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Abstract

One of the major problems faced by automated human activity recogni-
tion systems is the scalability. Since the probabilistic models employed in
activity recognition require labeled data sets for adapting themselves to dif-
ferent users and environments, redeploying these systems in different settings
becomes a bottleneck. In order to handle this problem in a cost effective and
user friendly way, uncertainty sampling based active learning method is pro-
posed. With active learning, it is possible to reduce the annotation effort by
selecting only the most informative data points for annotation. In this paper,
three different measures of uncertainty have been used for selecting the most
informative data points and their performance have been evaluated by using
real world data sets. It has been shown that the annotation effort can be re-
duced by a factor of two to four, depending on the house and resident settings
in an active learning setup.

1 Introduction

It is foreseen that in the near future, smart environments that interact with the peo-
ple according to their specialized needs will be become an inseparable part of daily
life. Hence, recognizing human activities in an automated manner is essential in
many ambient intelligence applications such as smart homes and health monitoring
and assistance applications [1]. In order to make such long term health monitoring
systems sustainable, smart environments that recognize human activities automat-
ically are needed [2, 3].

During the past decade, the advances in the sensor technology and wireless
communication networks in terms of capacity increase, cost efficiency and power
efficiency made it possible to use sensors for human activity recognition purposes.
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These miniaturized sensors are soon to be deployed in large scale in many houses
with highly varying sensor placements and layouts and produce vast amount of
data. As the data supply increases, the demand for techniques to process such a
huge amount of data in order to extract useful information in a reasonable amount
of time also increases. In order to meet this demand, data-driven methods that
are easily applicable to novel settings can be employed. In order to infer the hu-
man activities from the data collected from smart environments machine learning
methods are needed, but those methods require annotated data sets to be trained
on. Recording and annotating such data sets are costly since they require time and
human effort. Although the annotated data sets are essential, they are hardly useful
when recorded in laboratory settings following predefined scenarios since they do
not reflect the natural human activities. Moreover, when automatic human activity
monitoring systems are deployed on a world-wide scale for health care purposes,
it is needed to fine tune the model behavior, which is characterized by a set of pa-
rameters, for each new house in order to accurately reflect the residents’ activities
for that specific house. However, in order to obtain adequate activity recognition
accuracy in a new house, several weeks of annotated data from that specific house
is needed. Instead of recording and annotating several weeks of data fully, an in-
telligent algorithm can be used to decide for which point in time it would be most
informative to obtain annotation. Using the smart algorithm, the activity moni-
toring system can prompt the resident and ask which activity is currently being
performed. This would minimize the need for annotation and maximize the use-
fulness of annotation.

All of the probabilistic models proposed for human activity recognition require
labeled training data to learn the model parameters. Two problems limit the appli-
cability of these models on a large scale with many different houses: (i) Differences
in the layout of houses and the differences in the ways activities are performed by
different people imply that a set of model parameters used for one house cannot be
used directly in another house. (ii) The behavior of inhabitants changes over time,
therefore parameters learned at one point in time may not accurately represent the
behavior at a later point in time. Although both of these problems can be resolved
by recording further annotated data, this solution is far from being practical and
cost effective. Instead, novel learning methods that allow to deal with these prob-
lems cost effectively are proposed. This would allow the installation of activity
recognition systems on a large scale with many different houses with different lay-
outs and for a diverse population of inhabitants. This scalability provides a solution
for dealing with the consequences of an aging population.

In order to decrease the annotation effort, a machine learning technique called
active learning to select only the most informative data points for annotation has
been used. In that way, the amount of training data needed is reduced and the anno-
tation effort has been minimized. In this study, a framework for active learning that
can be used with any probabilistic model has been proposed and the performance
of the proposed method has been evaluated by conducting experiments on the mul-
tiple real world data sets. The results show that proposed active learning scheme
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achieves a nearly equal recognition performance to the fully labeled data case by
using only 7% of all data points and after a few days of data collection. Since
fully annotation of the activities is marking the start and end times of an activity,
the actual cost of annotation is not equal to the number of data points available.
Hence, it has been shown that with the proposed method, the actual annotation
cost is reduced by 30% to 75% while achieving the same recognition performance.
Finally, a web-based annotation tool has been provided to show how the proposed
active learning setup can be achieved with a user-friendly and efficient applica-
tion. The study not only reports the best results reported so far but also provides an
end-to-end solution to the scalability problem of activity recognition in smart en-
vironments. The applicability of a cost efficient and user-friendly method in future
smart homes with automatic activity recognition capability has been demonstrated.

The paper is organized as follows. In Section 2, a brief literature review on
active learning applications to activity recognition is given. In Section 3, the de-
tails of the model and active learning methods used are provided. Section 4 gives
the details of the experiments with real world data. In Section 5, the web-based
application for collecting the annotation labels are provided. Finally, Section 6
concludes the paper.

2 Related Work

The idea of using interaction-based ambient sensors for home automation in an in-
telligent way was first presented in the late 90s [4]. The studies that use those sen-
sors for activity recognition purposes started in the early millennium. The Gator-
Tech smart house was built for research on ambient assisted living [5]. The house
contained several smart appliances equipped with sensors such as a smart refrig-
erator in order to monitor food usage. A similar project called AwareHome [6]
used several ceiling mounted cameras and radio frequency identification (RFID)
tags for localization purposes. In Universal Knowledgeable Architecture for Real-
Life appliances (UKARI) project, the researchers developed a distributed service
platform for managing the networked appliances in a home network service [7].
These projects are among the first examples of living laboratories and they aimed
developing a proof of concept.

One of the major benefits of these smart home projects is that they offer auto-
matic activity recognition capability that can be used in many applications such as
health care monitoring, security services, and energy management [8, 9]. In terms
of activity recognition purposes, one of the earliest studies is the House_n project
by Tapia et al. [10]. They installed reed switches and piezoelectric switches on
doors, windows, cabinets, drawers, microwave ovens, refrigerators, stoves, sinks,
toilets, showers, light switches, lamps, some containers and electronic appliances
in two different houses in order to detect more than 20 activities. Over the years,
several other researchers also conducted similar studies in order to automatically
infer the activities of daily living in smart environments [11, 12, 13, 14].
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A recent literature survey of state-of-the-art AAL frameworks, systems and
platforms to identify the essential aspects of AAL systems was provided in [15].
Their review revealed that only 12 projects out of many continued their projects
beyond the pilot phase and deployed their solutions into the real world, either at
care facilities or private homes. Their findings indicate that the scalability issues
and the reusability of the knowledge obtained previously should be addressed in
the following studies. As a remedy to these issues, active learning based solutions
should be considered.

Active learning has been generally used in part of speech tagging problems in
natural language processing [16, 17]. More recently, there are studies that study
active learning in deep learning for various applications such as sentiment analysis
[18] and handwritten digit recognition [19].

Active learning in activity recognition systems is studied by other researchers
using mobile and wearable sensors [20] and video-based sensing, mostly. Truyen
et al. [21] propose an active learning method for a video-based activity recogni-
tion system. They use generative and discriminative temporal probabilistic models
for recognizing activities from video sequences. In [22], Hasan et al. consider
the problem of updating the models continuously from streaming videos. In their
framework, unlabeled new instances continuously arrive and they automatically
select the most suitable features to improve the existing model incrementally using
a combination of deep networks and active learning. They learn the features in an
unsupervised manner using deep networks and use active learning to reduce the
amount of manual labeling of classes. While it is natural to recognize human ac-
tivities in public space using video cameras, their use inside the home are not very
well received due to privacy issues. In this study, active learning with a different
form of sensing mechanism having different data modality has been used. In that
sense, this study complements the previous work that uses video-based sensing.

There are a number of query selection strategies in the literature which are sum-
marized in [23]. In [24], Liu et al. use active learning with a decision tree model
to classify the activities collected by a group of wearable sensors. In [25], a simi-
lar study is presented using classifiers like decision tree, joint boosting and Naive
Bayes. In both studies, uncertainty based active learning methods are employed
and active learning has been showed to work well. On the other hand, since hu-
man activities are temporal in nature it would be more desirable to use models that
consider the temporal nature of human activities such as hidden Markov models
(HMMs) and conditional random fields (CRF)s. In [26], the authors propose to use
active learning for adapting to the changes in the layout of the living place. They
use an entropy based measure to select the most informative instances and they
evaluate the performance with controlled experiments in laboratory. They show
that active learning only needs 20% of the new training data to achieve almost the
same recall and precision performance after deployment changes. In this study,
it has been shown that only 7% of all the data is needed in a start from scratch
scenario rather than a change in the deployment.

Zhao et al. [27] address the quality issues in crowd-sourced annotation systems
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for large-scale labeling. Their study shows that an approach using the raw anno-
tations obtained from Mechanical Turk platform in an Support Vector Machine
(SVM) classifier with standard margin criteria active learning fails due to noisy
annotations. Instead, they propose a Bayesian framework together with a mea-
sure for selecting the most informative data points that uses both local and global
measures. In this way, they improve the accuracy of active learning in noisy real-
world conditions, yielding classifiers with accuracies closer to those trained using
ground-truth data. In [28], a similar study is presented. Their system uses activity
labels collected from crowd-sourced annotators to train an online activity recogni-
tion system. In order to handle the real-time training of activities, they merge the
input from multiple annotators into a single ordered label set.

In [29], the authors present a non-probabilistic approach to activity recognition
problem. They use data mining techniques such as frequent item set mining to
sensor firings and cluster the data such that each cluster represents instances of the
same activity. Then, the annotators only need to label each cluster as an activity as
opposed to labeling all instances of all activities. After the associations between
the clusters and activities are complete, the system can recognize future activities.

Bagaveyev and Cook [30] report promising results on CASAS smart-home data
sets using a crowd-sourcing application for annotation. They experiment with two
different active learning approaches: they use an expected entropy based method
together with a logistic regression and secondly, they use a committee based active
querying method with random forest classifiers. They state that an active learning
solution should be able to adapt itself to the budget limitations, complexity of the
algorithm and the required performance measure.

In this work, an adaptive solution has been proposed with an efficient and low
time complexity classifier. Unlike most of the related work, it has not been as-
sumed that the data is presegmented. For this reason, a temporal model has been
used, since it suits the temporal nature of the human activities and handle the seg-
mentation problem with probabilistic modelling. Three different measures of un-
certainty have been used for selecting the most informative data points and their
performance has been evaluated by using real world data sets. It has been shown
that only 7% of all the data points are enough for getting the same performance
with the fully labeled data, also it has been shown that the actual annotation effort
can be reduced by a factor of two to four, depending on the setup.

3 Active Annotation

Active learning is a special form of machine learning in which the learning algo-
rithm is able to interactively choose the data points to be labeled. The annotator
or other information sources, then, provide the desired labels for the selected data
points. Based on the newly labeled inputs, the learning algorithm iteratively con-
tinues to learning procedure until some criteria are met, i.e., the desired accuracy
level or the budget limits. This scheme is especially useful for situations in which
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Figure 1: Learning frameworks.

the unlabeled data is abundant but obtaining the labels is expensive. Active learn-
ing is also referred to as optimal experimental design in statistics.

In the remaining of the section, a brief information about existing machine
learning techniques that do not use active learning are provided. After that, pro-
posed active learning framework is described. Finally, three measures that can be
used in active learning for selecting the most informative data points are given.

In order to use a probabilistic model, a set of model parameters have to be
learned. In Figure 1(a), the classical learning framework is depicted. The model
parameters which are denoted by θ, can be learned using a supervised method
which only uses the data whose labels are obtained through annotation.

In the proposed framework, only the labeled data points are used for obtain-
ing the model parameters and the unlabeled data is disregarded. As depicted in
Figure 1(b), the active learning algorithm iteratively

1. Learns new parameters using supervised learning

2. Selects the most informative data points according to the current model pa-
rameters and obtain their labels

More formally, let x = {x1, x2, ...xT } be the set of data points (i.e. data col-
lected from the sensors), y = {y1, y2, .., yT } be the set of true labels (i.e. activity
performed by the user). The labeled data set is L = {xi, yi | xi ∈ x, yi ∈
y, 1 ≤ i ≤ T}. The unlabeled data set is U = {xi | xi /∈ L, 1 ≤ i ≤ N}.
Typically more unlabeled data is available than labeled data, N � T . The union
of these data sets is defined as D = {L

⋃
U} and the size of D is fixed.

At each iteration, data points are transferred from U to L by performing anno-
tation. The size of L, denoted by T , increases while the size of U , denoted by N ,
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decreases. The data points that will be transferred from U to L are selected by the
active learning method according to some informativeness measure. Uncertainty
is used for assessing the most informative data points [31]. Probabilistic models
need to calculate the probability distribution of the activities at each data point to
perform inference. For many probabilistic models, there exist efficient algorithms
to calculate these quantities, for example, the forward-backward algorithm is used
for HMMs [32]. The forward-backward algorithm gives the probabilities for each
activity at each time slice. While performing the inference, the model selects the
activity that has the highest probability value for that time slice. The forward-
backward algorithm is used to obtain Pθ, which is the probability distribution of
each activity at each time slice under the current model parameters θ. After that, to
select the most informative data point, x∗, three different methods are used.

1. Least Confident Method considers only the most probable class label and
selects the instances having the lowest probability for the most likely label.

x∗ = arg max
x

(1− Pθ(ŷ | x)) (1)

where ŷ = arg maxy Pθ(y | x) is the class label with the highest probability
according to the current model parameters θ.

2. Margin Sampling selects the instances that the difference between the most
and the second most probable labels is minimum.

x∗ = arg min
x

(Pθ(ŷ1 | x)− Pθ(ŷ2 | x)) (2)

where ŷ1 and ŷ2 are the two most probable classes.

3. Entropy based method selects the instances that have the highest entropy
values among all probable classifications.

x∗ = arg max
x
−
∑
i

(Pθ(ŷi | x)logPθ(ŷi | x)) (3)

4 Experiments

In the experiments, the effect of active learning for reducing the annotation effort in
activity recognition is evaluated. The goal is to recognize the activities as accurate
as possible while using the minimum amount of labeled data. Also, it is important
not to disturb the annotator for a label that he/she possibly does not remember.
Asking about the label of the activity that had been performed a month ago is not
realistic. In this study, a daily querying approach has been used and its performance
has been evaluated on real world data sets. The experiments aim to answer three
questions: (i) Does active learning reduce the annotation effort?, (ii) What is the
best uncertainty measure for selecting the most informative data points?, and (iii)
What is the most suitable setup for the number of data points and for the number
of iterations?
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4.1 Data Sets

Publicly available ARAS human activity recognition data sets that are collected
from two different real houses are used in the study. Each house was equipped
with 20 interaction-based binary sensors of different types. A full month of infor-
mation which contains both the sensor data and the activity labels for both residents
was gathered from each house, each with two residents, resulting in a total of two
months data. Overall, the number of recorded activities in House A and House B
is 14 and 12, respectively. The details about the two houses (annotated as House A
and B), the deployed systems, the residents and the collected data are given in [33].
The detailed layouts of Houses A and B along with the locations of the deployed
sensors are presented in Figures 2(a) and 2(b), respectively.

(a) House A

(b) House B

Figure 2: House layouts and sensor deployments in ARAS data sets.
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4.2 Experimental Setup

Markov models are widely used in the literature for modeling sequential data be-
cause they are well suited for handling the temporal dependencies. Since human
activities are sequential in nature, Markov models have already proven to be useful
for human activity recognition purposes. Linear Chain Conditional Random Fields
(LCCRF) are also suited for modeling sequential data and they can be used in the
proposed active learning scheme as with any other probabilistic model. However,
due to the high run-time complexity required by LCCRFs, they are not well-suited
for online settings. For that reason, HMM, which provide fast yet efficient learning
algorithms that can complete in a few seconds, is preferred.

HMM is depicted in Figure 3. The hidden state at time t, denoted as yt, corre-
spond to the activities performed and the observations, xit correspond to ith sensor’s
value at time t. Each sensor modeled as an independent binary feature. The total
number of sensors (features) is N = 20 for ARAS data sets. The total number of
time steps is denoted as T . HMM is a generative model that has three factors in the
joint probability distribution:

p(y1:T , x1:T ) = p(y1)
T∏
t=2

p(yt | yt−1)
T∏
t=1

p(xt | yt) (4)

The initial state distribution p(y1) is a multinomial distribution; the transition
distribution p(yt | yt−1) is represented as a collection of Q multinomial distribu-
tions (Q is the number of different activities); the observation distribution p(xt | yt)
is a multiplication of N independent Bernoulli distributions (N is the number of
sensors).

p(xt | yt) =

N∏
i=1

p(xit | yt)

p(xi | y = j) ∼ Ber(µij)

(5)

x1

y1

N

x2

y2

N

xT-1

yT-1

N

xT

yT

N

Figure 3: Hidden Markov model for activity recognition using N binary sensors.
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A supervised approach with the maximum likelihood method for learning the
parameters and the well-known Viterbi algorithm for inference is used. In order
to prevent zero probabilities, Laplace smoothing is employed during parameter
learning.

Sensor data is discretized in ∆t = 60sec intervals. Overall, there are T = 1440
data points for each day. For each sensor, the value 1 is used if the sensor has been
fired at least once during the interval. For the ground truth labels used in training
phase, the activity label that has the largest number of occurrences during that in-
terval has been used. Leave-one-day-out cross validation is used in all experiments
such that, one full day of data is held for testing and the remaining days are used
for training. All days are used once for testing and the results are averaged over all
folds. The training days are used in a sequential manner, that is, after a day’s data
has been processed, the algorithm moves to the following day and does not use the
data of the previous day for obtaining labels. As stated previously, the algorithm
iteratively learns new model parameters and selects the most informative points to
be annotated. In the learning phase, all the data points whose labels are already
obtained are used. However, data points to be annotated are only selected from the
current day. In other words, in each iteration, the model parameters are learned
with all the data obtained thus far. After that, according to the newly learned pa-
rameters, the data points to be annotated are selected from only the current day.

For measuring the performance, daily f-measure performances are used. For a
multi-class classification problem, the metrics averaged over the number of activity
classes are defined as follows:

Precision =
1

Q

Q∑
i=1

TPi
TPi + FPi

(6a)

Recall =
1

Q

Q∑
i=1

TPi
TPi + FNi

(6b)

F −measure = 2
Precision.Recall

Precision+Recall
(6c)

where Q is the number of classes, TPi is the number of true positive (TP) classifi-
cations for class i, FPi is the number of false positive (FP) classifications for class
i, and FNi is the number of false negative (FN) classifications for class i.

With respect to the research questions to be answered, (i) a random selection
approach together with uncertainty sampling is used to show the effect of the active
selection, (ii) three different uncertainty measures are used to find the most suit-
able measure for selecting the most informative data points, and (iii) four different
setups of active annotations are explored, namely, selecting

1. a single data point from each day in a single iteration,

2. ten data points from each day in a single iteration, resulting in ten data points
from each day,
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3. a single data point with ten iterations per day, resulting in ten data points
from each day, and

4. ten data points in ten iterations per day, resulting in 100 data points from
each day

4.3 Results

The results of the experiments for each house and for each resident are presented
separately. For each case, the fully annotated data performance is included in the
graphs in order to make realistic evaluations. The fully annotated performance
graphs, drawn as solid magenta lines, indicate the scenario in which the whole 1440
data-points are selected from each day for annotation as opposed to the actively
or randomly selected portions. The results for House A for Resident 1 is given
in Figure 4. The results show that with a single data point from each day, the
maximum achievable performance is severely degraded. With ten data points in
ten iterations case, on the other hand, a highly comparable performance is observed
with active learning. When the data points are randomly selected, it is not possible
achieve the optimum performance. When the ten data points per day configurations
are considered, similar performances with one iteration and ten iterations cases are
observed. For these configurations, entropy based selection under-performs when
compared to other selection methods.

In Figure 5, the results for House A, Resident 2 are shown. Similarly, the
single point per day case yields a very low performance whereas the 100 points
case reveals a significantly higher performance. Also, it is interesting to observe
a higher performance than the fully annotated case. This can be attributed to the
change in the resident’s annotation behavior. The downward trend in the perfor-
mance towards the end supports this argument. When full annotation is available,
the observation model changes according to the annotator’s overall average be-
havior immediately. When a difference in the way a specific activity is performed
occurs, or a difference in the annotation behavior is observed, it is directly reflected
on the performance. For example, consider Watching TV activity which is charac-
terized by the use of remote control sensor and the pressure sensor on the couch.
Consider a case where the user changed his favorite couch while Watching TV for
a few occurrences. When full annotation is available, the observation model is up-
dated right away so that the sensor firing probabilities for both the favorite couch
and the new couch will be affected in the new model. If this change is temporary
and the original favorite couch is being mostly used afterwards, then the change
in the observation model is unnecessary and causes a degradation in performance.
With an active learning scheme, if those data points are not selected for annota-
tion, the discrepancy between the training and the test sets does not occur and no
effect on the performance on the test sequence is observed. In other words, if no
data points from Watching TV are selected during active annotation, the original
observation model does not change. Although, in this case a higher performance
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(c) 1 Data Point/Iteration - 10 Iteration/Day
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(d) 10 Data Point/Iteration - 1 Iteration/Day

Figure 4: Active learning experiment results for House A - Resident 1.

with active learning is obtained since the original activity behavior is resumed and
the behavior change is temporary, it is important to note that this effect can also
cause a degradation in the performance of active learning for other settings. It may
cause some behavior changes to be understood later, as well. That is why, in order
to capture the changes in behavior of the residents active learning systems should
be used continuously rather than just at the beginning of new deployments.

The results for House B for the first resident is depicted in Figure 6. Most of
the previous findings persist for this configuration as well but with a higher general
performance increase with respect to the maximum achievable performance. With
a 100 point selection per day, the performance converges to the maximum within
five days. Also, the benefit of using uncertainty based measures over the random
selection is more prominent in this house.

Finally, the second resident for House B results are given in Figure 7. Similar
to the other resident’s case for this house, the benefit of using active learning even
with a low number of data points is prominent. With a single data point per day,
the performance of marginal selection method is better than the other methods. For
the other cases, there are not significant differences between the selection methods.
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(a) 1 Data Point/Iteration - 1 Iteration/Day

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Selected Data Points

F
−

m
ea

su
re

 

 

Random
Entropy
Marginal
LeastConf
All

(b) 10 Data Point/Iteration - 10 Iteration/Day
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(c) 1 Data Point/Iteration - 10 Iteration/Day
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(d) 10 Data Point/Iteration - 1 Iteration/Day

Figure 5: Active learning experiment results for House A - Resident 2.

In the experiments, one-minute discretization is used, therefore, in each day
there are 1440 data points. With the best performing setup that selects 100 points
in each day, only 7% of all the available data points are used and fully annotated
recognition performance is achieved only after a couple of days. The annotation
effort in activity recognition is different than other machine learning problems such
as image recognition or regression. Since the activities are continuous blocks, an-
notations are needed only for marking the start and the end of these activity blocks.
Therefore, the total number of annotations required is not equal to the total num-
ber of data points. In order to take into account this fact, a separate analysis on
the annotation cost reduction is provided. When the annotation effort of real time
setup (i.e. at the time of data collection and whenever an activity starts or finishes)
is compared against active annotation (i.e. after the day is completed in an offline
fashion), again the offline active annotation is more preferable. During the data
collection phase, the first and the second residents in House A made an average of
43 and 30 annotations per day, respectively. Similarly, for House B, the average
number of annotations per day was 21 and 14 for resident 1 and 2, respectively. In
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(b) 10 Data Point/Iteration - 10 Iteration/Day
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(c) 1 Data Point/Iteration - 10 Iteration/Day
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(d) 10 Data Point/Iteration - 1 Iteration/Day

Figure 6: Active learning experiment results for House B - Resident 1.

summary, even with the most demanding active annotation setup, the residents are
queried 30% - 75% less and they are asked only a few number of data points in
order to achieve the same recognition performance.

4.4 Discussion

It has been shown that active learning works well for an activity recognition appli-
cation with experiments on real world data sets. With the active learning frame-
work, the activity recognition system selects the most informative points. Then, the
system is trained iteratively, using only the most informative points’ labels. In the
experiments, the points that needed to be annotated are selected on a daily basis. At
the end of each day, the system asks the user what he/she has been doing during the
time slices that are chosen to be the most informative. In the proposed scenario, it
is possible that the user is disturbed only once a day, possibly before going to bed,
by the system and asked about some activities he/she performed during that day. It
is also possible that each iteration takes place at different times. This is important
especially for the higher number of selections such as ten points in ten iterations
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(a) 1 Data Point/Iteration - 1 Iteration/Day
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(b) 10 Data Point/Iteration - 10 Iteration/Day
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(c) 1 Data Point/Iteration - 10 Iteration/Day
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(d) 10 Data Point/Iteration - 1 Iteration/Day

Figure 7: Active learning experiment results for House B - Resident 2.

cases. It could be difficult to obtain all 100 point in a single session.
The proposed active learning framework allows different number of data points

to be selected from each day. Having more data points is always better but the num-
ber can vary from one to up to all data points. The model parameters are recalcu-
lated after each obtained label since each labeled point is of significant importance
to obtain accurate model parameters. Since a supervised approach is used, recal-
culating the parameters is very fast and the user does not have to wait to be asked
about the following label. The algorithm iteratively selects points and updates the
model parameters, therefore, the bias on the selection do not propagate. Also, since
always the true labels are obtained for the selected points, the bias on learning the
model parameters is very unlikely to occur.

4.4.1 Random vs. Uncertainty Sampling

In nearly all of the cases, random selection performs worse than active learning
methods. The exceptions occur especially with an extremely low number of data
points. When the number of data points are too low, the model is not accurate

15



enough to correctly determine the importance of the data points. In that case, it
is possible to come up with a higher performance with a random selection. Even
with a random selection, the labels obtained are the ground truth labels so that
they are useful in learning as well. However, in all the experiments, there is a
clear distinction with the uncertainty measure based selection and random selection
stating that these measures work better than random.

4.4.2 Comparison among Uncertainty Measures

As long as the different measures are concerned, there are not any significant differ-
ences. Nevertheless, marginal selection method has a slightly higher performance
than the others whereas entropy method has a slightly lower performance than the
others. In order to have a better understanding of the differences in the three mea-
sures, consider the following example probability distributions given in Table 1. In
this scenario, three hypothetical time steps are considered for an activity recogni-
tion problem with four activity classes. The probability distributions provided by
the current state of the algorithm are given in the table. Using these probability
distributions, three different uncertainty measure scores for these time steps are
calculated. In this scenario, if the entropy measure was used, the first time step
would be selected for annotation. Likewise, if the least confident measure was
used, t2 would be selected. If the measure was margin sampling, then t3 would
be selected for annotation. In the table for probability distributions, the different
behaviors of these measures as well as similarities can be observed. The margin
sampling method considers only the two most likely classes and selects the data
points that the difference between these two classes are minimum. The least con-
fident measure, on the other hand, judges the uncertainty based on the most likely
class only. When the model gives lower probabilities for the most likely class for
some data points, then these data points are more likely to be selected by the least
confident method. the entropy measure is the only measure in which all of the
probabilities are taken into account. The entropy measure selects the data points
for which the probability distribution is more uniform than the others. The entropy
measure is maximized if all the probabilities for different classes are equal for a
given data point.

Also, it is important to note that the measures do not select mutually exclusive
data points. There are overlaps between the regions of probability distributions
selected by these measures. For example, with a uniform distribution for a given
data point (i.e. the case in which all the probabilities in the example are 0.25), all
three measures will select this same data point for annotation since it is the most
informative one for every measure.

In the experiments, it has been shown that entropy measure does not perform as
well as the other methods. The probable cause of this lies in the nature of activity
recognition problem. Since the entropy measure tends to select the instances in
which every activity is nearly equally possible it tends to select instances from the
IDLE class. The IDLE class is composed of time slices that are not labeled as any
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Table 1: Example probability distributions and calculated scores
t1 t2 t3

p(A1) 0.29 0.28 0.49
p(A2) 0.24 0.27 0.49
p(A3) 0.24 0.24 0.01
p(A4) 0.23 0.21 0.01

Calculated Scores
Entropy 0.60 0.59 0.34
LeastConf 0.71 0.72 0.51
Margin 0.05 0.01 0.00

other activity. This class acts like a transition state between two activities. For
example, there can be IDLE time slices between Sleeping activity and Brushing
teeth activity. The IDLE time slices constitutes the walking duration between the
bedroom and bathroom in this case. Many of the data points in this class will
look alike to other activities yielding a more uniform probability distribution in
classification. Since these time slices are selected for annotation when the entropy
metric is used, it is likely that the class labels obtained will belong to this single
class. On the other hand, the classification performance can only be improved
only if the model learns a more diverse set of activities. When margin sampling
is used, on the other hand, the chance of selecting different activities increases.
For instance, assume that the model asks for the label of a data point for which
it assigned high and nearly equal probabilities for two similar activities such as
Brushing teeth and Shaving. Once the label is obtained, the model has the chance
of updating its parameters for both of these activities and not just one of them. If the
actual label is Shaving for instance, the model has a better understanding of what
Shaving activity looks like and also it knows more on what Brushing teeth activity
does not look like. In another words, the model learns not to confuse between two
similar activities with marginal sampling method and this has an boosting effect on
the overall performance of the learning algorithm

4.4.3 Single iteration vs. Multiple iterations

In the results, two different configurations for ten points per day selection are pro-
vided, i.e. collecting ten points in a single iteration as opposed to a single point
in ten iterations. Similarly, experiments that select 100 points per day in a single
iteration and selecting ten points in ten iterations are conducted. Since the results
for the former configuration are not so different from its ten iteration counterpart,
the performance graphs of these experiments are not provided separately. The gen-
eral performance trends are the same for both configurations in each case. On the
other hand, when more iterations are made, the learning curve is steeper especially
for the first few iterations. As the number of labeled points increase, the effect of
iterations disappear. A steeper learning curve is expected since before asking for
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Figure 8: A screen shot from the web-based annotation tool.

new labeled points, the algorithm has the opportunity to update the model and ask
about more informative labels with a more mature model. When a better model is
obtained, the marginal benefit of the uncertainty measures increases. This, in turn,
leads to a steeper increase in the performance in the beginning of active learning.

The number of iterations becomes an important design consideration if the
learning algorithm has a high time complexity. If the running time of the learning
algorithm is long enough to be noticed by the annotator then there will be pauses
between the consecutive queries. If the pauses are too long then the annotator will
become annoyed. In these cases, the iteration counts should be kept at minimum
for usability purposes. When the learning algorithm is fast enough, using more
iterations is more beneficial for efficient learning of the activities actively. Also,
a hybrid approach could be employed since the effect of the higher number of
iterations are shown to be more significant in the beginning.

5 Web-based Annotation Tool

One important concern with offline active annotation is the memory limitations of
human annotators. Since the active query selection is performed after the whole
day is over in the proposed scenario, a prototype application has been developed to
mitigate the negative effects of incorrect retrieval. The proposed application can be
used for both querying the annotator and also visualizing the sensor data for that
specific moment.

In Figure 8, a sample screen is given from the developed sensor data annota-
tion and visualization tool. This web-based simple yet efficient tool allows us to
collect the necessary ground truth labels while also serving as a memory aid tool.
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The application shows active and passive sensors together with their locations and
types. While active sensors are shown as green circles, passive sensors are shown
as grey circles. When the annotator moves the mouse over the circles, she/he can
see location and type of sensors. This property helps annotators make better inter-
pretation. After the users see this visualization of active and passive sensors, they
are expected to annotate the activities choosing labels from set of activity labels on
the right hand side. In order to further facilitate the retrieval process, the start and
end times of the specified sensor state configuration together with the sensor firing
duration information is provided at the top portion of the screen. Besides, the nav-
igation buttons help the annotator to move back and forth between the time steps.
This mechanism helps in making the temporal connections between consecutive
time steps and in case of sensor failures or noisy firings, the annotator can make
better interpretations about the ground truth activity labels.

One important benefit of having a web-based tool for annotation is that it al-
lows utilizing other people for the annotation task. This feature may become useful
especially in cases where the residents are incapable of annotating their own activ-
ities due to dementia or other diseases. In that case, authorized relatives or health
care personnel can perform the annotation tasks. Although the accuracy is expected
to be lower when compared to self annotation, the preliminary experiments with
several unfamiliar annotators indicate a relatively high accuracy values for most
activities of daily living such as sleeping, having a meal, toileting and watching
TV. Activities that are more open to different interpretations such as relaxing or
working are more challenging for unfamiliar annotators. Nevertheless, the flexibil-
ity of the overall learning phenomena makes it a proper candidate for large scale
deployments of activity recognition systems.

The performance of web-based annotation tool is evaluated in [34]. According
to the results from ten different people who have not participated in the data collec-
tion phase, the average recognition rate is found to be 70% and 64.5% for House A
and House B, respectively. When the experiment is repeated with the actual resi-
dents who lived in the houses, the accuracies are as high as 95%. The main sources
of errors were due to noisy sensor firings and the lack of temporal connections be-
tween the activities and also differences in the ways the activities performed. For
example, the recognition rates for activities that are performed in specific locations
in the house such as sleeping, having a shower, preparing a meal were considerably
higher than other activities that are more variable in terms of locations. Due to the
lack of a common pattern for watching TV or reading a book activities, it is harder
to obtain the correct annotations from complete strangers. On the other hand, the
residents themselves have higher annotation accuracy levels even for these leisure
activities, making the annotation tool a viable solution for people who are familiar
with the environment and behavior of the residents. Also, further improvements
are possible with a tutoring mode for complete strangers by guiding them on how
watching TV activity looks like.
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6 Conclusion

In this paper, the scalability problems of automated human activity recognition
systems are addressed since they require labeled data sets for adapting themselves
to different users and environments. Collecting the data, annotation and retraining
the systems from scratch for every person or every house is too costly. Therefore,
redeploying these systems in different settings should be accomplished in a cost
effective and user friendly way. For this purpose, active learning methods which
reduce the annotation effort by selecting only the most informative data points to
be annotated are proposed. In the proposed framework, user friendliness is also
considered. It has been shown that by disturbing the user only a few times each
day for obtaining the minimum amount of labels, it is possible to learn accurate
model parameters.

Three different measures of uncertainty for selecting the most informative data
points are used and their performance are evaluated by using real world data sets.
Experiments showed that all three proposed method works well for the activity
recognition system rather than random selection. By using the active learning, the
annotation effort is reduced by a factor of two to four, depending on the house and
resident setting in ARAS data sets.

Achieving high performance in activity recognition systems using probabilistic
models depends on model parameters that are learned using the labeled data. With
active learning, the aim is reaching the most accurate model parameters iteratively
using the parameters obtained from previous iterations for selecting the most infor-
mative data points. In the first iterations, the parameters are based on few number
of data points, therefore, not accurately estimated. This leads to a poor estimate
of the informativeness of data points at the first iterations. The results suggest that
even with a small amount of training data obtained after a few iterations, the selec-
tion gets better quickly. Therefore, instead of randomly initializing the parameters
in the first iteration, transfer learning which allows the use of model parameters that
have been learned previously to be used in another setting [35] can be used. As a
future study, using transfer learning together with active learning methods could be
explored to lead better estimates of the parameters even at the first iterations.
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