqxϕσ(u) . (27)

The matrix elements in eq.(24) can be easily calculated using the identities,

σµν = − i

2
ǫµνρβσ

ρβγ5

σµνγρ = i(γµgρν − γνgρµ) + ǫµνρβγ
βγ5 ,

to express it in terms of the wave functions in eq.(25).
Substituting the matrix elements (25–27) into the eqs.(23) and (24) and integrating over

the variables x and k we get the following expressions for Fi(p
2, (p+ q)2):

F1(p
2, (p+ q)2) = mbfK

∫ 1

0

du

∆

[

ϕK(u)−
8m2

b [g1(u) +G2(u)]

∆2
+

2ug2(u)

∆

]

+

+ fKµK

∫ 1

0

du

∆

[

uϕρ(u) +
1

6
ϕσ(u)

(

1 +
2m2

b − 2upq − 2q2u2

∆

)]

, (28)
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F2(p
2, (p+ q)2) = mbfK

∫ 1

0

du

∆

{[

2g2(u)

∆
+
µK
mb

(

ϕp(u)−
(2pq + 2q2u)

6∆
ϕσ(u)

)]}

,(29)

F3(p
2, (p+ q)2) = −fK

∫ 1

0

du

∆

{

1

2

[

ϕK(u)−
4 [g1(u) +G2(u)]

∆

(

1 +
2m2

b

∆

)]

+

+ mbµK
ϕσ(u)

6∆

}

, (30)

where

q2 = m2
K , ∆ = m2

b − (p+ qu)2 , µK =
m2
K

ms +mq
, G2(u) = −

∫ u

0
g2(v)dv .

There are also contributions to the above considered wave functions from multi-particle
meson wave functions. Here we consider only the operator q̄Gq, which gives the main
contribution and corresponds to the quark–antiquark–gluon components in the kaon (for
more detail see [20]). In this approximation, the b–quark propagator is defined as (see [18]):

〈

0
∣

∣

∣T
{

b(x)b̄(0)
}∣

∣

∣ 0
〉

= iS0
b (x)− igs

∫

d4k

(2π)4
e−ikx ×

×
∫ 1

0
du

[

1

2

6k +mb

(m2
b − k2)2

Gµν(ux)σµν +
1

m2
b − k2

uxµG
µν(ux)γν

]

.

(31)

It is clear that when we take into account the second term in the right hand side of eq.(31),
new matrix elements appear. Substituting eq.(31) into eqs.(5) and (6), and using the
identity

γµγνσρλ = (σµλgνρ − σµρgνλ) + i(gµλgνρ − gµρgνλ)−
− ǫµνρλγ5 − iǫνρλαg

αβσµβγ5 ,

one can express the resulting new matrix elements in terms of the three particle wave
functions [16–20]:

〈K(q)|s̄(x)gsGµν(ux)σαβγ5q(0)|0〉 = if3K [(qµqαgνβ − qνqαgµβ)− (qµqβgνα − qνqβgµα) ]×
×

∫

Dαiϕ3K(αi)e
iqxω , (32)

〈K(q)|s̄(x)γµγ5gsGαβ(ux)q(0)|0〉 = fK

[

qβ

(

gαµ −
xαqµ
qx

)

− qα

(

gβµ −
xβqµ
qx

)]

×

×
∫

Dαiϕ⊥(αi)e
iqxω +

+ fK
qµ
qx

(qαxβ − qβxα)
∫

Dαiϕ‖(αi)e
iqxω , (33)
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〈K(q)|s̄(x)γµgsG̃αβ(ux)q(0)|0〉 = ifK

[

qβ

(

gαµ −
xαqµ
qx

)

− qα

(

gβµ −
xβqµ
qx

)]

×

×
∫

Dαiϕ̃⊥(αi)e
iqxω +

+ ifK
qµ
qx

(qαxβ − qβxα)
∫

Dαiϕ̃‖(αi)e
iqxω , (34)

where G̃αβ = 1
2
ǫαβρλG

ρλ, Dαi = dα1dα2dα3δ(1 − α1 − α2 − α3), and ω = α1 + uα3. Here
ϕ3K(αi) is a twist three wave function and the remaining functions ϕ⊥, ϕ‖, ϕ̃⊥ and ϕ̃‖ are
all twist four wave functions.

When we substitute eqs.(32)–(34) into eqs.(5) and (6), perform integration over x and
k, add (28), (29), (30), apply the Borel transformation over (p+q)2 and equate the obtained
results to (16), (17) and (18), we get the following sum rules for the B → K transition
formfactors:

f+(p2) =
mbfK
2fBm2

B

e
m

2

B

M2

{

∫ 1

δ
exp

(

−m
2
b − p2(1− u) + q2u(1− u)

uM2

)

du

u
×

×
[

mb

(

ϕK(u)−
8m2

b [g1(u) +G2(u)]

2u2M4
+

2g2(u)

M2

)

+

+ µK

(

uϕρ(u) +
ϕσ(u)

6

(

2 +
m2
b + p2 − q2u2

uM2

))]

+

+ f3K

∫ 1

0
du
∫

Dαi θ(ω − δ) exp

(

−m
2
b − p2(1− ω) + q2ω (1− ω)

ωM2

)

×

×
[

(2u− 1)ϕ3K

fK

3q2

ωM2
+

2uϕ3K

fK

(

− 1

ω2
+
m2
b − p2 − q2ω2

ω3M2

)

+

+
mb

f3K

(

2ϕ⊥ − ϕ‖ + 2ϕ̃⊥ − ϕ̃‖

ω2M2
+

2q2α3(Ψ⊥ +Ψ‖ + Ψ̃⊥ + Ψ̃‖)

ω2M4

)]}

,(35)

f+(p2) + f−(p2) =
mbfK
fBm2

B

e
m

2

B

M2

{

∫ 1

δ
exp

(

−m
2
b − p2(1− u) + q2u(1− u)

uM2

)

du

u
×

×
[

2mb
g2(u)

uM2
+ µK

(

ϕρ(u) +
ϕσ(u)

6u
− ϕσ(u)

6u2M2
(m2

b − p2 + q2u2)

)]

+

+
∫ 1

0
du
∫

Dαi θ(ω − δ) exp

(

−m
2
b − p2(1− ω) + q2ω(1− ω)

ωM2

)

q2

ω2M2
×

×
[

f3K(2u− 3)ϕ3K

fK
+ 2mbα3

Ψ⊥ +Ψ‖ + Ψ̃⊥ + Ψ̃‖

ωM2

]}

, (36)
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fT (p
2) =

mb(mB +mK)fK
fBm2

B

e
m

2

B

M2

{

∫ 1

δ
du exp

(

−m
2
b − p2(1− u) + q2u(1− u)

uM2

)

×

×
[

−µK
mbϕσ(u)

6u2M2
− 1

2

ϕK(u)

u
+ 2

(

m2
b

uM2
+ 1

)

[g1(u) +G2(u)]

u2M2

]

+

+
∫ 1

0
du
∫

Dαi θ(ω − δ) exp

(

−m
2
b − p2(1− ω) + q2ω(1− ω)

ωM2

)

×

×




u
(

ϕ‖ − 2ϕ̃⊥

)

ω2M2
+
ϕ‖ + ϕ̃‖ − 2ϕ⊥ − 2ϕ̃⊥

ω2M2











, (37)

where δ =
m2

b
−p2

s0−p2
. The functions Ψ⊥(Ψ̃⊥), Ψ‖(Ψ̃‖) in eqs.(35)–(37) are defined in the

following way

Ψ⊥(Ψ̃⊥) = −
∫ u

0
ϕ⊥(v)(ϕ̃⊥(v))dv ,

Ψ‖(Ψ̃‖) = −
∫ u

0
ϕ‖(v)(ϕ̃‖(v))dv .

Note that the formfactor f+(p2) is investigated in [18] and [19] (In [18], it is necessary to
make the simple replacement π → K), in light cone sum rules. Our results coincide with
theirs if we let q2 = 0.

At the end of this section we calculate the differential decay rate with the longitudinal
polarization of the final leptons and we obtain

dΓ

dp2
=

G2α2

212π5

|VtbV ∗
ts|2 v

√
λ

mB

{

m2
B(2m

2
ℓ +m2

Bs)
(

|A|2 + |C|2
) λ

3s
+

+ 8m2
Bm

2
ℓ

[

r |C|2 + s |D|2 +Re(C∗D)(1− r − s)
]

+

− 2

3
Re(A∗C)m4

Bξvλ

}

, (38)

where λ = 1 + r2 + s2 − 2r − 2s − 2sr, r = m2
K/m

2
B, s = p2/m2

B, ξ is the longitudinal

polarization of the final lepton, mℓ and v =

√

1− 4m2

ℓ

p2
are its mass and velocity, respectively.

In eq.(38) A, C and D are defined as follows:

A = 2Ceff
9 f+ − C7

4mbfT
mB +mK

,

C = 2C10f
+ , (39)

D = C10(f
+ + f−) .

For the dileptonic decays of the B mesons, the longitudinal polarization asymmetry PL of
the final state ℓ, is defined by

PL(p
2) =

dΓ

dp2
(ξ = −1)− dΓ

dp2
(ξ = 1)

dΓ

dp2
(ξ = −1) +

dΓ

dp2
(ξ = 1)

. (40)
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where ξ = −1(+1) corresponds to the left (right) handed lepton. If in eq.(40), we let
mℓ = 0, our results coincide with the results in [21] and if mℓ 6= 0, they coincide with the
ones in [11].

3 Numerical analysis

The main input parameters in the sum rules (35)–(37) are the kaon wave functions on the
light cone. For kaon wave functions we use the results of ref. [16, 17, 19]:

ϕK = 6u(1− u)
{

1 + 0.52
[

5(2u− 1)2 − 1
]

+ 0.34
[

21(2u− 1)4 − 14(2u− 1)2 + 1
]}

,

ϕp ≃ 1 ,

ϕσ ≃ 6u(1− u) ,

g1(u) ≃
5

2
δ2u2(1− u)2 ,

g2(u) ≃
10

3
δ2u(1− u)(2u− 1) ,

ϕ3K(αi) ≃ 360α1α2α
2
3 ,

ϕ⊥(αi) ≃ 10δ2(α1 − α2)α
2
3 ,

ϕ‖(αi) ≃ 120δ2ǫ(α1 − α2)α1α2α3 ,

ϕ̃⊥(αi) ≃ 10δ2α2
3(1− α3) ,

ϕ̃‖(αi) ≃ −40δ2α1α2α3 ,

here δ2(µb) ≃ 0.17 GeV 2 at µb ≃
√

m2
B −m2

b = 2.4 GeV 2, which follows from the QCD
sum rules analysis (for more detail see [18]), ǫ(µb) ≃ 0.36. In order to estimate µK , we use
the PCAC relation for the pseudo Goldstone bosons

µK
µπ

=
(〈qq〉+ 〈ss〉) f 2

K

2〈qq〉f 2
π

≃ 0.62 (q = u or d) .

Here we use fπ ≃ 133 MeV, fK ≃ 160 MeV and we assume 〈qq〉 ÷ 〈ss〉 = 1 ÷ 0.8, which
follows from QCD sum rules for strange hadrons [22]. As a result we have

µK ≃ 1 GeV when µπ =
m2
π

mu +md

≃ 1.6 GeV .

For the values of the other parameters, we choose: fB ≃ 0.14 GeV , which is obtained
from 2–point QCD sum rules analysis [18, 23], mb ≃ 4.7 GeV and s0 ≃ 35 GeV 2, and
|VtbV ∗

ts| ≃ 0.045.
Before giving numerical results on the formfactors, we must first determine the region

for the Borel mass parameter M2, for which the sum rules yields reliable results. The
lower limit of this region is determined by the requirement that, the terms proportional to
M−2n(n > 1) remain subdominant. The upper limit of M2 is determined by requiring the
higher resonance and continuum contributions to be less than ∼ 30% of the total result.
Our numerical results show that both requirements are satisfied in the region 8 GeV 2 ≤
M2 ≤ 16 GeV 2 and for the numerical analysis we use M2 = 10 GeV 2. When p2 approaches
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the region m2
b −O(1 GeV 2) a breakdown of the stability is expected, similar to the B → π

case (see [18, 19]).
In fig.1, we present the p2 dependence of the formfactors f+(p2), f−(p2) and fT (p

2). At
zero momentum transfer, the QCD prediction for the formfactors are

f+(p2 = 0) = 0.29 ,

f−(p2 = 0) = −0.21 ,

fT (p
2 = 0) = −0.31 .

In fig.2a(b) we present the p2 dependence of the differential Branching ratios for the
B → Kµ+µ− and (B → Kτ+τ−) decay with and without long distance effects. In both
cases summation over the final lepton polarization is performed. Note that p2 dependence
of the differential branching ratio B → Kτ+τ− is analysed in [11] and [24] using the light
front formalism and heavy meson chiral theory, respectively. In [11] both short and long
distance contributions are considered while in [24] only the short distance contributions are
taken into account and in both works the obtained spectrum is fully symmetric while in
the present work the spectrum we obtain seems to be slightly asymmetric as a result of
a highly asymmetric resonance-type behaviour due to the nonperturbative contributions.
Performing the integration over p2 in eq.(38) and using the values of the life times τBd

=
(1.56±0.06)×10−12 s, τBu

= (1.62±0.06)×10−12 s [25], for the branching ratios, including
only the short distance contributions, we get:

B(Bd → K0µ+µ−) = (3.1± 0.9)× 10−7 ,

B(Bd → K0τ+τ−) = (1.7± 0.4)× 10−7 ,

B(Bu → K+µ+µ−) = (3.2± 0.8)× 10−7 ,

B(Bu → K+τ+τ−) = (1.77± 0.40)× 10−7 ,

where theoretical and experimental errors have been added quadratically.
In fig.3 we display the lepton longitudinal polarization asymmetry PL as a function of

p2 for the B → Kµ+µ− and B → Kτ+τ− decays, at mt = 176 GeV , with and without the
long distance contributions. From this figure one can see that PL vanishes at the threshold
due to the kinematical factor v and the value of PL for the B → Kµ+µ− decay varies in
the region (0÷−0.7) and (0÷−0.1) for the B → Kτ+τ− decay, when long distance effects
are excluded.

4 Conclusion

In this work, we calculate the transition formfactors for the exclusive B → Kℓ+ℓ−(ℓ = µ, τ)
decay in the framework of the light cone QCD sum rules, and investigate the longitudinal
polarization asymmetries of the muon and tau in this decay. From a comparison of our re-
sults with the traditional QCD sum rule predictions (see [9]), we observe that the behaviour
of the formfactors are similar and the value of f+ in both approaches coincides, while fT
differs two times than that of [9] at p2 = 0. It is important to note that for a more refined
analysis, it is necessary to take into account the SU(3) breaking effects: the differences
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between fK , µK and fπ, µπ and the differences of pion and kaon wave functions. These
SU(3) breaking terms can lead to differences between B → π and B → K formfactors.
But we expect that these effects can change the results about 15–20% and this lies at the
accuracy level of the sum rules method.

Few words about the possibility of the experimental observation of this decay are in
order. Experimentally, to observe an asymmetry PL of a decay with the branching ratio
B at the nσ level, the required number of events is N = n2

B P 2

L

(see [11]). For example, to

observe the τ lepton polarization at the exclusive channel B → Kτ+τ− at the 3σ level,
one needs at least N ≃ 5 × 109 B B̄ decays. Since in the future B-factories, it is expected
that ∼ 109 B-mesons would be created per year, it is possible to measure the longitudinal
polarization asymmetry of the τ lepton.
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Figure Captions

1. The p2 dependence of the formfactors f+(p2), f−(p2) and fT (p
2).

2. a) Invariant mass squared distribution of the lepton pair for the decay B → Kµ+µ−.
b) The same as in a), but for the decay B → Kτ+τ−.
Here and in all of the following figures the solid line corresponds to the short distance
contributions only and the dashed line to the sum of both short and long distance contri-
butions.

3. a) The longitudinal polarization asymmetry PL for the B → Kµ+µ−decay.
b) The same as in a), but for the B → Kτ+τ−decay.
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