jrieied applied -
e sciences m\"y
Article

Harmony Search Algorithm Based Management of
Distributed Energy Resources and Storage Systems

in Microgrids
Oguzhan Ceylan '*, Mustafa Erdem Sezgin 2, Murat Gél 2, Maurizio Verga 3, Riccardo Lazzari 3,
Marcel Pendieu Kwaye 3 and Carlo Sandroni 3

1
2

Management Information Systems Department, Kadir Has University, 34083 Istanbul, Turkey

Electrical-Electronics Engineering Department, Middle East Technical University, 06800 Ankara, Turkey;

erdems@metu.edu.tr (M.E.S.); mgol@metu.edu.tr (M.G.)

3 RSE S.p.A, 20134 Milano, Italy; Maurizio.Verga@rse-web.it (M.V.); Riccardo.Lazzari@rse-web.it (R.L.);
marcel. pendieukwaye@rse-web.it (M.P.K.); Carlo.Sandroni@rse-web.it (C.S.)

*  Correspondence: oguzhan.ceylan@khas.edu.tr

check for
Received: 3 April 2020; Accepted: 2 May 2020; Published: 7 May 2020 updates

Abstract: Microgrids are composed of distributed energy resources (DERs), storage devices, electric
vehicles, flexible loads and so on. They may either operate connected to the main electricity grid
(on-grid operation) or separated from the grid (islanded operation). The outputs of the renewable
energy sources may fluctuate and thus can cause deviations in the voltage magnitudes especially at
islanded mode. This may affect the stability of the microgrids. This paper proposes an optimization
model to efficiently manage controllable devices in microgrids aiming to minimize the voltage
deviations both in on-grid and islanded operation modes. RSE Distributed Energy Resources Test
Facility (DER-TF), which is a low voltage microgrid system in Italy, is used to verify the algorithm.
The test system’s data is taken through an online software system (REDIS) and a harmony search
based optimization algorithm is applied to control the device parameters. The experimental results
show that the harmony search based optimization approach successfully finds the control parameters,
and can help the system to obtain a better voltage profile.

Keywords: optimization; harmony search algorithm; voltage control; microgrids

1. Introduction

Distribution systems are the key structures, which create a connection between transmission
system and the consumers, in power systems. Although conventional distribution systems used
to satisfy most of the needs, distribution system operators (DSOs) are encountering many new
problems due to the emergence of new technologies, such as integration of renewable energy resources,
storage devices and electrical vehicles. Some of the common issues are efficiency problems in energy
conversion, rapid changes in demand and bi-directional power flows [1]. Recently, with the integration
efforts of the renewable energy sources, traditional passive distribution networks which were created
based on “install and forget” philosophy are becoming active distribution networks. The existence
of distributed energy resources (DERs) in the distribution networks may affect the system operation.
With the inverters connected close, the power outputs may be adjusted to overcome problem such as
reverse flows, over-under voltage problems. Moreover, microgrids that can operate either connected
to distribution networks or in islanded operating modes are becoming popular recently. The history
of microgrids goes back to the end of the 19th century; the case of Pearl Street Station [2] was one of
the initial microgrid applications worldwide. They have again become popular in the 21st century.
During the Sandy super-storm, the importance and effectiveness of the microgrids were understood
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again because of the help of microgrids to distribution networks on keeping power on. According
to [1], microgrids can be defined as interconnected distribution systems which can work in either
grid connected or islanded modes. A more detailed definition is as follows. Microgrids are isolated
power systems that can be connected to the main grid and consist of several components such as
photovoltaics (PVs), wind turbines (WTs), generators, battery energy storage systems, etc.

Distribution system operators try to keep the voltage magnitudes in the allowed ranges which
are generally £5% as given in the IEEE Guide [3]. More specifically, if the voltage deviations through
the system are low, this also causes the power losses to be low as well. As it is known, in a radial
(a distribution or a microgrid) system the voltage level monotonically decreases towards the consumers.
However, with the introduction of DERSs this fact has changed, and DERs yield bi-directional power
flows on distribution systems. Thus, the impacts of DERs on distribution networks is a challenging
issue. To keep voltage magnitudes in desired ranges, conventional approach is to use tap changer
transformers and switched bank capacitors [4], however recently with the technological developments
related to power electronics, inverters are started to be used together with those in a coordinated
way [5,6]. In [7], PV hosting capacity of feeders using reactive power controls and tap changer
operations was examined.

Although DERs have various advantages, e.g., make the islanded mode of operation possible,
they may also jeopardize the system operation in terms of applicable voltage limits [8-11]. Generally
renewable sources are connected to the main grid with an inverter, most of the industrial inverters
are using maximum power point tracker (MPPT) algorithm to maximize the power production.
Hence, the output characteristics of the DERs should be controlled to prevent voltage level related
problems. Various works can be found in literature to solve this specific problem.

In [8], it is shown that inappropriate use of On/Off control procedure may result in sequential loss
of the DERs. Therefore, global and local active power curtailment methods are proposed, where the
former approach seeks for communication and coordination—the latter one does not guarantee the
optimal solution [8]. Authors in [9] try to keep the voltage level in permissible limits by controlling the
reactive power output of the DERs by considering the supplied active power. There are also some rule
based control method examples in literature [11].

It should be noted that previously given methods are applicable to small distribution systems or
microgrids with a few number of DERs. In larger microgrids the number of controllable elements may
be high and sudden changes in generation may yield unexpected voltage deviations. The relationship
between bus voltages and power flows are non-linear. Therefore, control of the voltage in microgrid
by the use of complex optimization methods would be more convenient [11]. There are some
linear programming examples in the literature [11,12]; however, those methods may fail in case of
penetrations of many DERs. Moreover, application of linearization may yield omission of power losses.

Both the centralized and decentralized voltage control methods are commonly used. Decentralized
methods are generally used to decrease the computation burden. Explanation and effectiveness
of the method is discussed in various works [13-16]. Specifically in [14], authors are proposing
a consensus based distributed voltage control to guarantee reactive power sharing in inverter based
microgrids. There are many works on centralized microgrid controllers. Centralized and decentralized
approaches were compared in [17]. The authors of [18] solved voltage control problem by modeling as
an optimization problem for multi-microgrid systems.

In power systems, more specifically in distribution systems and microgrids, obtaining optimal
operating states of the control devices and hence efficient operation needs a proper modeling of the
optimization problem. The optimization problems are generally solved by using either derivative or
non-derivative based numerical methods. The convergence speeds of the derivative based numerical
methods [19] are better compared to the non-derivative based ones, however these types of algorithms
may have convergence problems and finding derivatives of functions may not be always possible.

Heuristic methods are popular in literature thanks to low time requirements, although they
cannot guarantee the optimal solution [13]. From these, methods like genetic algorithms [20], particle
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swarm optimization [21], differential evolution [22] and harmony search [23] have gained popularity.
These type of methods generally mimic the behaviors from nature. The main working philosophy
behind these type of methods is similar to each other. They at first create initial solution candidates
and by using operators like crossover, mutation, new and better solution candidate vectors are formed.
Thus, this paper will aim to solve ef the voltage regulation problem of microgrid systems by using
harmony search method.

There are e many studies conducted in recent years aiming to solve different problems related
to microgrids using heuristic methods. One work utilizes multi objective genetic algorithm to find
the optimum reactive power flow on the system [15]. In [16], the use of particle swarm optimization
is explained to set the coefficients of controller. The authors of [24] proposed a hybridized harmony
search algorithm and differential evolution algorithm in order to solve day-ahead scheduling problem
of a microgrid. A multi-objective optimization model to minimize the cost and losses was proposed
in [25], and solved by chaotic binary particle swarm optimization algorithm. Another paper [26]
models the islanded operating mode of microgrids and optimizes the costs by a newly developed
learning based chaotic differential evolution algorithm.

This paper models the voltage deviation problem in microgrids utilizing harmony search
algorithm. For this aim it needs to simulate the power flows on the microgrids both in isolated
and grid connected operation modes. Hence, a backward/forward sweep based ladder iterative
power flow algorithm is implemented and the numerical results are verified to those of the actual ones.
The voltages of the node points in the tested microgrid are adjusted by controlling several outputs of
the energy storage systems (lithium-ion, lead-acid, high temperature Sodium-Nickel chloride batteries),
DERs (PV fields, Combined Heat and Power (CHP) Systems) and loads. Several different number of
control devices were optimally adjusted both using islanded operation modes and grid connected
operation modes of the RSE Distributed Energy Resources Test Facility (DER-TF) microgrid test system.

The rest of the paper is organized as follows. The next section details the simulation model, by
giving brief information about the optimization model and the ladder iterative power flow technique.
The next section details the implementation of the harmony search based optimization algorithm.
Before the conclusion, several different test results are provided.

2. Model and Simulation Structure

This section details the simulation model and the interface with the experimental counterpart.
The first subsection explains the co-simulation model. The next subsection explains the implementation
of harmony search algorithm to solve the optimization. The last subsection is devoted to briefly explain
the ladder iterative method which is used to simulate the power flows in the microgrid.

2.1. Simulation Model

The simulation model consists of the main system and the optimization tool. By using the
monitoring and the control system of the microgrid, the system parameters can be retrieved
and new values of those parameters may be sent back to the original system. The research
infrastructure’s SCADA system monitors all analog data and converts them into digital signals by the
measurement equipment. All the data managed by the SCADA (input data and set points) are stored
in a REDIS database and can be accessed (as input or output) by Matlab applications using dedicated
REDIS interface.

The experiment(s) and the simulation(s) are performed by using a coordinated approach as
given in Figure 1. From the figure, it is obvious that after an experiment is performed, several
system parameters such as power flows, voltage magnitudes, phase angles can be transferred as
parameters to the optimization tool. Harmony search based optimization tool then finds the optimal
parameters to minimize the voltage deviations in the system and those parameters are then passed to
the experimented system and the new parameter values are set.
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Figure 1. Co-simulation structure.

2.2. Optimization Model

The study aims to minimize the negative impacts of the DERs in the system. This may be handled
by minimizing the voltage deviations in the system. The optimization model aims to minimize the
voltage deviation of all nodes with respect to a reference voltage node. We use the reference voltage as
the voltage of the Point of Common Coupling (PCC) node:

Nbus
minimize 2 (Vi = Vi f)2
Pc. Devices QC. Device i=1
subject to Power flow constraints,
Pe. Device; < Pc. Device;; a7 (1)

PC. Device; > PC. Device;;in 7
QC. Device; < QC. Devicejyx 7
QC. Device; > QC- Devicejyin

Note that Pc pevice» and Qc. pevice represent the active and reactive power outputs of the
corresponding control device in the microgrid. The control devices used in this specific study are the
active and reactive power outputs of the lithium-ion battery, Lead battery, NaNiCl Battery, Combined
Heat and Power Generator (CHP) and controllable load.

The quantities, Pc. Device;,,.,» PC. Devicejy s QC. Devicejars QC. Device;,;,» ShOW the maximum active
power output, minimum active power output, maximum reactive power output and minimum reactive
power output of the controllable device respectively.

2.3. Ladder Iterative Technique

In this study a ladder iterative power flow approach is used to simulate the power flows both in
grid connected and islanded mode operation cases. The technique consists of two main steps which
are forward and backward sweeps. The method is briefly explained as follows.

The algorithm starts to work from the end nodes of the system and does the calculations based on
Kirchoff Current and Voltage Laws up to the starting nodes. Then this computation order is reversed
and computations are performed. The steps of the forward sweep are given as follows:

* The voltage magnitudes at the end nodes are assumed to be same as the first node (see nodes k
and [ in Figure 2).

e Then the load currents at the end node(s) are calculated by using I = (%)*

*  The current flows on the lines are calculated (Ij, Ij;). Normally, these values are equal to the
negative values of the currents on end nodes. However, for the junction nodes (see node j
in Figure 2) this will be different: i.e., [;; will be the arithmetic sum of I;;, I;; and the node current
I; using Kirchoff Current Law.

* By using Kirchoff’s Voltage Law, the voltage on the next nodes are calculated (node ).
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*  This computation procedure continues until the initial node. Then the actual voltage magnitude of
the initial node is compared to that of the calculated one. If this value is smaller than a predefined

tolerance, the algorithm stops otherwise the algorithm continues.
e  Perform the backward sweep calculations to compute the voltage magnitudes on the end nodes.

k

Figure 2. Sample 4 node system.
3. Implementation of the Harmony Search Based Optimization Algorithm

We use a recently developed meta-heuristic method based on the improvisation process of the
jazz musicians: harmony search algorithm. We integrated the developed harmony search based
optimization module into the experiment model.

The implementation of the harmony search optimization algorithm is given as follows.

1. The first step includes selection of the parameters of the harmony search algorithm: harmony
memory size (HMS), harmony memory consideration rate (HMCR), pitch adjusting rate (PAR).
Note that, HMS represents the solution candidates in each iteration. HMCR and PAR are equivalent

to crossover rate and mutation rate in genetic algorithms.
2. Randomly create initial solution candidates in the allowed ranges of the variables (active and

reactive power limits). A sample HM structure is shown as given in Equation (2). Note that the
HMS is m, and the number of variables to be optimized is n for this specific example.

1 1 1 1 1 1
P C. Deviceq QC. Deviceq P C. Devicey QC. Device, P C. Devicey, P C. Devicey,
P2 QZ PZ QZ . PZ PZ
C. Devicey C. Device; C. Device) C. Devicep C. Device;, C. Device;,
HM = . : . : : . . 2
1 Qm m Qm . m pm
C. Deviceq C. Devicep C. Devicep C. Devicep C. Devicey, C. Device;,

3. Input each row of this matrix to ladder iterative technique based power flow module. Use the

voltage magnitude outputs to calculate the objective function values one by one. Save those values.
4.  Perform improvisation and create a new solution candidate by applying the following procedure

for all variables.

¢ Compare HMCR with a randomly generated number in [0,1] interval.

—  If this number is smaller than HMCR, construct a new member of the solution candidate
vector by randomly picking an element from the candidate solution matrix. For example,
for the first variable, one can randomly select the 5/ solution candidate however for the
next variable another solution candidate, say the 7" solution candidate may be selected.
Moreover, a mutation like operation may be performed. For this aim, another random
number in between 0 and 1 is created and compared to the value of PAR. If it is bigger
than PAR nothing needs to be done, for the opposite case then the value of the variable

is perturbed either in positive or negative direction randomly.
—  If this number is not smaller than HMCR, then a random number in the range of the

corresponding variable is created. Note that all the variables considered for this specific
problem are either the active or reactive power outputs of DERs. These limits are defined
according to the condition of the test system.
5. Find the numerical value of the objective function of the new solution candidate vector and
compare it to the worst one in HM. If it is bigger nothing needs to be done otherwise replace the
row related to the worst one with the new solution candidate vector.
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6. If a predefined maximum number of iterations are run, or other predefined stopping criteria are
reached stop, otherwise continue from step 3.

4. Tests and Numerical Results

The tests were performed implementing the harmony search based optimization algorithm on the
low voltage Distributed Energy Resources Test Facility of RSE SpA [27].

The test system is a three phase low voltage (400 V) microgrid interconnected to the MV grid
by means of an 800 kVA dedicated transformer (23 kV /400 V) and has an overall capacity of 300 kW
(active power) and 300 kVar (reactive power). Different types of energy storage systems (lithium-ion,
lead-acid and high temperature Sodium-Nickel chloride batteries), loads and distributed energy
resources (PV fields and CHPs) are connected.

The control acts on the active and reactive powers of the controllable devices, listed in Table 1,
in order to minimize the difference between the node’s voltage and the PCC’s voltage. To execute this
control, the phase A power and the line-to-line voltage in each node were measured. During the test,
the system was operating in balanced conditions, but actual control can be performed for unbalanced
operating conditions, provided that, the battery systems can supply unbalanced power. The resolution
of the simulation results provided in the following subsections are in seconds.

In grid connected tests, the PCC voltage is measured at the bus bar that the feeders are connected.
The total reactance of the MV/LV transformer (leakage reactance) and the cable connecting the
transformer the main bus, which is approximately the short circuit reactance, is approximately
0.02 ohms. The parameters of the components in the test system can be passed and the outputs
may be monitored. Note that, unless otherwise stated, the limit values of the used control devices
in the optimization process are as follows. Other devices are not used for controlling purposes,
more details on the test system can be found in [27].

Table 1. Upper and lower limits of the control devices.

PLithium QLithium Pead QLead Pnanict
—30kW,30 kW  —10 kVar, 10kVar —5kW, 15 kW —3 kVar, 3kVar —10 kW, 10 kW

ONaNicl Penp Qcnp Proad QLoad
—5 kVar, 5 kVar 25 kW, 50 kW —5 kVar, 5 kVar 0 kW, 90 kW 0 kVar,60 kVar

We have conducted two different sets of tests: grid connected ones and the islanded operating
mode tests.

4.1. Grid Connected Tests

The first set of tests aim to simulate either cases with low voltage magnitudes, or with high
voltages and aims to mitigate the negative impacts. Single line diagram of the grid connected test case
drawn is given in Figure 3. The line parameters are provided in Appendix A.

In the first test, the initial status are chosen in order to analyze the behavior of the developed
control to manage the undervoltage condition in the microgrid. In particular the initial values for the
controllable components are given in Table 2.

Table 2. Initial values set for Test 1.

Load PVjgaq Lithium Lead NaNiCl CHP
P&wW) P&W) P((kW) Q(kvar) P((kW) Q(kvar) P((kW) Q(kVar) P (kVar) PF
75 0 20 -2 0 0 0 0 25 1
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Figure 3. Single line diagram of the grid connected test case.

Under these initial conditions, voltage magnitudes of the PCC’s node (reference node) and of the
other components of the microgrid are shown in the upper part of the Figure 4. One may easily observe
that the voltage magnitudes are lower compared with the PCC’s voltage and need to be increased.
For this aim, lithium-ion battery inputs (both active and reactive powers) were controlled and as
shown in the figure around the 45th second. The control allows the detection of near optimal values
for the active and reactive power outputs that realize a better voltage profile. Note that in the initial
condition lithium-ion battery was absorbing active power and supporting a small amount of reactive
power, after the control operation is performed it is obvious that a better voltage profile is obtained.
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Figure 4. Voltage magnitude in test system over time and active and reactive power outputs in

undervoltage condition and with the control of only a lithium-ion battery.
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Considering the same conditions, a further test was performed taking into account the control of
all the controllable resources. In Figure 5 the related results are shown. It is worth noting that resorting

to all the controllable resources it is possible to reduce again the gap between the PCC’s voltage and
the other node’s voltage in the microgrid.

420 T T T T T T T T T
E ‘ PCC Lithium load lead NaNiCl CHP PV
= 400 - -
b= p -
a I~ y - —_— —— _—
S 380 — - = _
> - )

360 | | | | | | | | |

0 10 20 30 40 50 60 70 80 90 100
Time [s]

100 T — ;
g | PCC Lithium load lead NaNiCl CHP PV loadPV
g 50 - \ -
g o L T
o OF
=
k3]
< 5 | | | | | | | | |

0 10 20 30 40 50 60 70 80 90 100
Time [s]

T T T T T T T T
20

g

=, y

@

g 0 —_j'/=

o

© \

g 20 |- | PCC Lithium load lead NaNiCl CHP PV H

@ 1 1 | I I I [ I I

& o 10 20 30 40 50 60 70 80 90 100
Time [s]

Figure 5. Voltage magnitudes in test system over time and active and reactive power outputs in
undervoltage condition and with the control of all the resources.

The second test was performed to observe the behavior during an overvoltage. For this aim
the initial load values were set to 0 and as expected the voltage magnitudes in the system increased.
The power values of Lead and NaNiCl batteries and the active loads on PV are controlled. Initial
settings for this test case are given in Table 3.

Table 3. Initial values set for Test 2.

Load PV Lithium Lead NaNiCl CHP
PkW) P&W) P&W) Q(kVar) PkW) Q(kVar) PkW) Q(kVar) P(kVar) PF
0 0 —10 -2 -5 0 10 0 25 1

Under these initial conditions, voltage magnitudes of several components are shown in Figure 6.
Opposite to the previous test case, the voltage magnitudes are high and need to be lowered. This test
case optimizes all the controllable resources in terms of active and reactive power. Around the 45th
second, the control operation is applied and may be easily seen from the figure most of the components
starts to charge themselves, and hence the voltage magnitudes in the system decrease and the gap
between the PCC’s voltage and the other node’s voltage in the microgrid is reduced.
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Figure 6. Voltage magnitudes in test system over time and active and reactive power outputs in
overvoltage condition and with the control of all the resources.

4.2. Islanded Operating Mode Tests

A second group of tests were performed to control the voltage magnitudes in islanded operating
mode. The single line diagram of the islanded operating mode test case is shown in Figure 7.

Redox
battery

5

6

7

|Load||c[-]]'||NnNiC’l| 8

14

13
11

| 10

12

| Lithium | | PV Load |

| PVl |Len|:l |

Figure 7. Single line diagram of the islanded mode test case.
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In island mode, the inverter connected to node 1, is used has a Grid-forming converter with droop
control [28]. Several different tests are performed for this case, and the results of two of them are
provided. The parameters set for the first grid disconnected test case are given in Table 4.

Table 4. Initial values set for Test 4.

Load PVjg.q Lithium Lead NaNiCl CHP
Pkw) P&W) P&W) Q(kVar) P (kW) Q(kVar) P (kW) Q(kVar) P (kVar) PF
60 0 0 0 0 0 0 0 25 1

For this case, droop control parameters were set considering a maximum voltage variation dVmax
equal to 5%, R/Z =1 and X/Z = 0. The active and reactive power outputs of the tested batteries and
the voltage magnitude of the PV bus are given in Figure 8.

420 T T T T T T T T T
E PCC Lithiurm load lead NaNiCl CHP PV
T 400 - -
-y — ™ .
3 380 _ _ ]
360 | | | | | | | | |
100 110 120 130 140 150 160 170 180 190 200
Time [s]
100 | : : : :
g PCC Lithium load lead NaNiCl CHP PV loadPV
§ 50 =
E]
B
o
@ 0
=
o
< 5 | | | | | | | | |
100 110 120 130 140 150 160 170 180 190 200
Time [s]
4 I I I I T T T
‘ ‘ PCC Lithium load lead NaNiCl CHP PV

Reactive Power [kVar]
[ae]
BRI
I

150
Time [s]

160 170 180 190 200

Figure 8. Voltage magnitudes in test system over time and active and reactive power outputs in
overvoltage condition and with the active power control of all the resources in during islanded mode.

The same test is repeated by also allowing reactive load power to be controlled. This test used
different droop control parameters: dVmax = 1%, R/Z =1/2 and X/Z = 1/2. Results are provided
in Figure 9.
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Figure 9. Voltage magnitudes in test system over time and active and reactive power outputs in
overvoltage condition and with the active and reactive power control of all the resources in during
islanded mode.

5. Conclusions

This paper proposes a method to solve under- or over-voltage problems that may be faced
during the operation of microgrids. Both grid connected and islanded operation modes are considered.
A harmony search based optimization model is developed. The optimization model uses a ladder
iterative based power flow method. Overall the model retrieves the system power flow results and
obtains the required system parameters and passes that information to optimization for an instant
and sends those to the optimization model. The optimization model determines the near optimal
parameters and those new parameters are set in the microgrid. It is observed that the over/under
voltage problems can be mitigated in short amount of time (at most in seconds). The response times of
the devices are generally fast, however in the opposite case the differences between them may cause
problems. In the future, more comprehensive studies that automatizes the optimization software to
efficiently set the near optimal points can be developed.
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Appendix A. Line Parameters for grid Connected and Island Operating Mode Configurations

Node points and the reactances between those are provided in the following tables
(Tables A1 and A2) for both grid connected operation mode configuration and islanded operating

mode configuration.

Table Al. Reactances of the system: Grid connected operation mode.

Nodel Node2 R(Q) jX ()
1 2 0.00702  0.00675
2 6 0 0.00001
6 11 0 0.00001
11 10 0.05157  0.02025
10 9 0.01910  0.00750
9 3 0 0.00001
3 12 0 0.00000
12 19 0.18112  0.02925
19 26 0 0.00001
19 27 0 0.00001
19 28 0.00907 0.00813
10 5 0 0.00001
5 14 0 0.00001
14 18 0 0.00001
14 22 0.00955 0.00375
12 20 0.00819  0.00735
20 29 0.01814 0.01626
20 30 0.01814 0.01626
10 7 0 0.00001
7 16 0 0.00001
16 24 0.01021  0.00481
10 8 0 0.00001
8 17 0 0.00001
17 25 0.01177  0.00555
11 4 0 0.00001
4 13 0 0.00001
13 21 0.01242  0.00487
6 15 0 0.00001
15 23 0.00785  0.00370

Table A2. Reactances of the system: Islanded operation mode.

Nodel Node2 R(Q) jX(Q)
1 2 0.01242  0.00487
2 3 0.00785 0.00370
2 4 0.05157  0.02025
4 5 0.01625 0.00455
4 6 0.00955 0.00375
4 7 0.01021  0.00481
4 8 0.01910  0.00750
8 9 0.18112  0.02925
9 10 0 0.00001
9 11 0 0.00001
9 12 0.00907  0.00813
8 13 0.00819  0.00735
13 14 0.01814 0.01626
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