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1 Introduction

In the last years, considerable experimental progress has been made in the

identification of new bottom baryon states. The CDF Collaboration [1] re-

ported the first observation of the Σ±

b and Σ∗±

b . After this discovery, the DO

[2] and CDF [3] Collaborations announced the observation of the Ξb− state

(for a review see [4]). The BaBar Collaboration discovered the Ω∗

c state [5]

and observed the Ωc state in B decays [6]. Lastly, the BaBar and BELLE

Collaborations observed Ξc state [7].

Heavy baryons containing c and b quarks have been subject of the inten-

sive theoretical studies (see [8] and references therein). A theoretical study

of experimental results can give essential information about the structure of

these baryons. In this sense, study of the electromagnetic properties of the

heavy baryons receives special attention. One of the main static electromag-

netic quantities of the baryons is their magnetic moments. The magnetic mo-

ments of the heavy baryons have been discussed within different approaches

in the literature (see [9] and references therein).

In the present work, we investigate the electromagnetic decays of the

ground state heavy baryons containing single heavy quark with total angular

momentum J = 3
2
to the heavy baryons with J = 1

2
in the framework of the

light cone QCD sum rules method. Note that, some of the considered decays

have been studied within heavy hadron chiral perturbation theory [10], heavy

quark and chiral symmetries [11, 12], in the relativistic quark model [13] and

light cone QCD sum rules at leading order in HQET in [14]. Here, we also

emphasize that the radiative decays of the light decuplet baryons to the octet

baryons have been studied in the framework of the light cone QCD sum rules

in [15].

The work is organized as follows. In section 2, the light cone QCD sum
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rules for the form factors describing electromagnetic transition of the heavy

J = 3
2
, to the heavy baryons with J = 1

2
are obtained. Section 3 encom-

passes the numerical analysis of the transition magnetic dipole and electric

quadrupole moments as well as the radiative decay rates. A comparison of

our results for the total decay width with the existing predictions of the other

approaches is also presented in section 3.

2 Light cone QCD sum rules for the electro-

magnetic form factors of the heavy flavored

baryons

We start this section with a few remarks about the classification of the heavy

baryons. Heavy baryons with single heavy quark belong to either SU(3)

antisymmetric 3̄F or symmetric 6F flavor representations. For the baryons

containing single heavy quark, in the mQ →∞ limit, the angular momentum

of the light quarks is a good quantum number. The spin of the light diquark

is either S = 1 for 6F or S = 0 for 3̄F . The ground state will have angular

momentum l = 0. Therefore, the spin of the ground state is 1/2 for 3̄F

representing the ΛQ and ΞQ baryons, while it can be both 3/2 or 1/2 for 6F ,

corresponding to ΣQ, Σ
∗

Q, Ξ
′

Q, Ξ
∗

Q, ΩQ and Ω∗

Q states, where ∗ indicates spin
3/2 states.

After this remark, let us calculate the electromagnetic transition form

factors of the heavy baryons. For this aim, consider the following correlation

function, which is the main tool of the light cone QCD sum rules:

Tµ(p, q) = i

∫

d4xeipx〈0 | T{η(x)η̄µ(0)} | 0〉γ, (1)

where η and ηµ are the generic interpolating quark currents of the heavy fla-

vored baryons with J = 1/2 and 3/2, respectively and γ means the external
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electromagnetic field. In this work we will discuss the following electromag-

netic transitions

Σ∗

Q → ΣQγ,

Ξ∗

Q → ΞQγ,

Σ∗

Q → ΛQγ,

(2)

where Q = c or b quark.

In QCD sum rules approach, this correlation function is calculated in two

different ways: from one side, it is calculated in terms of the quarks and glu-

ons interacting in QCD vacuum. In the phenomenological side, on the other

hand, it is saturated by a tower of hadrons with the same quantum num-

bers as the interpolating currents. The physical quantities are determined

by matching these two different representations of the correlation function.

The hadronic representation of the correlation function can be obtained

inserting the complete set of states with the same quantum numbers as the

interpolating currents.

Tµ(p, q) =
〈0 | η | 2(p)〉
p2 −m2

2

〈2(p) | 1(p+ q)〉γ
〈1(p+q) | η̄µ | 0〉
(p+ q)2 −m2

1

+ ..., (3)

where 〈1(p+ q)| and 〈2(p)| denote heavy spin 3/2 and 1/2 states and m1 and

m2 represent their masses, respectively and q is the photon momentum. In

the above equation, the dots correspond to the contributions of the higher

states and continuum. For the calculation of the phenomenological part,

it follows from Eq. (3) that we need to know the matrix elements of the

interpolating currents between the vacuum and baryon states. They are

defined as

〈1(p+ q, s) | η̄µ(0) | 0〉 = λ1ūµ(p+ q, s),

〈0 | η(0) | 2(p, s′)〉 = λ2u(p, s
′), (4)
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where λ1 and λ2 are the residues of the heavy baryons, uµ(p, s) is the Rarita-

Schwinger spinor and s and s′ are the polarizations of the spin 3/2 and 1/2

states, respectively. The electromagnetic vertex 〈2(p) | 1(p+ q)〉γ of the spin

3/2 to spin 1/2 transition is parameterized in terms of the three form factors

in the following way [16, 17]

〈2(p) | 1(p+ q)〉γ = eū(p, s′)

{

G1(qµ 6ε− εµ 6q) +G2[(Pε)qµ − (Pq)εµ]γ5

+ G3[(qε)qµ − q2εµ]γ5
}

uµ(p + q),

(5)

where P = p+(p+q)
2

and εµ is the photon polarization vector. Since for the

considered decays the photon is real, the terms proportional to G3 are exactly

zero, and for analysis of these decays, we need to know the values of the

form factors G1(q
2) and G2(q

2) only at q2 = 0. From the experimental

point of view, more convenient form factors are magnetic dipole GM , electric

quadrupole GE and Coulomb quadrupole GC which are linear combinations

of the form factors G1 and G2 ( see [15]). At q2 = 0, these relations are

GM =

[

(3m1 +m2)
G1

m1

+ (m1 −m2)G2

]

m2

3
,

GE = (m1 −m2)

[

G1

m1
+G2

]

m2

3
. (6)

In order to obtain the explicit expressions of the correlation function from

the phenomenological side, we also perform summation over spins of the spin

3/2 particles using

∑

s

uµ(p, s)ūν(p, s) =
( 6p+m)

2m
{−gµν +

1

3
γµγν −

2pµpν
3m2

− pµγν − pνγµ
3m

}. (7)

In principle, the phenomenological part of the correlator can be obtained with

the help of the Eqs. (3-7). As noted in [9, 15], at this point two problems
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appear: 1) all Lorentz structures are not independent, b) not only spin 3/2,

but spin 1/2 states also give contributions to the correlation function. In

other words the matrix element of the current ηµ between vacuum and spin

1/2 states is nonzero. In general, this matrix element can be written in the

following way

〈0 | ηµ(0) | B(p, s = 1/2)〉 = (Apµ +Bγµ)u(p, s = 1/2). (8)

Imposing the condition γµη
µ = 0, one can immediately obtain that B =

−A
4
m.

In order to remove the contribution of the spin 1/2 states and deal with

only independent structures in the correlation function, we will follow [9, 15]

and remove those contributions by ordering the Dirac matrices in a specific

way. For this aim, we choose the ordering for Dirac matrices as 6 ε 6 q 6 pγµ.
Using this ordering for the correlator, we get

Tµ = eλ1λ2
1

p2 −m2
2

1

(p+ q)2 −m2
1

[

[εµ(pq)− (εp)qµ]
{

−2G1m1 −G2m1m2 +G2(p+ q)2

+ [2G1 −G2(m1 −m2)] 6p+m2G2 6q −G2 6q 6p} γ5
+ [qµ 6ε− εµ 6q]

{

G1(p
2 +m1m2)−G1(m1 +m2) 6p

}

γ5

+2G1 [6ε(pq)− 6q(εp)] qµγ5
−G1 6ε 6q {m2+ 6p} qµγ5

other structures with γµ at the end or which are proportional to (p+ q)µ

]

.

(9)

For determination of the form factors G1 andG2, we need two invariant struc-

tures. We obtained that among all structures, the best convergence comes

from the structures 6ε 6pγ5qµ and 6q 6pγ5(εp)qµ for G1 and G2, respectively. To
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get the sum rules expression for the form factors G1 and G2, we will choose

the same structures also from the QCD side and match the corresponding

coefficients. We also would like to note that, the correlation function receives

contributions from contact terms. But, the contact terms do not give contri-

butions to the chosen structures (for a detailed discussion see e. g. [15, 18]

).

On QCD side, the correlation function can be calculated using the oper-

ator product expansion. For this aim, we need the explicit expressions of the

interpolating currents of the heavy baryons with the angular momentums

J = 3/2 and J = 1/2. The interpolating currents for the spin J = 3/2

baryons are written in such a way that the light quarks should enter the

expression of currents in symmetric way and the condition γµηµ = 0 should

be satisfied. The general form of the currents for spin J = 3/2 baryons

satisfying both aforementioned conditions can be written as [9]

ηµ = Aǫabc

{

(qaT1 Cγµq
b
2)Q

c + (qaT2 CγµQ
b)qc1 + (QaTCγµq

b
1)q

c
2

}

, (10)

where C is the charge conjugation operator and a, b and c are color in-

dices. The value of normalization factor A and quark fields q1 and q2 for

corresponding heavy baryons is given in Table 1 (see [9]).

The general form of the interpolating currents for the heavy spin 1/2

baryons can be written in the following form:

ηΣQ
= − 1√

2
ǫabc

{

(qaT1 CQb)γ5q
c
2 + β(qaT1 Cγ5Q

b)qc2

− [(QaTCqb2)γ5q
c
1 + β(QaTCγ5q

b
2)q

c
1]
}

,

ηΞQ,ΛQ
=

1√
6
ǫabc

{

2(qaT1 Cqb2)γ5Q
c + β(qaT1 Cγ5q

b
2)Q

c + (qaT1 CQb)γ5q
c
2

+ β(qaT1 Cγ5Q
b)qc2 + (QaTCqb2)γ5q

c
1 + β(QaTCγ5q

b
2)q

c
1

}

,

(11)
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Heavy spin 3
2
baryons A q1 q2

Σ
∗+(++)
b(c) 1/

√
3 u u

Σ
∗0(+)
b(c)

√

2/3 u d

Σ
∗−(0)
b(c) 1/

√
3 d d

Ξ
∗0(+)
b(c)

√

2/3 s u

Ξ
∗−(0)
b(c)

√

2/3 s d

Ω
∗−(0)
b(c) 1/

√
3 s s

Table 1: The value of normalization factor A and quark fields q1 and q2 for
the corresponding heavy spin 3/2 baryons.

where β is an arbitrary parameter and β = −1 corresponds to the Ioffe

current. The quark fields q1 and q2 for the corresponding heavy spin 1/2

baryons are as presented in Table 2.

Heavy spin 1
2
baryons q1 q2

Σ
+(++)
b(c) u u

Σ
0(+)
b(c) u d

Σ
−(0)
b(c) d d

Ξ
0(+)
b(c) u s

Ξ
−(0)
b(c) d s

Λ
0(+)
b(c) u d

Table 2: The quark fields q1 and q2 for the corresponding heavy spin 1/2
baryons.

After performing all contractions of the quark fields in Eq. (1), we

get the following expression for the correlation functions responsible for the

Σ∗0
b → Σ0

bγ and Ξ∗0
b → Ξ0

bγ transitions in terms of the light and heavy quark
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propagators

T
Σ∗0

b
→Σ0

b
µ =

i√
3
ǫabcǫa′b′c′

∫

d4xeipx〈0[γ(q)] | {−γ5Sc′c
d Tr[Sb′b

b γµS
′a′a
u ]

+ γ5S
c′c
u Tr[Sb′b

d γµS
′a′a
b ] + βTr[γ5S

aa′

u γµS
′bb′

b ]Scc′

d − βTr[γ5Saa′

b γµS
′bb′

d ]Scc′

u

− γ5S
c′a
d γµS

′a′b
u Sb′c

b + γ5S
c′b
d γµS

′b′a
u Sa′c

u − γ5Sc′b
u γµS

′b′a
d Sa′c

b

+ γ5S
c′a
u γµS

′a′b
b Sb′c

d − βSca′

d γµS
′ab′

u γ5S
bc′

b + βSc′b
d γµS

′b′a
b γ5S

a′c
u

− βSc′b
u γµS

′b′a
d γ5S

a′c
b + βSc′a

u γµS
′a′b
b γ5S

b′c
d | 0〉, (12)

T
Ξ∗0
b
→Ξ0

b
µ =

i

3
ǫabcǫa′b′c′

∫

d4xeipx〈0[γ(q)] | {γ5Sc′c
s Tr[Sb′b

b γµS
′a′a
u ]

− 2γ5S
c′c
b Tr[Sb′a

s γµS
′a′b
u ] + 2βTr[γ5S

a′b
u γµS

′b′a
s ]Sc′c

b − βTr[γ5Sa′a
u γµS

′b′b
b ]Sc′c

s

+ γ5S
c′c
u Tr[Sb′b

s γµS
′a′a
b ]− βTr[γ5Sa′a

b γµS
′b′b
s ]Sc′c

u − γ5Sc′b
u γµS

′b′a
s Sa′c

b

+ 2γ5S
c′a
b γµS

′b′b
s Sa′c

u − 2γ5S
c′b
b γµS

′a′a
u Sb′c

s + γ5S
c′a
s γµS

′a′b
u Sb′c

b

− γ5S
c′b
s γµS

′b′a
b Sa′c

u + 2βSc′a
b γµS

′b′b
s γ5S

a′c
u − 2βSc′b

b γµS
′a′a
u γ5S

b′c
s

+ βSc′a
s γµS

′a′b
u γ5S

b′c
b − βSc′b

s γµS
′b′a
b γ5S

a′c
u + γ5S

c′a
u γµS

′a′b
b Sb′c

s

− βSc′b
u γµS

′b′a
s γ5S

a′c
b + βSc′a

u γµS
′a′b
b γ5S

b′c
s β | 0〉, (13)

where S ′ = CSTC.

The correlation functions for all other possible transitions can be obtained

by the following replacements

T
Σ∗−

b
→Σ−

b
µ = T

Σ∗0
b
→Σ0

b
µ (u→ d),

T
Σ∗+

b
→Σ+

b
µ = T

Σ∗0
b
→Σ0

b
µ (d→ u),

TΣ∗+
c →Σ+

c
µ = T

Σ∗0
b
→Σ0

b
µ (b→ c),

TΣ∗0
c →Σ0

c
µ = T

Σ∗−

b
→Σ−

b
µ (b→ c),

TΣ∗++
c →Σ++

c
µ = T

Σ∗+
b

→Σ+
b

µ (b→ c),

T
Ξ∗−

b
→Ξ−

b
µ = T

Ξ∗0
b
→Ξ0

b
µ (u→ d),

TΞ∗0
c →Ξ0

c
µ = T

Ξ∗−

b
→Ξ−

b
µ (b→ c),
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TΞ∗+
c →Ξ+

c
µ = T

Ξ∗0
b
→Ξ0

b
µ (b→ c),

T
Σ∗0

b
→Λ0

b
µ = T

Ξ∗0
b
→Ξ0

b
µ (s→ d),

TΣ∗+
c →Λ+

c
µ = T

Σ∗0
b
→Λ0

b
µ (b→ c). (14)

The correlators in Eqs. (12, 13) get three different contributions: 1)

Perturbative contributions, 2) Mixed contributions, i.e., the photon is ra-

diated from short distance and at least one of the quarks forms a con-

densate. 3) Non-perturbative contributions, i.e., when photon is radiated

at long distances. This contribution is described by the matrix element

〈γ(q) | q̄(x1)Γq(x2) | 0〉 which is parameterized in terms of photon distribu-

tion amplitudes with definite twists.

The results of the contributions when the photon interacts with the quarks

perturbatively is obtained by replacing the propagator of the quark that emits

the photon by

Sab
αβ ⇒

{
∫

d4ySfree(x− y) 6ASfree(y)

}ab

αβ

. (15)

The free light and heavy quark propagators are defined as:

Sfree
q =

i 6x
2π2x4

− mq

4π2x2
,

Sfree
Q =

m2
Q

4π2

K1(mQ

√
−x2)√

−x2
− i

m2
Q 6x

4π2x2
K2(mQ

√
−x2),

(16)

where Ki are Bessel functions. The non-perturbative contributions to the

correlation function can be easily obtained from Eq. (12) replacing one of

the light quark propagators that emits a photon by

Sab
αβ → −

1

4
q̄aΓjq

b(Γj)αβ , (17)
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where Γ is the full set of Dirac matrices Γj =
{

1, γ5, γα, iγ5γα, σαβ/
√
2
}

and

sum over index j is implied. Remaining quark propagators are full propaga-

tors involving the perturbative as well as the non-perturbative contributions.

The light cone expansion of the light and heavy quark propagators in the

presence of an external field is done in [19]. The operators q̄Gq, q̄GGq and

q̄qq̄q, where G is the gluon field strength tensor give contributions to the

propagators and in [20], it was shown that terms with two gluons as well as

four quarks operators give negligible small contributions, so we neglect them.

Taking into account this fact, the expressions for the heavy and light quark

propagators are written as:

SQ(x) = Sfree
Q (x)− igs

∫

d4k

(2π)4
e−ikx

∫ 1

0

dv

[ 6k +mQ

(m2
Q − k2)2

Gµν(vx)σµν

+
1

m2
Q − k2

vxµG
µνγν

]

,

Sq(x) = Sfree
q (x)− mq

4π2x2
− 〈q̄q〉

12

(

1− imq

4
6x
)

− x2

192
m2

0〈q̄q〉
(

1− imq

6
6x
)

−igs
∫ 1

0

du

[ 6x
16π2x2

Gµν(ux)σµν − uxµGµν(ux)γ
ν i

4π2x2

−i mq

32π2
Gµνσ

µν

(

ln

(−x2Λ2

4

)

+ 2γE

)]

, (18)

where Λ is the scale parameter and we choose it at factorization scale i.e.,

Λ = (0.5 GeV − 1 GeV ) (see [9, 21]).

As we already noted, for the calculation of the non-perturbative con-

tributions, the matrix elements 〈γ(q) | q̄Γiq | 0〉 are needed. These matrix

elements are calculated in terms of the photon distribution amplitudes (DA’s)

as follows [22].

〈γ(q)|q̄(x)σµνq(0)|0〉 = −ieq q̄q(εµqν − ενqµ)
∫ 1

0

dueiūqx
(

χϕγ(u) +
x2

16
A(u)

)

− i

2(qx)
eq〈q̄q〉

[

xν

(

εµ − qµ
εx

qx

)

− xµ
(

εν − qν
εx

qx

)]
∫ 1

0

dueiūqxhγ(u)

10



〈γ(q)|q̄(x)γµq(0)|0〉 = eqf3γ

(

εµ − qµ
εx

qx

)
∫ 1

0

dueiūqxψv(u)

〈γ(q)|q̄(x)γµγ5q(0)|0〉 = −
1

4
eqf3γǫµναβε

νqαxβ
∫ 1

0

dueiūqxψa(u)

〈γ(q)|q̄(x)gsGµν(vx)q(0)|0〉 = −ieq〈q̄q〉 (εµqν − ενqµ)
∫

Dαie
i(αq̄+vαg)qxS(αi)

〈γ(q)|q̄(x)gsG̃µνiγ5(vx)q(0)|0〉 = −ieq〈q̄q〉 (εµqν − ενqµ)
∫

Dαie
i(αq̄+vαg)qxS̃(αi)

〈γ(q)|q̄(x)gsG̃µν(vx)γαγ5q(0)|0〉 = eqf3γqα(εµqν − ενqµ)
∫

Dαie
i(αq̄+vαg)qxA(αi)

〈γ(q)|q̄(x)gsGµν(vx)iγαq(0)|0〉 = eqf3γqα(εµqν − ενqµ)
∫

Dαie
i(αq̄+vαg)qxV(αi)

〈γ(q)|q̄(x)σαβgsGµν(vx)q(0)|0〉 = eq〈q̄q〉
{[(

εµ − qµ
εx

qx

)(

gαν −
1

qx
(qαxν + qνxα)

)

qβ

−
(

εµ − qµ
εx

qx

)(

gβν −
1

qx
(qβxν + qνxβ)

)

qα

−
(

εν − qν
εx

qx

)(

gαµ −
1

qx
(qαxµ + qµxα)

)

qβ

+

(

εν − qν
εx

q.x

)(

gβµ −
1

qx
(qβxµ + qµxβ)

)

qα

]
∫

Dαie
i(αq̄+vαg)qxT1(αi)

+

[(

εα − qα
εx

qx

)(

gµβ −
1

qx
(qµxβ + qβxµ)

)

qν

−
(

εα − qα
εx

qx

)(

gνβ −
1

qx
(qνxβ + qβxν)

)

qµ

−
(

εβ − qβ
εx

qx

)(

gµα −
1

qx
(qµxα + qαxµ)

)

qν

+

(

εβ − qβ
εx

qx

)(

gνα −
1

qx
(qνxα + qαxν)

)

qµ

]
∫

Dαie
i(αq̄+vαg)qxT2(αi)

+
1

qx
(qµxν − qνxµ)(εαqβ − εβqα)

∫

Dαie
i(αq̄+vαg)qxT3(αi)

+
1

qx
(qαxβ − qβxα)(εµqν − ενqµ)

∫

Dαie
i(αq̄+vαg)qxT4(αi)

}

, (19)

where ϕγ(u) is the leading twist 2, ψv(u), ψa(u), A and V are the twist 3 and

hγ(u), A, Ti (i = 1, 2, 3, 4) are the twist 4 photon DA’s, respectively and χ
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is the magnetic susceptibility of the quarks. The photon DA’s is calculated

in [22]. The measure Dαi is defined as
∫

Dαi =

∫ 1

0

dαq̄

∫ 1

0

dαq

∫ 1

0

dαgδ(1− αq̄ − αq − αg). (20)

The coefficient of any structure in the expression of the correlation func-

tion can be written in the form

T (q1, q2, Q) = eq1T1(q1, q2, Q) + eq2T
′

1(q1, q2, Q) + eQT2(q1, q2, Q), (21)

where T1, T
′

1 and T2 in the right side correspond to the radiation of the photon

from the quarks q1, q2 and Q, respectively. Starting from the expressions of

the interpolating currents, one can easily obtain that the functions T1 and T
′

1

differ only by q1 ←→ q2 exchange for Σ∗

Q → ΣQ transition. Using Eq. (14),

in SU(2) symmetry limit, we obtain

T
Σ

∗+(++)
b(c)

→Σ
+(++)
b(c) + T

Σ
∗−(0)
b(c)

→Σ
−(0)
b(c) = 2T

Σ
∗0(+)
b(c)

→Σ
0(+)
b(c) . (22)

Therefore, in the numerical analysis section, we have not presented the nu-

merical results for TΣ
∗−(0)
b(c)

→Σ
−(0)
b(c) .

Now, using the above equations, one can get the the correlation function

from the QCD side. Separating the coefficients of the structures 6 ε 6 pγ5qµ
and 6q 6pγ5(εp)qµ respectively for the form factors G1 and G2 from both QCD

and phenomenological representations and equating them, we get sum rules

for the form factors G1 and G2. To suppress the contributions of the higher

states and continuum, Borel transformations with respect to the variables p2

and (p + q)2 are applied. The explicit forms of the sum rules for the form

factors G1 and G2 can be as follows. For Σ∗0
b → Σ0

b , we obtain

G1 = − 1

λ1λ2(m1 +m2)
e

m2
1

M2
1 e

m2
2

M2
2

[

eq1Π1 + eq2Π1(q1 ↔ q2) + ebΠ
′

1

]

G2 =
1

λ1λ2
e

m2
1

M2
1 e

m2
2

M2
2

[

eq1Π2 + eq2Π2(q1 ↔ q2) + ebΠ
′

2

]

, (23)

12



where q1 = u, q2 = d. The functions Πi[Π
′

i] can be written as:

Πi[Π
′

i] =

∫ s0

m2
Q

e
−s

M2 ρi(s)[ρ
′

i(s)]ds+ e
−m2

Q

M2 Γi[Γ
′

i], (24)

where,

√
3ρ1(s) = 〈q1q1〉〈q2q2〉

[

−β
3
χϕγ(u0)

]

+ m2
0〈q2q2〉

[

− (1 + β)

144mQπ2
(1 + ψ11)

]

+ 〈q2q2〉
[

βmQ

4π2
(ψ10 − ψ21)

]

+ 〈q1q1〉
mQ

96π2

[

− 3(1 + β)(ψ10 − ψ21)A(u0)

+ 2

(

− 2(ψ10 − ψ21){(1 + 5β)η1 − η2 − 4η3 − η4 + 6η5

+ 2η6 + 3η7 − 2η8 − β(η2 + η4 − 2η5 − 2η6 − 7η7 + 2η8)}

− 3(3 + β)(−1 + ψ02 + 2ψ10 − 2ψ21)(u0 − 1)ζ1 + 2{(1 + 3β)η1

− (3 + β)(η2 − η4) + (1 + 3β)η7}ln(
s

m2
Q

)

+ 3(1 + β)m2
Qχ{2ψ10 − ψ20 + ψ31 − 2ln(

s

m2
Q

)}ϕγ(u0)

) ]

+

+
m4

Q(β − 1)

512π4

[

4ψ30 − 5ψ42 − 4ψ52 + (4ψ30 − 8ψ41 + 5ψ42 + 4ψ52)u0

+ 6{2ψ10 − ψ20 − 2ln(
s

m2
Q

)}(1 + u0)

]

+
f3γm

2
Q(β − 1)

192π2

[

8{−(ψ20 − ψ31)(η
′

1 − η′2) + [ψ10 − ln(
s

m2
Q

)](η′3 + η′1 − η′2)}

+ 6(ψ20 − ψ31)ψ
a(u0) + (3ψ31 + 4ψ32 + 3ψ42)(u0 − 1)[4ψv(u0)−

dψa(u0)

du0
]

]

,

√
3ρ

′

1(s) = m2
0(〈q1q1〉+ 〈q2q2〉)

[

5(1 + 3β)(1 + ψ11)

144π2mQ

]

13



+ (〈q1q1〉+ 〈q2q2〉)
mQ(1 + 3β)

8π2

[

ψ10 − ψ21 − ln(
s

m2
Q

)

]

+
m4

Q(1− β)
768π4

[

2(−3ψ20 − 12ψ30 + 18ψ31 + 8ψ32 + 18ψ41)− 3(ψ42 + 4ψ52)

+ {2(3ψ20 + 6ψ30 − 18ψ31 − 8ψ32) + 3(−8ψ41 + ψ42 + 4ψ52)}u0

− 12ψ10(7 + 5u0)− 72(ψ10 + u0)ln(
m2

Q

s
)

+ 12{7 + 2ψ10(−1 + u0)− u0}ln(
s

m2
Q

)

]

, (25)

√
3ρ2(s) = 〈q1q1〉

1

12mQπ2

[

3(3 + β)(−1 + ψ03 + 2ψ12 + ψ22)(u0 − 1)ζ2

+ 2

(

− 2(1 + β) + (β − 1)ψ11 + 2(1 + 3β)(ψ12 + ψ22)

− 3 + β

2
(−1 + 2ψ12 + ψ22)(ζ9 − ζ5)

) ]

+

+
m2

Q(β − 1)

128π4

[

(12ψ31 + 19ψ32 + ψ33 + 12ψ42)(u0 − 1)u0

]

+
f3γ(β − 1)

96π2

[

4{(1− ψ02)η9 + (−3 + 3ψ02 + 2ψ10 − 2ψ21)η11

− (−1 + ψ02 + 2ψ10 − 2ψ21)η10 + (−1 + 3ψ02 − 2ψ03)(u0 − 1)ζ11}

− (−1 + 3ψ02 − 2ψ03)(u0 − 1)ψa(u0)

]

,

√
3ρ

′

2(s) =
m2

Q(β − 1)

192π4

[

(−1 + u0)u0{12ψ10 − 6ψ20

+ 24ψ31 + 27ψ32 + ψ33 + 18ψ42 − 12ln(
s

m2
Q

)}
]

, (26)

√
3Γ1 = m2

0 < q1q1 >< q2q2 >

[

βm4
QA(u0)

48M6
+

m2
Q

432M4
{12[η2 − 2η3

− η4 + 2η5 + β(2η1 + η2 − 2η3 + η4 − 2η6 + 2η8) + 3(u0 − 1)ζ1]− βA(u0)}
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+
5β

54
χϕγ(u0) +

1

108M2
{(1− u0)(β − 5)ζ1 + 9βm2

Qχϕγ(u0}
]

+ < q1q1 >< q2q2 >

[

βm2
QA(u0)

12M2
+

1

36
{−4[η2 − 2η3

− η4 + 2η5 + β(2η1 + η2 − 2η3 + η4 − 2η6 + 2η8) + 3(u0 − 1)ζ1] + 3βA(u0)}
]

+ m2
0 < q2q2 >

[−βmQ

16π2
+ {

βm3
Q

24M4
+

(1 + β)mQ

216M2
}f3γψa(u0)

]

+ < q2q2 >

[−β
6
f3γmQψ

a(u0)

]

, (27)

√
3Γ

′

1 = m2
0 < q1q1 >< q2q2 >

[−βm2
Q

3M4

]

+ < q1q1 >< q2q2 >

[

2β

3

]

,

√
3Γ2 = m2

0 < q1q1 >< q2q2 >

[

− 1

54M4
(u0 − 1)(β − 5)ζ2

+
m2

Q

18M6
{3(u0 − 1)ζ2 − β(ζ5 − ζ9)}

]

+ < q1q1 >< q2q2 >

[

2

9M2
{−3(u0 − 1)ζ2 + β(ζ5 − ζ9)}

]

,

(28)

Γ
′

2 = 0. (29)

For Ξ∗0
b → Ξ0

b , we have

G1 = − 1

λ1λ2(m1 +m2)
e

m2
1

M2
1 e

m2
2

M2
2

[

eq1Θ1 − eq2Θ1(q1 ↔ q2) + ebΘ
′

1

]

G2 =
1

λ1λ2
e

m2
1

M2
1 e

m2
2

M2
2

[

eq1Θ2 − eq2Θ2(q1 ↔ q2) + ebΘ
′

2

]

, (30)

where q1 = u, q2 = s. The functions Θi[Θ
′

i] are also defined as:

Θi[Θ
′

i] =

∫ s0

m2
Q

e
−s

M2 ̺i(s)[̺
′

i(s)]ds+ e
−m2

Q

M2 ∆i[∆
′

i], (31)
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and

̺1(s) = 〈q1q1〉〈q2q2〉
[

1 + 2β

9
χϕγ(u0)

]

+ m2
0〈q2q2〉

[

(1 + β)

144mQπ2
(1 + ψ11)

]

+ 〈q2q2〉
[

βmQ

4π2
(ψ21 − ψ10)

]

+ 〈q1q1〉
mQ

288π2

[

3(1 + 5β)(ψ10 − ψ21)A(u0)

+ 2

(

− 2(ψ10 − ψ21){(−1 + 7β)η1 + η2 − 4η3 + η4 + 2η5

− 2η6 − 3η7 + 2η8 + β(5η2 − 8η3 + 5η4 − 2η5 − 10η6 − 3η7 + 10η8)}

+ 3(−1 + β)(−1 + ψ02 + 2ψ10 − 2ψ21)(u0 − 1)ζ1

+ 2(−1 + β)(η1 + η2 − η4 + η7)ln(
s

m2
Q

)

− 3(1 + 5β)m2
Qχ{2ψ10 − ψ20 + ψ31 − 2ln(

s

m2
Q

)}ϕγ(u0)

) ]

+

+
m4

Q(β − 1)

512π4

[

6ψ20 − 4ψ30 + 5ψ42 + 4ψ52 + (6ψ20 − 4ψ30

+ 8ψ41 − 5ψ42 − 4ψ52)u0 − 12{ψ10 − ln(
s

m2
Q

)}(1 + u0)

]

−
f3γm

2
Q(β − 1)

576π2

[

8{(ψ20 − ψ31)(η
′

1 − η′2) + [ψ10 − ln(
s

m2
Q

)](3η′3 − η′1 + η′2)}

+ 18(ψ20 − ψ31)ψ
a(u0) + 3(3ψ31 + 4ψ32 + 3ψ42)(u0 − 1)[4ψv(u0)−

dψa(u0)

du0
]

]

,

(32)

̺
′

1(s) = m2
0(〈q1q1〉 − 〈q2q2〉)

[

5(β − 1)(1 + ψ11)

432π2mQ

]

+ (〈q1q1〉 − 〈q2q2〉)
mQ(β − 1)

24π2

[

ψ10 − ψ21 − ln(
s

m2
Q

)

]
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+
m3

Qmq2(β − 1)

128π4

[

6ψ10 − ψ20 + ψ31 − 2{3 + ψ10}ln(
s

m2
Q

)

]

,

(33)

̺2(s) = 〈q1q1〉
1− β

36mQπ2

[

3(−1 + ψ03 + 2ψ12 + ψ22)(u0 − 1)ζ2

+ 2ψ11(2ζ3 + ζ5 − 2ζ7 − ζ9) + 2{1
2
(ζ9 − ζ5)

+ (2ψ12 + ψ22)[2ζ3 +
3

2
(ζ5 − ζ9)− 2ζ7]}

]

+

−
m2

Q(β − 1)

128π4

[

(12ψ31 + 19ψ32 + ψ33 + 12ψ42)(u0 − 1)u0

]

− f3γ(β − 1)

288π2

[

4{(−1 + ψ02 + 4ψ10 − 4ψ21)η9 − 3(−1 + ψ02 + 2ψ10 − 2ψ21)η11

+ (−1 + ψ02 − 2ψ10 + 2ψ21)η10 + 3(−1 + 3ψ02 − 2ψ03)(u0 − 1)ζ11}

− 3(−1 + 3ψ02 − 2ψ03)(u0 − 1)ψa(u0)

]

,

̺
′

2(s) = 0, (34)

∆1 = m2
0 < q1q1 >< q2q2 >

[

(1 + 2β)m4
QA(u0)

144M6
+

m2
Q

1296M4
{12[(1− β)(η2 − 2η3)

− 3(1 + β)η4 + 2(2 + β)η5 + 2(1 + 2β)(η6 + η7 − η8) + 3(2 + β)(u0 − 1)ζ1]

+ (1 + 2β)A(u0)} −
5(1 + 2β)

162
χϕγ(u0)

+
1

108M2
{(−1 + u0)(5 + 3β)ζ1 − 3(1 + 2β)m2

Qχϕγ(u0}
]

+ < q1q1 >< q2q2 >

[

−
(1 + 2β)m2

QA(u0)

36M2
+

1

108
{4[(β − 1)η2 + 2η3

+ 3η4 − 2(2η5 + η6 + η7 − η8 − 3ζ1)− 6u0ζ1

− β(2η3 − 3η4 + 2η5 + 4(η6 + η7 − η8) + 3(u0 − 1)ζ1)]− 3(1 + 2β)A(u0)}
]

+ m2
0 < q2q2 >

[

βmQ

16π2
− {

βm3
Q

24M4
+

(1 + β)mQ

216M2
}f3γψa(u0)

]
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+ < q2q2 >

[

β

6
f3γmQψ

a(u0)

]

, (35)

∆
′

1 = m2
0 < q1q1 >< q2q2 >

5(β − 1)

432

[

m3
Qmq2

M6
− mQmq2

M4

]

− < q1q1 >< q2q2 >

[

(β − 1)mQmq2

36M2

]

,

∆2 = m2
0 < q1q1 >< q2q2 >

[

1

54M4
(u0 − 1)(3β + 5)ζ2

+
m2

Q

54M6
{3(2 + β)(u0 − 1)ζ2 − (1 + 2β)(ζ5 − ζ9)}

]

+ < q1q1 >< q2q2 >

[ −2
27M2

{3(2 + β)(u0 − 1)ζ2 − (1 + 2β)(ζ5 − ζ9)}
]

,

(36)

∆
′

2 = 0. (37)

Note that, in the above equations, the terms proportional to ms are omitted

because of their lengthy expressions, but they have been taken into account

in numerical calculations. The contributions of the terms ∼< G2 > are

also calculated, but their numerical values are very small and therefore for

customary in the expressions these terms are also omitted. The functions

entering Eqs. (25-37) are given as

ηi =

∫

Dαi

∫ 1

0

dvfi(αi)δ(αq + vαg − u0),

η′i =

∫

Dαi

∫ 1

0

dvgi(αi)δ
′(αq + vαg − u0),

ζi =

∫ 1

u0

hi(u)du (i = 1, 2, 11),

ζi =

∫

Dαi

∫ 1

0

dv̄hi(αi)θ(αq + vαg − u0) (i = 3− 10),

18



ψnm =
(s−mQ

2)
n

sm(m2
Q)

n−m ,

(38)

and f1(αi) = S(αi), f2(αi) = S̃(αi), f3(αi) = vS̃(αi), f4(αi) = h5(αi) =

T2(αi), f5(αi) = h6(αi) = vT2(αi), f6(αi) = h8(αi) = vT3(αi), f7(αi) =

h9(αi) = T4(αi), f8(αi) = h10(αi) = vT4(αi), f9(αi) = A(αi), f10(αi) =

g3(αi) = vA(αi), f11(αi) = g2(αi) = vV(αi), g1(αi) = V(αi), h1(u) = hγ(u),

h2(u) = (u−u0)hγ(u), h3(αi) = T1(αi), h4(αi) = vT1(αi), h7(αi) = T3(αi) and

h11(u) = ψv(u) are functions in terms of the photon distribution amplitudes.

Note that in the above equations, the Borel parameter M2 is defined as

M2 =
M2

1M
2
2

M2
1+M2

2
and u0 =

M2
1

M2
1+M2

2
. Since the masses of the initial and final

baryons are very close to each other, we set M2
1 =M2

2 = 2M2 and u0 = 1/2.

From Eqs. (23) and (30) it is clear that for the calculation of the transition

magnetic dipole and electric quadrupole moments, the expressions for the

residues λ1 and λ2 are needed. These residues are determined from two

point sum rules. For the chosen interpolating currents, we get the following

results for the residues λ1 and λ2 (see also [9, 23]):

λ21e
−m2

1
M2 = A2

[

Π′ +Π′(q1 ←→ q2)

]

, (39)

where

Π′ =

∫ s0

m2
Q

ds e−s/M2

{

m2
0 < q1q1 >

[

(mq1 − 6mQ)(ψ22 + 2ψ12 − 1)

192m2
Qπ

2

]

− < q1q1 >

[

2(ψ02 + 2ψ10 − 2ψ21 − 1)mQ + (ψ02 − 1)(3mq1 − 2mq2)

32π2

]

−
m3

Q

512π4

[

−8(3ψ31 + 2ψ32)mq1 + 3{(2ψ30 − 4ψ41 +
5

2
ψ42 + 2ψ52)mQ − 4ψ42mq1}

+ 6(2ψ10 − ψ20)(
3

2
mQ − 2mq1)− 6(4mq1 − 3mQ)ln(

m2
Q

s
)

]}
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+ e−m2
Q
/M2

{

m2
0 < q1q1 >< q2q2 >

[−5m3
Qmq1

144M6
+
mQ(mQ + 5mq1)

24M4
− 5

24M2

]

+ < q1q1 >< q2q2 >

[

1

12
− mQmq1

12M2

]

+m2
0 < q1q1 >

[

6mq2 − 7mq1

192π2

] }

, (40)

− λ22ΣQ(ΞQ)e
−m2

ΣQ(ΞQ)
/M2

=

∫ s0

m2
Q

e
−s

M2 σΣQ(ΞQ)(s)ds+ e
−m2

Q

M2 ωΣQ(ΞQ), (41)

with

σΣQ
(s) = (< dd > + < uu >)

(β2 − 1)

64π2

{

m2
0

4mQ

(6ψ00 − 13ψ02 − 6ψ11)

+ 3mQ(2ψ10 − ψ11 − ψ12 + 2ψ21)

}

+
m4

Q

2048π4
[5 + β(2 + 5β)][12ψ10 − 6ψ20 + 2ψ30 − 4ψ41 + ψ42 − 12ln(

s

m2
Q

)],

(42)

σΞQ
(s) = (< ss > + < uu >)

(β − 1)

192π2

{

m2
0

4mQ
[6(1 + β)ψ00 − (7 + 11β)ψ02

− 6(1 + β)ψ11] + (1 + 5β)mQ(2ψ10 − ψ11 − ψ12 + 2ψ21)

}

+
m4

Q

2048π4
[5 + β(2 + 5β)][12ψ10 − 6ψ20 + 2ψ30 − 4ψ41 + ψ42 − 12ln(

s

m2
Q

)],

(43)

ωΣQ
=

(β − 1)2

24
< dd >< uu >

[

m2
Qm

2
0

2M4
+

m2
0

4M2
− 1

]

,

ωΞQ
=

(β − 1)

72
< ss >< uu >

[

m2
Qm

2
0

2M4
(13 + 11β)

+
m2

0

4M2
(25 + 23β)− (13 + 11β)

]

, (44)

λ2ΛQ
= λ2ΞQ

(s→ d). (45)
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In the expression for λ2ΞQ
also the terms proportional to the strange quark

mass are taken into account in our numerical calculations, but omitted in

the above formulas.

3 Numerical analysis

This section is devoted to the numerical analysis for the magnetic dipole

GM and electric quadrupole GE as well as the calculation of the decay rates

for the considered radiative transitions. The input parameters used in the

analysis of the sum rules are taken to be: 〈ūu〉(1 GeV ) = 〈d̄d〉(1 GeV ) =

−(0.243)3 GeV 3, ß(1GeV ) = 0.8〈ūu〉(1GeV ),m2
0(1GeV ) = (0.8±0.2)GeV 2

[24], Λ = (0.5−1) GeV and f3γ = −0.0039 GeV 2 [22]. The value of the mag-

netic susceptibility was obtained in different papers as χ(1 GeV ) = −3.15±
0.3 GeV −2 [22], χ(1 GeV ) = −(2.85 ± 0.5) GeV −2 [25] and χ(1 GeV ) =

−4.4 GeV −2[26]. From sum rules for the magnetic dipole GM and electric

quadrupole GE, it is clear that we also need to know the explicit form of the

photon DA’s [22]:

ϕγ(u) = 6uū
(

1 + ϕ2(µ)C
3
2
2 (u− ū)

)

,

ψv(u) = 3
(

3(2u− 1)2 − 1
)

+
3

64

(

15wV
γ − 5wA

γ

) (

3− 30(2u− 1)2 + 35(2u− 1)4
)

,

ψa(u) =
(

1− (2u− 1)2
) (

5(2u− 1)2 − 1
) 5

2

(

1 +
9

16
wV

γ −
3

16
wA

γ

)

,

A(αi) = 360αqαq̄α
2
g

(

1 + wA
γ

1

2
(7αg − 3)

)

,

V(αi) = 540wV
γ (αq − αq̄)αqαq̄α

2
g,

hγ(u) = −10
(

1 + 2κ+
)

C
1
2
2 (u− ū),

A(u) = 40u2ū2
(

3κ− κ+ + 1
)

+8(ζ+2 − 3ζ2) [uū(2 + 13uū)
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+ 2u3(10− 15u+ 6u2) ln(u) + 2ū3(10− 15ū+ 6ū2) ln(ū)
]

,

T1(αi) = −120(3ζ2 + ζ+2 )(αq̄ − αq)αq̄αqαg,

T2(αi) = 30α2
g(αq̄ − αq)

(

(κ− κ+) + (ζ1 − ζ+1 )(1− 2αg) + ζ2(3− 4αg)
)

,

T3(αi) = −120(3ζ2 − ζ+2 )(αq̄ − αq)αq̄αqαg,

T4(αi) = 30α2
g(αq̄ − αq)

(

(κ + κ+) + (ζ1 + ζ+1 )(1− 2αg) + ζ2(3− 4αg)
)

,

S(αi) = 30α2
g{(κ+ κ+)(1− αg) + (ζ1 + ζ+1 )(1− αg)(1− 2αg)

+ ζ2[3(αq̄ − αq)
2 − αg(1− αg)]},

S̃(αi) = −30α2
g{(κ− κ+)(1− αg) + (ζ1 − ζ+1 )(1− αg)(1− 2αg)

+ ζ2[3(αq̄ − αq)
2 − αg(1− αg)]}. (46)

The constants entering the above DA’s are obtained as [22] ϕ2(1 GeV ) = 0,

wV
γ = 3.8± 1.8, wA

γ = −2.1± 1.0, κ = 0.2, κ+ = 0, ζ1 = 0.4, ζ2 = 0.3, ζ+1 = 0

and ζ+2 = 0.

The sum rules for the electromagnetic form factors also contain three aux-

iliary parameters: the Borel mass parameter M2, the continuum threshold

s0 and the arbitrary parameter β entering the expression of the interpolating

currents of the heavy spin 1/2 baryons. The measurable physical quantities,

i.e. the magnetic dipole and electric quadrupole moments, should be indepen-

dent of them. Therefore, we look for regions for these auxiliary parameters

such that in these regions the GM and GE are practically independent of

them. The working region for M2 are found requiring that not only the

contributions of the higher states and continuum should be less than the

ground state contribution, but the highest power of 1/M2 be less than say

300/0 of the highest power of M2. These two conditions are both satisfied

in the region 15 GeV 2 ≤ M2 ≤ 30 GeV 2 and 6 GeV 2 ≤ M2 ≤ 12 GeV 2

for baryons containing b and c-quark, respectively. The working regions for

the continuum threshold s0 and the general parameter β are obtained con-
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sidering the fact that the results of the physical quantities are approximately

unchanged. We also would like to note that in Figs. 1-40, the absolute values

are plotted since it is not possible to calculate the sign of the residue from

the mass sum-rules. Hence, it is not possible to predict the signs of the GM

or GE . The relative sign of the GM and GE can only be predicted using the

QCD sum rules. The dependence of the magnetic dipole moment GM and

the electric quadropole moment GE on cosθ, where β = tanθ at two fixed

values of the continuum threshold s0 and Borel mass square M2 are depicted

in Figs. 1-20. All presented figures have two following common behavior:

a) They becomes very large near to the end points, i.e, cosθ = ±1 and they

have zero points at some finite values of cosθ. Note that similar behavior

was obtained in analysis of the radiative decays of the light decuplet to octet

baryons (see [15]). Explanation of these properties is as follows. From the

explicit forms of the interpolating currents, one can see that the correlation,

hence, λ1λ2(β)GM(E) as well as λ2(β) is a linear function of the β. In gen-

eral, zeros of these quantities do not coincide due to the fact that the OPE is

truncated, i.e., the calculations are not exact. These points and any region

between them are not suitable regions for β and hence the suitable regions

for β should be far from these regions. It should be noted that in many cases,

the Ioffe current which corresponds to cosθ ≃ −0.71, is out of the working

region of β.

We also show the dependence of the magnetic dipole moment GM and the

electric quadropole moment GE on M2 at two fixed values of the continuum

threshold s0 and three values of the arbitrary parameter β in Figs. 21-40.

From all these figures, it follows that the sum rules for GM and GE exhibit

very good stability with respect to the M2 in the working region. From

these figures, we also see that the results depend on s0 weakly. We should
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also stress that our results practically do not change considering three values

of χ which we presented at the beginning of this section. Our final results on

the absolute values of the magnetic dipole and electric quadrupole moments

of the considered radiative transitions are presented in Table 3. The quoted

errors in Table 3 are due to the uncertainties in m2
0, variation of s0, β and

M2 as well as errors in the determination of the input parameters. Here, we

would like to make the following remark. From Eq. (6), it follows that the GE

is proportional to the mass difference m1−m2 and these masses are close to

each other. Therefore, reliability of predictions for GE are questionable and

one can consider them as order of magnitude. For this reason, we consider

only the central values for GE in Table 3.

|GM | |GE|
Σ∗0

b → Σ0
bγ 1.0± 0.4 0.005

Σ∗−

b → Σ−

b γ 2.1± 0.7 0.016
Σ∗+

b → Σ+
b γ 4.2± 1.4 0.026

Σ∗+
c → Σ+

c γ 1.2± 0.2 0.014
Σ∗0

c → Σ0
cγ 0.5± 0.1 0.003

Σ∗++
c → Σ++

c γ 2.8± 0.8 0.030
Ξ∗0
b → Ξ0

bγ 8.5± 3.0 0.085
Ξ∗−

b → Ξ−

b γ 0.9± 0.3 0.011
Ξ∗+
c → Ξ+

c γ 4.0± 1.5 0.075
Ξ∗0
c → Ξ0

cγ 0.45± 0.15 0.007
Σ∗0

b → Λ0
bγ 7.3± 2.8 0.075

Σ∗+
c → Λ+

c γ 3.8± 1.0 0.060

Table 3: The results for the magnetic dipole moment |GM | and electric
quadrupole moment |GE| for the corresponding radiative decays in units of
their natural magneton.

At the end of this section, we would like to calculate the decay rate of

the considered radiative transitions in terms of the multipole moments GE
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and GM :

Γ = 3
α

32

(m2
1 −m2

2)
3

m3
1m

2
2

(

G2
M + 3G2

E

)

(47)

The results for the decay rates are given in Table 4. In comparison, we

also present the predictions of the constituent quark model in SU(2Nf ) ⊗
O(3) symmetry [12], the relativistic three-quark model [13] and heavy quark

effective theory (HQET) [14] in this Table.

Γ (present work) Γ [12] Γ [13] Γ [14]

Σ∗0
b → Σ0

bγ 0.028± 0.016 0.15 - 0.08
Σ∗−

b → Σ−

b γ 0.11± 0.06 - - 0.32
Σ∗+

b → Σ+
b γ 0.46± 0.22 - - 1.26

Σ∗+
c → Σ+

c γ 0.40± 0.16 0.22 0.14± 0.004 -
Σ∗0

c → Σ0
cγ 0.08± 0.03 - - -

Σ∗++
c → Σ++

c γ 2.65± 1.20 - - -
Ξ∗0
b → Ξ0

bγ 135± 65 - - -
Ξ∗−

b → Ξ−

b γ 1.50± 0.75 - - -
Ξ∗+
c → Ξ+

c γ 52± 25 - 54± 3 -
Ξ∗0
c → Ξ0

cγ 0.66± 0.32 - 0.68± 0.04 -
Σ∗0

b → Λ0
bγ 114± 45 251 - 344

Σ∗+
c → Λ+

c γ 130± 45 233 151± 4 -

Table 4: The results for the decay rates of the corresponding radiative tran-
sitions in KeV.

In summary, the transition magnetic dipole moment GM(q2 = 0) and

electric quadrupole moment GE(q
2 = 0) of the radiative decays of the sextet

heavy flavored spin 3
2
to the heavy spin 1

2
baryons were calculated within

the light cone QCD sum rules approach. Using the obtained results for the

electromagnetic moments GM and GE, the decay rate for these transitions

were also calculated. The comparison of our results on these decay rates with

the predictions of the other approaches is also presented.
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Figure 1: The dependence of the magnetic dipole form factor GM for Σ∗0
b →

Σ0
b on cosθ for two fixed values of the continuum threshold s0. Bare lines and

lines with the circles correspond to the M2 = 20 GeV 2 and M2 = 25 GeV 2,
respectively.

-1 -0.5 0 0.5 1
cosθ

0

5

10

15

20

25

30

|G
M

|(Σ
∗+

b--
->

Σ+ b) s
0
=6.2

2
GeV

2

s
0
=6.4

2
GeV

2

Figure 2: The same as Fig. 1, but for Σ∗+
b → Σ+

b .
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Figure 3: The same as Fig. 1, but for Σ∗+
c → Σ+

c and M2 = 6 GeV 2 and
M2 = 9 GeV 2.
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Figure 4: The same as Fig. 3, but for Σ∗++
c → Σ++

c .
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Figure 5: The same as Fig. 1, but for Σ∗0
b → Λ0

b .
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Figure 6: The same as Fig. 3, but for Σ∗+
c → Λ+

c .
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Figure 7: The same as Fig. 1, but for Ξ∗0
b → Ξ0
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Figure 8: The same as Fig. 1, but for Ξ∗−

b → Ξ−

b .
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c → Ξ0
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Figure 10: The same as Fig. 3, but for Ξ∗+
c → Ξ+
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Figure 11: The dependence of the electric dipole form factor GE for Σ∗0
b → Σ0

b

on cosθ for two fixed values of the continuum threshold s0. Bare lines and
lines with the circles correspond to the M2 = 20 GeV 2 and M2 = 25 GeV 2,
respectively.
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Figure 12: The same as Fig. 11, but for Σ∗+
b → Σ+

b .

34



-1 -0.5 0 0.5 1
cosθ

0

0.02

0.04

0.06

|G
E
|(Σ

∗+
c--

->
Σ+ c)

s
0
=2.7

2
GeV

2

s
0
=2.9

2
GeV

2

Figure 13: The same as Fig. 11, but for Σ∗+
c → Σ+

c and M2 = 6 GeV 2 and
M2 = 9 GeV 2.
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Figure 14: The same as Fig. 13, but for Σ∗++
c → Σ++

c .
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Figure 15: The same as Fig. 11, but for Σ∗0
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Figure 16: The same as Fig. 13, but for Σ∗+
c → Λ+
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Figure 17: The same as Fig. 11, but for Ξ∗0
b → Ξ0
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Figure 18: The same as Fig. 11, but for Ξ∗−

b → Ξ−
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Figure 19: The same as Fig. 13, but for Ξ∗0
c → Ξ0
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Figure 20: The same as Fig. 13, but for Ξ∗+
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Figure 21: The dependence of the magnetic dipole form factor GM for Σ∗0
b →

Σ0
b on the Borel mass parameter M2 for two fixed values of the continuum

threshold s0. Bare lines, lines with the circles and lines with the dimonds
correspond to the Ioffe currents (β = −1), β = 5 and β =∞, respectively.
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Figure 23: The same as Fig. 21, but for Σ∗+
c → Σ+

c and M2 = 6 GeV 2 and
M2 = 9 GeV 2.
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Figure 24: The same as Fig. 23, but for Σ∗++
c → Σ++
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Figure 25: The same as Fig. 21, but for Σ∗0
b → Λ0
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Figure 26: The same as Fig. 23, but for Σ∗+
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Figure 27: The same as Fig. 21, but for Ξ∗0
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Figure 29: The same as Fig. 23, but for Ξ∗0
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Figure 30: The same as Fig. 23, but for Ξ∗+
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Figure 31: The dependence of the electric dipole form factor GE for Σ∗0
b →

Σ0
b on the Borel mass parameter M2 for two fixed values of the continuum

threshold s0. Bare lines, lines with the circles and lines with the dimonds
correspond to the Ioffe currents (β = −1), β = 5 and β =∞, respectively.
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Figure 32: The same as Fig. 31, but for Σ∗+
b → Σ+
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Figure 33: The same as Fig. 31, but for Σ∗+
c → Σ+

c and M2 = 6 GeV 2 and
M2 = 9 GeV 2.
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Figure 34: The same as Fig. 33, but for Σ∗++
c → Σ++

c .
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Figure 35: The same as Fig. 31, but for Σ∗0
b → Λ0

b .

6 8 10 12
M

2
(GeV

2
)

0

0.04

0.08

0.12

0.16

|G
E
|(Σ

∗+
c--

->
Λ

+ c) s
0
=2.7

2
GeV

2

s
0
=2.9

2
GeV

2

Figure 36: The same as Fig. 33, but for Σ∗+
c → Λ+

c .
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Figure 37: The same as Fig. 31, but for Ξ∗0
b → Ξ0

b .
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Figure 38: The same as Fig. 31, but for Ξ∗−

b → Ξ−

b .
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Figure 39: The same as Fig. 33, but for Ξ∗0
c → Ξ0

c .
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Figure 40: The same as Fig. 33, but for Ξ∗+
c → Ξ+

c .
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