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Abstract This paper proposes a novel approach to discover options in the form of stochas-
tic conditionally terminating sequences; it shows how such sequences can be integrated into
the reinforcement learning framework to improve the learning performance. The method
utilizes stored histories of possible optimal policies and constructs a specialized tree struc-
ture during the learning process. The constructed tree facilitates the process of identifying
frequently used action sequences together with states that are visited during the execution of
such sequences. The tree is constantly updated and used to implicitly run corresponding op-
tions. The effectiveness of the method is demonstrated empirically by conducting extensive
experiments on various domains with different properties.

Keywords Reinforcement learning · Options · Conditionally terminating sequences ·
Temporal abstractions · Semi-Markov decision processes

1 Introduction

Reinforcement learning (RL) is the problem faced by an agent that must learn behavior
through trial-and-error interactions with a dynamic environment; the agent receives percep-
tions from the environment, takes actions based on its perceptions, and receives (immediate)
rewards in return (Littman et al. 1996; Sutton and Barto 1998). In most realistic and com-
plex domains, the task that the agent is trying to solve is composed of various sub-tasks
and has a hierarchical structure formed by the relations among them (Barto and Mahadevan
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2003). Each of these sub-tasks repeats many times at different regions of the state space.
Although, all instances of the same sub-task, or similar sub-tasks, have almost identical so-
lutions (sub-behaviors), without any (self-) guidance, an agent has to learn these solutions
independently of each other, by going through similar learning stages again and again. This
situation affects the learning process in a negative way, making it difficult to converge to
optimal behavior in a reasonable time.

We argue that the main reason for the problem is the lack of abstractions that would allow
to share solutions between similar sub-tasks. Temporally abstract actions, or options, are
macro actions that generalize primitive actions and last for more than one time step (Parr and
Russell 1998; Precup et al. 1998; Hauskrecht et al. 1998; Sutton et al. 1999; Dietterich 2000;
McGovern and Sutton 1998; Barto and Mahadevan 2003). In most applications, they are part
of the problem specification; they are provided by the system developer prior to learning
process. However, this necessitates extensive domain knowledge and defining them becomes
a more difficult task as the complexity of the problem increases. An alternative and probably
more convenient way is to construct macro actions automatically, without requiring any
prior explicit definitions or user intervention, based on the acquired domain information as
the learning process progresses—a problem known as option discovery.

Motivated by the shortcomings of the existing approaches for option discovery, as high-
lighted in Sect. 2, this paper proposes a method which efficiently discovers useful options in
the form of a single meta-abstraction solely based on the experience acquired by the agent
during the learning process. We first extend the conditionally terminating sequences (CTS)
of McGovern (1998, 2002) in order to make a better use of the hierarchical decomposition
inherent in the reinforcement learning problem and to add the ability to follow different
courses of actions during execution. This extension essentially encapsulates the behavior of
a given set of conditionally terminating sequences; it is realized using a particular computa-
tional structure, a sequence tree. We formalize the notion of a sequence tree through a novel
abstraction in the form of stochastic conditionally terminating sequences. We investigate the
case where the conditionally terminating sequences are not known in advance but need to be
generated during the learning process. From the history of observed events, trajectories of
possible optimal policies are generated and stored in a modified version of a sequence tree.
This tree contains additional eligibility and reward attributes which enable the identification
and compact representation of frequently used action sequences together with states that
are visited during their execution. Throughout the learning process, this tree is constantly
updated and used to implicitly run represented abstractions. The proposed method can be
integrated into other reinforcement learning algorithms as a meta-heuristic. We demonstrate
the effectiveness of the approach by reporting test results on three domains, namely six-room
maze, Dietterich’s Taxi problems and keepaway sub-task of robotic soccer. The results show
that the proposed method attains substantial level of improvement when used in conjunction
with widely used reinforcement learning algorithms. In addition, we compare our work with
acQuire-macros, the option framework of McGovern (1998, 2002).

The rest of the paper is organized as follows. Section 2 presents an overview of the related
work. Section 3 presents the standard reinforcement learning framework of discrete time fi-
nite Markov decision processes. Section 4 describes the notion of options. Section 5 covers
conditionally terminating sequences, extends them into sequence trees that have higher rep-
resentational power, and introduces a novel method to discover useful abstractions based on
sequence trees. Experimental results are reported in Sect. 6. Section 7 presents our conclu-
sions.
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2 Related work

Most of the research on option discovery relies on two main approaches. In the subgoal-
based approach, possible sub-goals of the problem are identified first and then sub-policies
solving them are found; these sub-policies are converted into abstractions and added to the
action set of the agent. The works of Digney (1998), and Stolle and Precup (2002) use a
statistical approach and define sub-goals as states that are visited frequently or have a high
reward gradient. McGovern and Barto (2001) select as sub-goals the most diversely dense
regions of the state space, i.e., the set of states that are visited frequently on successful
experiences, where the notion of success is problem dependent.

Assuming that the state space is uniformly connected, i.e. all states have approximately
the same number of states with transition probability greater than 0, Goel and Huber (2003)
and Asadi and Huber (2005) consider states that lie in a substantially larger number of
paths compared to their predecessors as potential sub-goals and determine them using Monte
Carlo sampling. In their connection-based approach, Chen et al. (2007) propose a localized
version of this idea in which only the states whose all neighbors possess this property are
eligible for being sub-goals. The main target of HEXQ algorithm by Hengst (2002) is to
automatically construct a task hierarchy based on the change in the values of state variables
and the premise that variables which change more frequently retain their transition prop-
erties in the context of variables that change less frequently. Starting from the variable that
changes most frequently, a level of hierarchy is generated for each variable, and at each level
the states that are represented by the values of the corresponding variable are partitioned into
regions; the regions are identified by state-action pairs (called exits) that cause unpredictable
transitions; separate policies that leave each region through its exists form the temporal ab-
stractions. In the factored reinforcement learning setting, TexDYNA algorithm of Kozlova
et al. (2009) simultaneously decomposes a factored MDP into a set of options and improves
incrementally the local policy of each option by using a particular decision tree based in-
stance of the model-based reinforcement learning framework SDYNA (Degris et al. 2006).
In their approach, the options are determined by exits as in HEXQ, but the variable whose
values determine the context itself are explicit in the exit definition; furthermore, to ensure
their relevance exits are updated every time the model of transitions change.

Jonsson and Barto (2001) adapt McCallum’s U-Tree algorithm to automatically build
option-specific representation of the state feature space. Other researchers, e.g., Menache et
al. (2002), follow a graph theoretical approach and their Q-cut algorithm uses a maximum-
flow/minimum-cut algorithm to partition the graph derived from the history of state transi-
tions, and the sub-goals are defined as the bottleneck states that connect the strongly con-
nected components of this graph. Kazemitabar and Beigy (2009) also focus on strongly con-
nected components of the state transition graph, but based on the observation that the con-
structed graph is sparse in most reinforcement learning problems, they employ depth-first
search algorithm with adjacency list representation to find the bottleneck states in linear-
time. Simsek and Barto (2004, 2005) use a similar definition of sub-goals, but they propose
two methods for searching them locally. In the first method, the sub-goal discovery problem
is formulated as a classification problem in which the classification criteria is the relative
novelty of states (Simsek and Barto 2004); the novelty of a state is defined as the frequency
of visits since a designated start time, and its relative novelty is the ratio of the novelty of
states that followed that state in a transition sequence to the novelty of the states that pre-
ceded it. Sub-goal states usually have higher relative novelty values which can be used to
differentiate them. In their second method, they formulate the problem as the partitioning of
local state transition graphs that reflect only the most recent experiences of the agent (Sim-
sek et al. 2005). In another graph based method due to Mannor et al. (2004), the state space is
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partitioned into different regions using a clustering algorithm (based on the graph topology
or state values), and the policies that move the agent between different regions in the state
space are transformed into macro actions. Once the sub-goals are identified, the methods
mentioned above generate abstractions corresponding to the discovered sub-goals by using
auxiliary reinforcement learning processes such as action replay (Lin 1992) executed on the
corresponding restricted sub-problems with artificial rewards. Although these methods are
effective in general, when the problem to be solved contains sub-tasks with similar policies
but different sub-goals, they consider these sub-tasks independently of each other leading to
multiple abstractions in which the resulting behaviors of the agent are quite similar.

In relatively less explored second approach, temporal abstractions are generated directly,
that is without identifying sub-goals, by analyzing the common parts of multiple policies.
An example of this approach is proposed by McGovern (1998, 2002). The acQuire-macros
algorithm begins with detecting action sequences that occur frequently on successful trajec-
tories, eliminates sequences leading to similar results by applying a static filter, and finally
creates options for the remaining ones. One drawback of this method is that common action
sequences are identified at regular intervals, which is a costly operation and requires storing
all state and action histories since the beginning of the learning process. Also, since every
prefix of an action sequence has at least the same support as that action sequence (i.e., oc-
curs at least as many times as the action sequence itself), the number of possible options
increases rapidly unless limited in a problem specific way (in this case, realized through the
use of a static filter). Recently, Zang et al. (2009) proposed an algorithm called Oplearn to
discover options from example trajectories that also make use of frequently occurring action
sequences. However, instead of directly building options on them, for each frequent action
sequence they first determine its context (i.e. the set of state variables that are needed for
abstraction), and then they identify possible sub-problem goals by extending the instances
of the sequence in sample trajectories until a change in the context is observed, that is, one
or more extra state variables are also needed. The sub-problems are scored by estimating
the computational gain that they would introduce for solving the base problem; the SMDP
corresponding to the sub-problem with the highest score is solved by value iteration and
the resulting policy is used to define a new option. This procedure is repeated recursively
to build a hierarchical decomposition until no other useful sub-problems can be found. Al-
though action sequences are used to identify the sub-problems via sub-goals, the context of
each sub-problem goal depends on the change in the values of the state variables, and overall
Oplearn falls in the category of subgoal-based approaches.

3 Background

In this section, we introduce the background necessary to understand the material presented
in this paper. We start by defining Markov decision processes and the reinforcement learning
problem. The experienced reader can skip the introductory material and move directly to
Sect. 5.

A Markov decision process, denoted MDP, is a tuple 〈S,A,T ,R〉, where S is a finite set
of states, A is a finite set of actions, T : S × A × S → [0,1] is a state transition function
such that ∀s ∈ S,∀a ∈ A,

∑
s′∈S T (s, a, s ′) = 1, and R : S × A → � is a reward function.

T (s, a, s ′) denotes the probability of making a transition from state s to state s ′ by tak-
ing action a. R(s, a) is the immediate expected reward received by the agent when action
a is executed in state s. A (stationary) policy, π : S × A → [0,1], is a mapping that de-
fines the probability of selecting an action from a particular state. If ∀s ∈ S, π(s, as) = 1
and ∀a ∈ A, a 	= as , π(s, a) = 0 then π is called a deterministic policy. The value of a
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state s under policy π , V π(s), is the expected infinite discounted sum of rewards that the
agent will gain if it starts in state s and follows π (Littman et al. 1996). It is computed as
V π(s) = ∑∞

t=0 γ tE(rt |π, s0 = s), where rt is the reward received at time t , and 0 ≤ γ < 1 is
the discount factor. Let Qπ(s, a) = R(s, a)+ γ

∑
s′∈S T (s, a, s ′)V π(s ′) denote the expected

infinite discounted sum of reward that the agent will gain if it selects action a at s, and then
follows π . Then, we have V π(s) = ∑

a∈A π(s, a)Qπ(s, a); V π(s) and Qπ(s, a) are called
the state value function and the state-action value function of the policy, respectively.

In a Markov decision process, the objective of an agent is to find an optimal policy, π∗,
which maximizes the state value function for all states (i.e., ∀π , ∀s ∈ S, V π∗

(s) ≥ V π(s)).
Every MDP has a deterministic stationary optimal policy; and the following Bellman equa-
tion holds (Bellman 1957) ∀s ∈ S:

V ∗(s) = max
a∈A

(

R(s, a) + γ
∑

s′∈S

T (s, a, s ′)V ∗(s ′)
)

= max
a∈A

Q∗(s, a). (1)

Here, V ∗ and Q∗ are called the optimal value functions. Using Q∗, it is possible to specify
π∗ by choosing action a at state s which maximizes Q∗(s, a). Note that, the optimal policy
is not unique because there may be multiple actions that maximize the value of Q∗ at state s.

When the reward function R and the state transition function T are known, π∗ can be
found by using dynamic programming techniques (Littman et al. 1996; Sutton and Barto
1998). When such information is not readily available Monte Carlo or temporal-difference
(TD) learning methods are used. Instead of requiring the complete knowledge of the under-
lying model, these approaches rely on experience in the form of sample state, action, and
reward sequences collected from on-line or simulated trial-and-error interactions with the
environment.

TD learning methods are built on bootstrapping and sampling principles. Estimate of
the optimal state(-action) value function is kept and updated in part on the basis of other
estimates. Let Q(s, a) denote the estimated value of Q∗(s, a). Various algorithms basically
differ from each other based on how they update the estimation of the optimal value function.
In the well-known Q-learning algorithm (Watkins and Dayan 1992), given the observation
tuple (s, a, r, s ′) such that s ′ is the state observed by the agent after taking action a at state
s and receiving reward r , Q(s, a) is updated according to the learning rule

Q(s, a) = (1 − α)Q(s, a) + α
[
r + γ max

a′∈A
Q(s ′, a′)

]
(2)

where α ∈ [0,1) is the learning rate. In simple TD learning algorithms, the update of the
estimation for the current state (-action pair) depends only on the immediate reward and the
value of the next state is used as an approximation for the remaining rewards. Instead of a
single step backup, n-step TD and TD(λ) algorithms, such as SARSA(λ), consider a fixed-
length sequence of rewards over a trajectory or the discounted average of all such reward
sequences in the estimation; at each step, the change in the state(-action) value of the current
state is gradually reflected backwards to the previously visited states (state-action pairs) in
the trajectory.

4 Semi-Markov decision processes and options

Markov decision processes introduced in the previous section, and consequently algorithms
based on the MDP framework are restricted in the sense that all actions are presumed to
take unit time duration. Therefore, it is not possible to model situations in which actions



288 Mach Learn (2010) 81: 283–331

take variable amount of time, i.e., they are temporally extended. Semi-Markov Decision
Processes (SMDP) extend MDPs to incorporate transitions with stochastic time duration.

A discrete-time SMDP is a tuple 〈S,A,T ,R〉, where S is a finite set of states, A is a
finite set of actions, T : S × A × S × N → [0,1] is a state transition function such that
∀a ∈ A,

∑
s′,n T (s, a, s ′, n) = 1, R : S × A → � is a reward function; T (s, a, s ′, n) de-

notes the probability of making a transition from state s to state s ′ by taking action a in
n time steps; R(s, a) is the expected reward that will be received until the next transi-
tion, i.e., when action a is executed in state s. During a transition from one state to an-
other upon executing an action, the state of the environment may change continually, but
the agent has no direct effect on the course of events until the current action terminates.
Similar to MDPs, a (stationary) policy for an SMDP is a mapping from states to actions,
and the corresponding Bellman equations hold for an optimal policy (Parr 1998). Rein-
forcement learning algorithms for MDPs can be generalized or adapted to SMDPs by tak-
ing into account the length of transitions (Bradtke and Duff 1994; Mahadevan et al. 1997;
Parr 1998). For example, the update rule of Q-learning becomes:

Q(s, a) = (1 − α)Q(s, a) + α
[
r̂ + γ t max

a′∈A
Q(s ′, a′)

]
(3)

where a is the action selected at state s, s ′ is the observed state after a terminates, r̂ is the
appropriately weighted sum of rewards received during the transition from state s to s ′, and
t is the time passed in between.

In SMDP formalism, the actions are treated as “black boxes”, indivisible flow of exe-
cution, which are used as they are irrespective of their underlying internals. Nevertheless,
this assumption makes it hard to analyze and modify temporally extended actions if their
behavior is not determined beforehand, such as when they need to adapt to changes in the
environment or be learned from simpler actions. By embedding a discrete-time SMDP over
a MDP, the options framework of Sutton et al. (1999) extends the theory of reinforcement
learning to include temporally extended actions with an explicit interpretation in terms of
the underlying MDP. While keeping the unit time transition dynamics of MDPs, actions are
generalized in the sense that they may last for a number of discrete time steps and referred
to as options.

An option is a tuple 〈I,π,β〉, where I ⊆ S is the set of states that the option can be
initiated at, called initiation set; π is the option’s local policy; and β is a probability distrib-
ution induced by the termination condition. Once an option is initiated by an agent at a state
s ∈ I , π is followed and actions are selected according to π until the option terminates (sto-
chastically) at a specific condition determined by β . It is possible to alter the behavior of an
option by changing I , β , or π , which is simply a restricted policy over actions. In a Markov
option, action selection and option termination decisions are made solely on the basis of the
current state, i.e., π : S ×A → [0,1], and β : S → [0,1]. During option execution, if the en-
vironment makes a transition to state s, then the Markov option terminates with probability
β(s) or else continues, determining the next action a with probability π(s, a). It is generally
assumed that an option can also be initiated at a state where it can continue, which means
that the set of states with termination probability less than one is a subset of I .

One drawback of Markov options is that they are limited in the sense that their local
policies and termination probability distributions depend only on the current state. For more
flexibility, Semi-Markov options extend Markov options and allow π and/or β to depend on
all prior events that occurred since the option was initiated.

Let st , at , rt+1, st+1, at+1, . . . , rτ , sτ be the sequence of states, actions and rewards ob-
served by the agent starting from time t until time τ . This sequence is called a history from
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t to τ , denoted htτ (Sutton et al. 1999). The length of htτ is τ − t . If the set of all possible
histories is denoted by �, then in a Semi-Markov option, β and π are defined over � in-
stead of S, i.e., β : � → [0,1], π : � × A → [0,1]. Let O be the set of available options,
which also includes primitive actions as special cases (options of unit duration), then a (sta-
tionary) policy over options μ : S × O → [0,1] is a mapping that defines the probability of
selecting an option from a particular state. If state s is not in the initiation set of an option
o, then μ(s, o) is zero. Options defined in this way induce an SMDP where each action of
the SMDP is an option (Sutton et al. 1999). Hence, the results given above for SMDPs also
hold for options, and optimal value functions and Bellman equations can be generalized to
options and to policies over options; SMDP learning methods can be employed by replacing
the action set by the option set.

5 Options in the form of conditionally terminating sequences

In this section, we present the theoretical foundations and building blocks of our auto-
matic option discovery method. In Sect. 5.1, we describe a special case of Semi-Markov
options in the form of conditionally terminating sequences as defined in McGovern (2002).
In Sect. 5.2, we highlight their limitations and propose the novel concept of sequence trees
(and the corresponding formalism of stochastic conditionally terminating sequences) that
extend conditionally terminating sequences and enable richer abstractions; they are capable
of representing and generalizing the behavior of a given set of conditionally terminating se-
quences. Finally, we introduce a method which utilizes a modified version of a sequences
tree to find useful abstractions during the course of learning; it is based on the idea of rein-
forcing the execution of action sequences that are experienced frequently by the agent and
yield a high return.

5.1 Conditionally terminating sequences

Definition 5.1 (Conditionally terminating sequence) A conditionally terminating sequence
(CTS) is a sequence of n ordered pairs σ = 〈C1, a1〉〈C2, a2〉 . . . 〈Cn,an〉; each ordered pair
〈Ci, ai〉 consists of a continuation set Ci ⊆ S and action ai ∈ A. At step i, ai is selected
and executed; as a result the sequence advances to the next step if current state s is in Ci ;
otherwise the sequence terminates.

C1 is the initiation set of σ ; it is denoted initσ . The sequence act-seqσ = a1a2 . . . an is
called the action sequence of σ . We use Cσ,i and aσ,i to denote the ith continuation set
and action of σ . For every conditionally terminating sequence σ , one can define a corre-
sponding Semi-Markov option oσ . Details of the construction are given in Lemma A.1 in
the Appendix.

The most important feature of conditionally terminating sequences is that they can be
used to represent frequently occurring and useful patterns of actions in a reinforcement
learning problem. For example, consider the 5 × 5 grid world shown in Fig. 1; starting from
any location, the agent’s goal is to reach with minimum number of actions (i.e., as quickly
as possible) the top rightmost cell marked with “G”. At each time step, the agent can move
in one of four directions; assume A = {n, s, e,w} is the set of actions and S = {(i, j)|0 ≤ i,

j ≤ 4} is the set of states, where (i, j) denotes the coordinates of the agent. We will represent
the rectangular region on the grid with corners at (r1, c1) and (r2, c2) by [(r1, c1), (r2, c2)].
Note that each such region is a subset of S. In order to reach the goal cell, one of the useful
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Fig. 1 Sample conditionally terminating sequences for moving diagonally in the north-east direction. (a) σen

(east followed by north), (b) σne (north followed by east), and (c) σenen (two consecutive east-north moves).
Shaded areas denote the continuation sets

action patterns that can be used by the agent is to move diagonally in the north-east direction,
i.e., e followed by n or alternatively n followed by e. These patterns can be represented by
the following conditionally terminating sequences presented in Fig. 1(a) and (b):

σen = 〈[(0,0), (3,3)], e〉〈[(0,1), (3,4)], n〉
σne = 〈[(0,0), (3,3)], n〉〈[(1,0), (4,3)], e〉

Conditionally terminating sequences allow an agent to reach the goal more directly by short-
ening the path to a solution; in our grid world example, any primitive action can reduce the
Manhattan distance to the goal position (i.e., |4 − i| + |4 − j | where (i, j) is the current po-
sition of the agent) by 1 at best, whereas when applicable σen and σne defined above reduce
the goal position by 2. As the complexity of the problem increases, the shortening through
the use of conditionally terminating sequences makes it possible to efficiently explore the
search space to a larger extent. Consequently, this leads to faster convergence and improves
the performance of learning. Although each conditionally terminating sequence has a simple
structure, a set of conditionally terminating sequences can be quite effective in exploiting
temporal abstractions.

Now, consider the longer conditionally terminating sequence σenen given in Fig. 1(c),
which represents moving diagonally in the north-east direction two times; it is defined as:

σenen = 〈[(0,0), (2,2)], e〉〈[(0,1), (2,3)], n〉
〈[(1,1), (3,3)], e〉〈[(1,2), (3,4)], n〉

Note that the action sequence of σenen starts with the action sequence of σen; for the first
two steps, the actions imposed by σen and σenen are the same. Therefore, by taking the
union of the continuation sets, it is possible to merge σen and σenen into a new conditionally
terminating sequence σen−enen which exhibits the behavior of both sequences:

σen−enen = 〈Cσen,1 ∪ Cσenen,1, e〉〈Cσen,2 ∪ Cσenen,2, n〉〈Cσenen,3, e〉〈Cσenen,4, n〉
= 〈Cσen,1, e〉〈Cσen,2, n〉〈Cσenen,3, e〉〈Cσenen,4, n〉
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Fig. 2 The union of the conditionally terminating sequences βen and σenen. Dark shaded areas show the
continuation sets of βen and light shaded areas show the continuation sets of σenen

Similar to σenen, the action sequence of σen−enen is also enen; initially it behaves as if it is
both σen and σenen, i.e., selects action e and then n at viable states. At the third step, if the
current state allows σenen to continue (i.e., in Cσenen,3), then the sequence continues execution
as if it is σenen; otherwise it terminates. We call σen−enen the union of σen and σenen.

Definition 5.2 (Union of two CTSs) Let u = 〈Cu,1, au,1〉 . . . 〈Cu,m, au,m〉 and v = 〈Cv,1, av,1〉
. . . 〈Cv,n, av,n〉 be two conditionally terminating sequences, such that the action sequence
of v starts with the action sequence of u, i.e., au,i = av,i for 1 ≤ i ≤ m and m ≤ n. The
conditionally terminating sequence u ∪ v, called the union of u and v, is defined as:

u ∪ v = 〈Cu,1 ∪ Cv,1, av,1〉〈Cv,2 ∪ Cv,2, av,2〉 . . . 〈Cu,m ∪ Cv,m, av,m〉
〈Cv,m+1, av,m+1〉 . . . 〈Cv,n, av,n〉

It is worth noting that given a sequence of observed states, there may be cases in
which both u and v would terminate within |u| = m steps, but u ∪ v continue to exe-
cute. For example, let βen = 〈[(2,2)(3,3)], e〉〈[(2,3)(3,4), n〉 be a restricted version of
diagonal movement in the north-east direction. We have βen ∪ σenen = 〈[(0,0)(2,2)] ∪
[(2,2)(3,3)], e〉〈[(0,1)(2,3)] ∪ [(2,3)(3,4), n〉〈[(1,1), (3,3)], e〉〈[(1,2), (3,4)], n〉
(Fig. 2). Initiated at state (3,2), which is in the continuation set of the first tuple of βen

but not that of σenen, βen ∪ σenen would start to behave like βen and select action e. Sup-
pose that, due to the non-determinism in the environment, this action moves the agent to
(2,2) instead of (3,3). By definition, βen can not continue to execute from (2,2) since
(2,2) /∈ Cβen,2; however (2,2) is in the continuation set of the second tuple of σenen, and
therefore βen ∪ σenen resumes execution from (2,2), in essence switching to σenen. Thus, the
union of two conditionally terminating sequences also generalizes their behavior in favor of
longer execution patterns whenever possible, resulting in a more effective abstraction.

5.2 Extending conditionally terminating sequences

One prominent feature of conditionally terminating sequences is that they have a linear flow
of execution; i.e., actions are selected sequentially as specified by the tuples provided that
the corresponding continuation conditions hold. In this respect, they cannot be used to rep-
resent situations in which different courses of actions may be followed depending on the
observed history of events. On the other hand, such situations are frequent in most real
life problems due to the hierarchical decomposition inherent in their structure; abstractions
contain common action sequences that solve various similar sub-tasks involved. When we
want to use conditionally terminating sequences in such problems, a separate conditionally
terminating sequence is required for each trajectory of a component that corresponds to a
particular sub-task in the hierarchy. As the complexity of the problem increases, this situ-
ation leads to a drastic increase in the number of conditionally terminating sequences that
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Fig. 3 The conditionally terminating sequences (a) σee (east followed by north), and (b) σenn (east followed
by two norths). Shaded areas denote the continuation sets

need to be defined, which constitutes one of the major drawbacks of conditionally terminat-
ing sequences. By extending conditionally terminating sequences to incorporate conditional
branching in action selection, it is possible to make use of available abstractions in a more
compact and effective way, and therefore overcome this shortcoming.

As a demonstrative example, consider the conditionally terminating sequence σenen de-
fined in the previous section and the two new conditionally terminating sequences presented
in Fig. 3, which are defined as:

σee = 〈[(0,0), (4,2)], e〉〈[(0,1), (4,3)], e〉
σenn = 〈[(0,0), (2,3)], e〉〈[(0,1), (2,4)], n〉〈[(1,1), (3,4)], n〉

σee has an action pattern of moving east twice, and σenn has an action pattern of moving east
followed by moving north twice. Note that, the action sequences of these three conditionally
terminating sequences have common prefixes. They all select action e at the first step, and
furthermore both σenn and σenen select action n at the second step. Suppose that the condi-
tionally terminating sequence to be initiated at state s is chosen based on a probability distri-
bution P : S × {σee, σenn, σenen} → [0,1]; let viablei = {σ ∈ {σee, σenn, σenen}|∃Iσ,i , si ∈ Iσ,i}
denote the set of conditionally terminating sequences which are compatible with the state
si observed by the agent at step i, and σi be the conditionally terminating sequence cho-
sen by P over viablei . Then, by taking the union of common parts and directing the flow
of execution based on viablei , it is possible to combine the behavior of these conditionally
terminating sequences as follows:

1. If viable1 = ∅ then terminate. Otherwise, execute action e.
2. If viable2 = ∅ then terminate. Otherwise,

(a) If σ2 = σee then execute action e.
(b) Otherwise, i.e., if σ2 ∈ {σenn, σenen}, execute action n.

i. If viable3 = ∅ then terminate. Otherwise,
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Fig. 4 Combination of the three conditionally terminating sequences σee , σenn and σenen . Shaded areas
show the set of states where the corresponding action (denoted by the label of the incoming edge, such as
going east or north) can be chosen; the framed grids indicate the decision points

A. If σ3 = σenn then execute action n.
B. Else, i.e., if σ3 = σenen, execute action e followed by the fourth tuple of

σenen = 〈Iσenen,4, n〉.
Steps 2 and 2(b)i essentially introduce conditional branching to action selection; they are

called decision points. The entire process can be encapsulated and represented in a tree form
as depicted in Fig. 4; ∅ represents the root of the tree and decision points are enclosed in a
rectangle. At each node, shaded areas on the grid denote the states for which the correspond-
ing action (label of the incoming edge) can be chosen. They are comprised of the union of
continuation sets of compatible conditionally terminating sequences. We call such a tree a
sequence tree.
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Algorithm 1 Algorithm to construct a sequence tree from a given set of conditionally ter-
minating sequences.

1: function CONSTRUCT(
) � 
 is a set of conditionally terminating sequences.
2: N = {∅} � N is the set of nodes. Initially it contains the root node.
3: E = {} � E is the set of edges.
4: for all σ ∈ 
 do � For each conditionally terminating sequence σ in 


5: current = ∅ � Start from the root node.
6: for i = 1 to |σ | do � For each tuple of σ

7: if ∃〈current,p, aσ,i〉 ∈ E then � Is the current node already connected to a
node p by an edge with label aσ,i?

8: contp = contp ∪ Iσ,i � Combine the continuation sets.
9: else

10: Create a new node p with contp = {Iσ,i}
11: N = N ∪ {p} � Add the new node p to the existing tree.
12: E = E ∪ {〈current,p, aσ,i〉} � Connect the current node to p by an edge

with label aσ,i .
13: end if
14: current = p � Node p becomes the current node.
15: end for
16: end for
17: return 〈N,E〉 � Return the constructed tree.
18: end function

Definition 5.1 (Sequence tree) A sequence tree is a tuple 〈N,E〉 where N is the set of
nodes and E is the set of edges. Each node represents a unique action sequence; the root
node, denoted by ∅, represents the empty action set. If the action sequence of node q can
be obtained by appending action a to the action sequence represented by node p, then p is
connected to q by an edge with label a; it is denoted by the tuple 〈p,q, a〉. Furthermore, q is
associated with a continuation set contq specifying the states where action a can be chosen
after the execution of action sequence p. A node p with k > 1 out-going edges is called
decision point of order k.

Generalizing the example given above, given a set of conditionally terminating sequences

 = {σ1, . . . , σn}, a corresponding sequence tree T
 that captures their behavior in a com-
pact form can be constructed using the CONSTRUCT procedure presented in Algorithm 1.
The algorithm initially creates a sequence tree comprised of the root node only. Then, the
conditionally terminating sequences in 
 are one by one added to the existing tree starting
from the root node and following edges according to their action sequence; new nodes are
created as necessary; and the continuation sets of the nodes are updated by uniting them with
the continuation sets of the conditionally terminating sequences. The number of nodes in T


is equal to the total number of unique action sequence prefixes of conditionally terminating
sequences in 
. The space requirement is dominated by continuation sets of nodes, which
is bounded by the total space required for the storing the continuation sets. A sequence tree
is the representational form of a novel type of abstraction that we named stochastic condi-
tionally terminating sequence (S-CTS) (Girgin et al. 2006a, 2006b, 2007). In Appendix, the
formal definition of stochastic conditionally terminating sequences is given and the mapping
between S-CTSs and sequence trees is discussed extensively.

Initiated at state s, a sequence tree T can be used to select actions thereafter by starting
from the root node and following edges according to the continuation sets of the outgoing
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nodes. Initially, the active node of T is the root node. At each time step, if the active node
has children which contain in their continuation sets the current state observed by the agent,
then:

1. one of them is chosen using a probability distribution defined over the set of condition-
ally terminating sequences that T is constructed from (in the simplest setting, chosen
uniformly),

2. the action specified by the label of the edge connecting the active node to the chosen
node is executed,

3. the active node is set to the chosen node.

Otherwise, the action selection procedure terminates. In a reinforcement learning problem,
when the set of conditionally terminating sequences 
 is known in advance, one can con-
struct a corresponding sequence tree and by employing the process described above utilize
the tree instead of the sequences. However, determining a set of useful conditionally termi-
nating sequences is a complex process and it requires extensive domain knowledge; such
an information may not be always available prior to learning. Discovering useful condi-
tionally terminating sequences on-the-fly and integrating them as the learning progresses is
an alternative approach which is certainly more interesting for machine learning. Learning
macro-actions in the form of conditionally terminating sequences has been previously stud-
ied by McGovern and an algorithm named acQuire-macros has been proposed (McGovern
1998). In acQuire-macros, all state-action trajectories experienced by the agent are stored
and a list of eligible sequences is kept. Periodically, such as at the end of each episode,

1. using the stored trajectories, frequent action sequences having a support over a given
threshold are identified and added to the list of eligible sequences by applying a process
that makes use of successive doubling starting from sequences of length 1 (i.e., the prim-
itive actions),

2. the eligibility values of the identified sequences are incremented; and a new option is
created for an action sequence if the eligibility value of that particular sequence is over a
given threshold and the sequence passes a problem-specific static filter, and finally

3. the eligibility values of all eligible sequences are decayed.

Although it is shown empirically to be quite effective, this approach has several drawbacks:
(i) it requires storing all state-action trajectories since the beginning of the learning; (ii) iden-
tification of frequent sequences which is repeated at each step is a costly operation since it
requires processing of all state-action trajectories that have been stored so far; and (iii) a sep-
arate option is created for each frequent sequence which necessitates problem-specific static
filtering to prevent options that are “similar” to each other. In order to overcome these short-
comings, we propose a novel approach which utilizes a single abstraction that is modified
continuously and the agent executes it as an exploration policy, but does not maintain a value
for it in the traditional sense. This single option is a combination of many action sequences
and is represented as a modified version of a sequence tree. During execution, the choice
among different branches is made using an estimate of the expected return obtained by fol-
lowing each branch. The tree is periodically updated to incorporate useful abstractions by
using the observed state-action trajectories. We start our discussion with the determination
of valuable sequences.

Definition 5.3 (π -history) A history is called a π -history of state s if it starts with state s

and it is obtained by following a policy π until the end of an episode (or between designated
conditions, such as reaching a reward peak).
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Fig. 5 Two history alternatives for state s1 where st denotes that state observed at time t and square node is
a final state. The first one is the entire sequence that follows the horizontal arrows; the second one is obtained
by unifying the second instances of state si at si+k with the first one, i.e. by following the lower arrow and
omitting all transitions in between

Let π and π∗ denote the agent’s current policy and an optimal policy, respectively, and
h = s1a1r2 . . . rt st be a π -history of length t for state s1. The total cumulative reward of h is
defined as R(h) = r2 +γ r3 +· · ·+γ t−2rt , which reflects the discounted accumulated reward
obtained by the agent upon following action choices and state transitions in h. Now, suppose
that in h a state appears at two positions i and i + k, i.e., si = si+k , k > 0; and consider the
sequence h′ = s1a1r2 . . . risiai+k+1ri+k+1 . . . rt st , where si and si+k are collapsed and the
sequence in between is removed (see Fig. 5); we can have the following observations:

Observation 5.1 h′ is also a (synthetic) π -history for state s1 and could be a better candi-
date as a π∗-history if R(h′) > R(h).

Observation 5.2 Every suffix of h of the form hi = siairi+1 . . . rt st for i = 2, . . . , t − 1 is a
π -history of si .

Combining these two observations, we can generate a set of potential π∗-history can-
didates by processing h from the end of the history to the front. Let best(s) denote the π -
history for state s with maximum total cumulative reward; initially best(st−1) = st−1at−1rt st .
For each si, i = t − 2, . . . ,1, if si is not encountered before (i.e., for all j > i, sj 	= si )
or ri + γR(best (si+1)) is higher than the total cumulative reward of the current best(si),
i.e., R(best (si)), then best(si) is replaced by siairi+1 ◦ best (si+1), where ◦ is the concate-
nation operator and appends the history represented by best(si+1) to siairi+1. Finally, for
each unique si in (s1, . . . , st ), the resulting best(si) is used as a probable π∗-history for
state si . The complete procedure is given in Algorithm 2. Here it is worth noting that the

Algorithm 2 Algorithm to generate probable π∗-histories from a given history h.
1: function GENERATE-PROBABLE-HISTORIES(h)

h is a history events of the form s1a1r2 . . . rt st
2: best[st−1] = st−1at−1rt st � best[s] holds the current π∗-history candidate for state s.
3: R[st−1] = rt � R[s] holds the total cumulative reward for state s.
4: for i = t − 2 down to 1 do � Process from the end of the history to the front
5: if R[si ] is not set or ri+1 + γR[si+1] > R[si ] then � Is si not encountered before or

does it have a lower return estimate?
6: best[si ] = siairi+1 ◦ best[si+1] � Create or update the candidate π∗-history and

total cumulative reward corresponding to the state si .
7: R[si ] = Ri+1 + γR[si+1]
8: end if
9: end for

10: return best � Return the π∗-history candidates.
11: end function
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concatenation operation can be implemented efficiently without actually merging the his-
tory segments by using pointers. As the learning process progresses, probable π∗-histories
with action sequences that are part of useful conditionally terminating sequences (i.e., sub-
policies) would appear more frequently in the recent episodes, whereas the occurrence rate
would be low for histories whose action sequences belong to conditionally terminating se-
quences with dominated sub-policies or that are less general. Therefore, by keeping track of
the generated histories and generalizing them in terms of the continuation sets, it is possi-
ble to identify valuable abstractions and utilize them to improve the learning performance.
For efficiency and scalability, this must be accomplished without storing and processing all
observed state-action trajectories. Also, note that existing abstractions are not expected to
change drastically between successive iterations. Therefore, instead of explicitly creating the
conditionally terminating sequences first and then constructing the corresponding sequence
tree at each iteration, it would be more preferable and practical to build the tree directly in
an incremental manner. For this purpose, we propose to extend the structure of sequence
trees.

Definition 5.4 (Extended sequence tree) An extended sequence tree is a tuple 〈N,E〉, where
N is the set of nodes and E is the set of edges. Each node represents a unique action sequence
that is used to reach that node; the root node, denoted by ∅, represents the empty action
set. If the action sequence of node q can be obtained by appending action a to the action
sequence represented by node p, then p is connected to q by an edge with label 〈a,ψ〉;
it is denoted by the tuple 〈p,q, 〈a,ψ〉〉. ψ is the eligibility value of the edge to indicate
how frequently the action sequence of q is executed. Furthermore, q holds a list of tuples
〈s1, ξs1 ,Rs1〉, . . . , 〈sk, ξsk ,Rsk 〉 stating that action a can be chosen at node p if current state
observed by the agent is in {s1, . . . , sk}, which is called the continuation set of node q ,
denoted contq . Rsi is the expected total cumulative reward that the agent can collect by
selecting action a at state si after having executed the sequence of actions represented by
node p. ξsi is the eligibility value of state si at node q and indicates how frequently action a

is actually selected at state si .

An extended sequence tree is basically an adaptation of a sequence tree that contains ad-
ditional eligibility and reward attributes to keep statistics about the represented abstractions;
the additional attributes allow discrimination of frequent sequences with high expected re-
ward.

A π -history, h = s1a1r2 . . . rt st , can be added to an extended sequence tree T by invok-
ing Algorithm 3. Similar to the CONSTRUCT procedure presented in Algorithm 1, ADD-
HISTORY starts from the root node of the tree and follows edges according to the action
sequence of the history. Initially, the active node of T is the root node. At step i, if the active
node has a child node n connected to the active node by an edge with label 〈ai,ψ〉 then

1. ψ is incremented to reinforce the eligibility value of the edge,
2. if node n contains a tuple 〈si, ξsi ,Rsi 〉 then ξsi is incremented to reinforce the eligibility

value of state si , and Rsi is updated with a certain rate α using Ri = ri+1 + γ ri+2 + · · · +
γ t−i−1rt ; Ri denotes the discounted cumulative reward obtained following h starting
from step i. Otherwise, a new tuple 〈si,1,Ri〉 with an eligibility value of 1 is added to
node n.

If the active node does not have such a child node, then a new node n that contains the
tuple 〈si,1,Ri〉 is created and connected to the active node by an edge with label 〈ai,1〉; the
eligibility values are initially set to 1. In both cases, n becomes the active node. When the



298 Mach Learn (2010) 81: 283–331

Algorithm 3 Algorithm for adding a π -history to an extended sequence tree.
1: procedure ADD-HISTORY(h,T )

h is a π -history of the form s1a1r2 . . . rt st , and T is an existing extended sequence tree.
2: R[t] = 0 � For each time step, calculate discounted cumulative rewards obtained by the

agent.
3: for i = t − 1 to 1 do
4: R[i] = ri + γR[i + 1]
5: end for
6: current =root node of T � The current node is initially the root node.
7: for i = 1..t − 1 do
8: if ∃ a node n such that current is connected to n by an edge with label 〈ai,ψ〉 then
9: Increment ψ . � Reinforce the eligibility value of the edge.

10: if n contains a tuple 〈si , ξsi ,Rsi 〉 then
11: Increment ξsi . � Reinforce the eligibility value of state si at node n.
12: Rsi = Rsi + α ∗ (R[i] − Rsi ) � Update the expected discounted cumulated

reward.
13: else
14: Add a new tuple 〈si ,1,R[i]〉 to node n.
15: end if
16: else
17: Create a new node n containing the tuple 〈si ,1,R[i]〉.
18: Connect current node to n by an edge with label 〈ai ,1〉.
19: end if
20: current = n � Node n becomes the current node.
21: end for
22: end procedure

π -history h is added to the extended sequence tree, only the nodes representing the prefixes
of the action sequence of h are modified and associated attributes are updated in support of
observing such sequences.

In order to identify and store useful abstractions, first a set of probable π∗-histories are
generated using Algorithm 2 based on the sequence of states, actions and rewards observed
by the agent during a specific period of time (such as throughout an episode, or between
reward peaks in case of non-episodic tasks) and they are added to the extended sequence
tree using Algorithm 3. Then, the eligibility values of edges are decremented by a factor of
0 < ψdecay < 1, and eligibility values in the tuples of each node are decremented by a factor
of 0 < ξdecay ≤ 1. For an action sequence σ that is frequently used, the edges on the path from
the root node to the node representing σ and tuples corresponding to the visited states in the
nodes over that path would have higher eligibility values since they are incremented each
time a π -history with action sequence σ is added to the tree; on the other hand, they would
decay to 0 for sequences that are used less often. This has an overall effect of supporting
valuable sequences that are encountered frequently. A very small eligibility value of an edge
(less than a given threshold ψthreshold) indicates that the action sequence represented by the
outgoing node is rarely executed by the agent; consequently, the edge and the subtree below
it can be removed from the tree to preserve compactness. Similarly, a very small eligibility
value of a tuple 〈s, ξ,R〉 in a node n (less than a given threshold ξthreshold) means that the
agent no longer observes state s frequently after executing the action sequence on the path
from the root node to node n. Such tuples can also be pruned to reduce the size of the
continuation sets of the nodes. After performing these operations, the resulting extended
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Algorithm 4 Algorithm for updating extended sequence tree T .
1: procedure UPDATE-TREE(T , e) � e is the history of events observed by the agent during a

specific period of time.
2: H = GENERATE-PROBABLE-HISTORIES(e)
3: for all h ∈ H do � Add each generated π -history to T .
4: ADD-HISTORY(h,T )
5: end for
6: UPDATE-NODE(root node of T ) � Traverse and update the tree.
7: end procedure

8: procedure UPDATE-NODE(n)
9: Let E be the set of outgoing edges of node n.

10: for all e = 〈n,n′, 〈an′ ,ψn,n′ 〉〉 ∈ E do � For each outgoing edge.
11: ψn,n′ = ψn,n′ ∗ ψdecay � Decay the eligibility value of the edge.
12: if ψn,n′ < ψthreshold then � Prune the edge if its eligibility value is below ψthreshold .
13: Remove e and the subtree rooted at n′.
14: else
15: UPDATE-NODE(n′) � Recursively update the child node n′.
16: if tuple list of n′ is empty then � Prune the edge if its continuation set is empty.
17: Remove e and the subtree rooted at n′.
18: end if
19: end if
20: end for
21: for all t = 〈si , ξsi ,Rsi 〉 in tuple list of n do � For each tuple in n.
22: ξsi = ξsi ∗ ξdecay � Decay the eligibility value of the tuple.
23: if ξsi < ξthreshold then � Prune the tuple if its eligibility value is below ξthreshold .
24: Remove t from the tuple list of n.
25: end if
26: end for
27: end procedure

sequence tree represents recent and useful conditionally terminating sequences in a compact
form. The entire process is presented in Algorithm 4.

The action selection mechanism in an extended sequence tree is similar to that of a se-
quence tree. However, a prior probability distribution to determine the conditional branching
is not available as in the case of sequence trees. Therefore, when there are multiple viable
actions, i.e., current state observed by the agent is contained in continuation sets of several
children of the active node of the tree, the edge to follow is chosen dynamically based on
the properties of the children. One important consequence of this situation is that, instead
of a single conditionally terminating sequence, the agent in fact starts with a set of them,
which initially contains all conditionally terminating sequences represented by the extended
sequence tree; it selects a subset of conditionally terminating sequences from this set that
are compatible with the observed history of events and concurrently follows them by exe-
cuting their common action. This enables the agent to broaden the regions of the state space
where the conditionally terminating sequences are applicable and results in longer execution
patterns than the one that may be attained by employing only a single conditionally termi-
nating sequence (since it covers smaller region of the state space). One possible option for
branching is to apply an ε-greedy method. With 1 − ε probability the agent selects the edge
connected to the child node containing the tuple with the highest discounted cumulative re-
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ward for the current state, otherwise one of the edges is chosen randomly. This is what we
have opted for the experiments presented in the next section.

The extended sequence tree, and the associated mechanism defined above to select which
actions to execute based on its structure, is not an option in the traditional sense, but rather
a single dynamic meta-option that incorporates a set of evolving conditionally terminating
sequences. It is possible to employ the extended sequence tree as a single option within
the options framework and accordingly calculate the value of executing such option over
the state space. However, doing so may lead to suboptimal behavior due to the “forgetting”
effect resulting from focusing on frequently occurring action sequences on successful trajec-
tories and pruning the nodes and edges having low eligibility values. This is true because the
set of conditionally terminating sequences that were inherently represented by the sequence
tree and followed on the last update of the value of a particular state might have evolved
or partially invalidated if they are no longer considered as frequently occurring (especially,
in the case of low eligibility decay rates). The empirical results which will be presented in
Sect. 6 also provide support for this argument. Instead, the extended sequence tree can be in-
tegrated into the reinforcement learning framework by transparently augmenting the action
selection mechanism of an underlying reinforcement learning algorithm with it. The idea is
to extend the action set of the agent by a meta-action that initiates the extended sequence
tree in permissible states, i.e., states are defined as the states that exist in the continuation
sets of the children of the root node of the extended sequence tree. Once this action is se-
lected, the aforementioned action selection mechanism of the extended sequence determines
the primitive actions to be executed by the agent in the successive time steps until it termi-
nates; termination occurs if the active node of the extended sequence tree does not have any
child node, or the current state is not in the continuation sets of its children. However, rather
than explicitly keeping an estimate of the expected return for this meta-action and updating
it based on the cumulative discounted reward received during the time period in which the
extended sequence tree was active and the length of this time period, the actions chosen by
the extended sequence tree and observations of the agent are directly passed to the under-
lying reinforcement learning algorithm (such as Q-learning); the underlying reinforcement
learning algorithm then updates its value function estimates. Note that, each 〈si, ξsi ,Rsi 〉 tu-
ple stored in a node of the extended sequence tree holds the estimates of the expected total
cumulative reward, Rsi , that the agent can collect by selecting the associated action (i.e., the
label of the edge connecting the node to its parent node) at state si after having executed the
sequence of actions represented by that node. These estimates are updated whenever a com-
patible π -history is added to the extended sequence tree, regardless of whether the action
selection mechanism of the extended sequence tree was active or not at that particular point
of the source trajectory in which the corresponding state and action sequence have been ob-
served (see Algorithms 3 and 4), and as such reflect more reliable information on the current
state of the extended sequence tree and the represented abstractions. At a given state s, the
value estimates in the tuples of the children of the root node of the extended sequence tree
that contain s in their continuation sets, and the value function estimation of the underlying
reinforcement learning algorithm can be used together to decide the next action to be exe-
cuted (that is, either one of the existing actions or the meta-action that initiates the extended
sequence tree). As an example, a modified version of the ε-greedy strategy is presented in
Algorithm 5; other action selection mechanisms can be derived similarly.

This leads to the learning model given in Algorithm 6 that (given an underlying reinforce-
ment learning algorithm) discovers and utilizes useful temporal abstractions by generating
an extended sequence tree and treating it as a meta-action. Let anext denote the next action to
be executed by the agent. Initially, the current node of the extended sequence tree is its root
node. At each step, the agent performs the following:
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Algorithm 5 The ε-greedy action selection mechanism modified for the extended sequence
tree.

1: procedure MODIFIED-ε-GREEDY(s, T ,Q, ε) � s is a given state, T is the extended
sequence tree and Q is the estimated state-action value function.

2: L = A � A is the set of actions.
3: for all a ∈ A do
4: value[a] = Q(s, a) � Q(s, a) is the estimated value of executing action a at state s.
5: end for
6: Let N = {n1, . . . , nk} be the set of child nodes of the root node of T which contain s in

their continuation sets.
7: if N 	= ∅ then
8: Select ni from N based on the expected return. � With sufficient exploration.
9: Let 〈ani , ·〉 be the label of the edge connecting ni to the root node.

10: Let 〈s, ·,Rs,ni 〉 be the tuple in ni corresponding to state s.
11: L = L ∪ {Mani

} � M denotes the meta-action that initiates the extended sequence
tree.

12: value[M] = Rs,ni � M is annotated with action ani (see Algorithm 6).
13: end if
14: Pick a number p ∈ [0,1) with uniform probability.
15: if p < ε then
16: Pick action from L with uniform probability.
17: else
18: Pick action from L such that valueaction = maxl∈L value[l].
19: end if
20: return action
21: end procedure

1. If the meta-action has been initiated, then one of the children of the current node of the
extended sequence tree that contains the current state in its continuation set is selected
based on the expected return and with sufficient exploration; anext is set to the action
specified by the label of the edge connecting the current node to the child node, and the
child node becomes the current node. If no such child node exists, then the meta-action
terminates and the current node is set to the root node of the extended sequence tree.

2. If the meta-action is not active (or terminated in the previous step), then either one of
the actions from the action set or the meta-action (only if it can be initiated at the cur-
rent state) is selected based on the expected return and the extended sequence tree with
sufficient exploration (e.g., using the modified version of the ε-greedy strategy). It is as-
sumed that the selection mechanism annotates the meta-action with an action aM ∈ A

that indicates the actual action to be executed (see Algorithm 5).
(a) If the meta-action is selected, then the corresponding child node of the root node of

the extended sequence tree (i.e., the one which is connected to the root node by an
edge with label 〈aM, ·〉) becomes the current node and anext is set to aM .

(b) Otherwise, anext is set to the chosen action from the action set.
3. anext is executed; the immediate reward and the next state are observed, and passed to the

underlying reinforcement learning algorithm that would process the interaction of the
agent with the environment and update its value function estimates accordingly.

Since the underlying reinforcement learning algorithm (in particular updates of the value
functions) stays intact, provided that the action selection mechanism allows sufficient ex-
ploration (i.e., each state-action pair is visited infinitely often as in the case of the modified
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Algorithm 6 Reinforcement learning with extended sequence tree.
1: T is an extended sequence tree with root node only.
2: A is the set of actions.
3: A′ = A ∪ {M} � M denotes the meta-action.
4:
5: procedure SELECT-ACTION

6: if active = true then
7: Let N = {n1, . . . , nk} be the set of child nodes of the current node which contain s in

their continuation sets.
8: if N 	= ∅ then � Execution can continue from one of the nodes in N .
9: Select ni from N based on the expected return. � With sufficient exploration.

10: Let 〈ani , ·〉 be the label of the edge connecting the current node to ni .
11: current = ni � Advance to node ni .
12: return ani � Choose action ani .
13: else
14: active = false � The meta-option has terminated.
15: current = root � Reset the current node to the root node of T .
16: end if
17: end if
18: Choose a ∈ A′ from s based on the current value function and T . � With

sufficient exploration, e.g. using MODIFIED-ε-GREEDY procedure; if the meta-action can be
initiated at state s and is chosen then it is assumed to be annotated with an action aM ∈ A

(see Algorithm 5).
19: if a = M then
20: active = true
21: Let n be the child node of the root node connected by an edge with label 〈aM, ·〉
22: current = n

23: return aM
24: else
25: return a

26: end if
27: end procedure
28:
29: repeat
30: Let current denote the active node of T .
31: current = root � The current node is initially set to the root node.
32: Let s be the current state.
33: h = s � Episode history is initially set to the current state.
34: active = false � Initially the meta-option is not active.
35: repeat � For each time step.
36: anext = SELECT-ACTION � Select the next action based on the current value function

and T .
37: Take action anext , observe r and next state s′
38: Update state-action value function using the underlying RL algorithm based on

s, r, anext, s
′.

39: Append r, anext, s
′ to h. � Update the observed history of events.

40: s = s′ � Advance to the next state.
41: until s is a terminal state
42: UPDATE-TREE(T ,h) � Update the extended sequence tree by adding the (episode)

history h.
43: until a termination condition holds
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ε-greedy strategy), the learning model described above preserves many of the theoretical
properties, such as convergence to an optimal value function or policy, of the underlying
reinforcement learning algorithm. For example, in the Q-learning algorithm, the approxi-
mated state-action value function Q(s, a) will converge to the optimal state-value function
Q∗(s, a) for discrete MDPs provided that each state-action pair is visited infinitely often
and the learning rate has the property of being square summable but not summable; these
conditions are still applicable and not invalidated under the proposed model. Although they
follow a different heuristic based approach, Bianchi et al. (2008) also employ an analogous
model that transparently guides the exploration behavior of an underlying reinforcement
learning algorithm for increasing the rate of convergence; we refer interested reader to their
work for similar theoretical results under other settings.

6 Experiments

We have applied the method described in Sect. 5.2 to different reinforcement learning al-
gorithms and compared its effect on performance on three benchmark problems: six-room
maze problem, various versions of Dietterich’s taxi problem (Dietterich 2000), and keep-
away sub-task of robotic soccer (Stone et al. 2005). The first problem has bottleneck states,
the second problem has repeated sub-tasks, and the last one has a continuous state space and
defined in the SMDP setting, i.e., actions take variable amount of time. In this section, we
first give the definitions of the studied problems. Then, we present the empirical results that
compare the performance of several standard reinforcement learning algorithms with and
without the proposed method being applied. We analyze the behavior of the method as the
complexity of the problem increases, demonstrate the effects of parameters and also vary
the amount of non-determinism in the environment to see the performance of the proposed
method under such settings. Furthermore, we discuss how the level of abstraction progresses
and how the intermediate abstractions represented by the extended sequence tree perform
during the learning process. Finally, we compare the proposed approach with the acQuire-
macros algorithm of McGovern that inspired our work (McGovern 1998, 2002) on a simple
grid world problem for which existing results are available.

In order to determine statistically whether our method or the specific parameters of the
learning algorithms affect learning performance and whether the effect of training on per-
formance depends on them or not, we applied the randomized ANOVA procedure proposed
by Piater et al. for comparing performance curves (Piater et al. 1998). This procedure tests
the algorithm and the interaction effects. The null hypotheses are the following: (a) the
mean performances of two or more algorithms (or the same algorithm with different sets of
parameters) are the same (no Algorithm effect), and (b) the relation between training and
performance does not depend on algorithm (no Interaction effect); these correspond to F

tests of a main effect and the interaction effect in a two-way analysis of variance and nor-
mally can be calculated using the conventional ANOVA. However, in a given performance
(learning) curve the correlation between performance after time steps ti and tj (for any i

and j ) is not constant—points at successive time steps have a tendency of being highly
correlated compared to more distant points—which means that the assumption of homo-
geneity of covariance is violated. In order to handle this problem, Piater et al. repeatedly
and randomly redistribute the performance curves to the algorithms; they thus preserve the
dependencies of the data points on each curve, and calculate the sample statistics in each
shuffling; the distribution of these statistics is then used to find the critical values that must
be exceeded in order to reject the null hypotheses with desired level of confidence. In the
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experiments described in this paper, we calculated the test results over 1000 shufflings. For
more detailed information about this randomized ANOVA procedure, we refer the interested
reader to the original paper (Piater et al. 1998).

6.1 Problem set

6.1.1 Six-room maze

In the six-room maze problem (Fig. 6(a)), the agent’s task is to move from a randomly
chosen position in the top leftmost room of a maze to the grey shaded goal location in the
bottom rightmost room; the six rooms of the maze are arranged in a 3 × 2 configuration and
are separated with walls. The primitive actions are movement to a neighboring cell in four
directions. Actions are non-deterministic, and each action succeeds with probability 0.9,
or moves the agent perpendicular to the desired direction with probability 0.1. The agent
receives a reward of +1 when it reaches the goal location. For all other cases, it receives a
small negative reward of −0.01. If a move action causes the agent to hit a wall the position
of the agent does not change. The state space consists of 605 possible positions of the agent.
The agent must learn to reach the goal state in shortest possible way to maximize the total
discounted reward. As it can be seen from the figure, the agent can pass from one room to
another only through the passages connecting the rooms, hence learning how to make use of
the passages is crucial to attain an optimal policy quickly. These passages can be considered
as the sub-goals of the agent and are also bottleneck states in the solutions.

6.1.2 Taxi domain

Our second domain, Dietterich’s Taxi problem, is an episodic task in which a taxi agent
moves around on a n × n grid world, containing obstacles that limit the movement (see
Fig. 6(b)). The agent tries to transport one or more passengers located at predefined locations
to either the same location or to another one. In order to accomplish this task, the taxi agent
must repeat the following sequence of actions for all passengers: (i) go to the location where
a passenger is waiting; (ii) pick up the passenger; (iii) go to the destination location; and
(iv) drop off the passenger. At each time step, the agent can either move one square in one
of four main directions, attempt to pickup a passenger, or attempt to drop-off the passenger
being carried. If a move action causes the agent to hit a wall or an obstacle, the position of
the agent does not change. The movement actions are non-deterministic and with a certain

Fig. 6 (a) Six-room maze, and (b) 5 × 5, 8 × 8 and 12 × 12 taxi problems. In the taxi problems, the four
predefined locations are labeled with letters from A to D



Mach Learn (2010) 81: 283–331 305

probability, pfail, the agent may move perpendicular (either clockwise or counter-clockwise)
in the desired direction. Unless stated otherwise, we fixed pfail to 0.2 in the experiments.
Passengers can not be co-located at the same position but their destinations can be the same.
An episode ends when all passengers are successfully transported to their destinations. There
is an immediate reward of +20 for each successful transportation, a high negative reward
of −10 if pickup or drop-off actions are executed incorrectly, and −1 for any other action.
In order to maximize the overall cumulative reward, the agent must transport the passengers
as quickly as possible, i.e., using minimum number of valid actions. Initial position of the
taxi agent, locations and destinations of the passengers are selected randomly with uniform
probability.

We represent each possible state using a tuple of the form 〈r, c, l1, d1, . . . , lk, dk〉, where
r and c denote the row and column of the taxi’s position, respectively, k is the number of
passengers, and for 1 ≤ i ≤ k, li denotes the location of the ith passenger (either (i) one of
the predefined locations, (ii) picked-up by the taxi, or (iii) transported), and di denotes the
destination of the passenger (one of the predefined locations). The size of the state space is
RC(L+2)kLk , where R ×C is the size of the grid, L is the number of predefined locations,
and k is the number of passengers.1 Compared to the six-room maze domain, the taxi domain
has a larger state space and possesses a hierarchical structure with repeated sub-tasks, such
as navigating from one location to another. These sub-tasks are difficult to describe as state
based sub-goals because state trajectories are different in each instance of a sub-task. For
example, if there is a passenger at location A, the agent must first learn to navigate there,
which has the same sub-policy irrespective of the destination of the passenger or other state
variables at the time of execution.

6.1.3 Keepaway

Keepaway is a sub-task of simulated robotic soccer. In keepaway, there are two teams of
2–5 players each. Members of the “keepers” team try to keep control of the ball inside
a restricted region of a virtual soccer field for as long as possible, whereas the opponent
team, “takers”, seeks to capture the ball or send it outside of the region (Fig. 7). Typically,
the number of takers is (one) less than the number of keepers. The problem is episodic;
at the beginning of each episode the keepers are distributed evenly near the corners of the
designated region and the ball is placed next to one of them. All takers start at the bottom
left corner of the region. Whenever the takers have the possession of the ball or the ball
leaves the region, current episode ends and another one begins. Therefore, the aim is to
prolong the duration of the episodes. The dynamics of the environment is controlled by

Fig. 7 3 × 2 keepaway sub-task
of robotic soccer

1For the single passenger case, since there is only one passenger to be carried, it reduces to RC(L + 1)L.
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the soccerserver simulator (Noda et al. 1998). The players have limited and noisy sensors
which provide information about various objects in the world (such as relative distance and
angle of nearby players and location markers on the field), and the primitive actions, most of
them with continuous parameters, are non-deterministic and may fail or succeed partially.
In a series of papers, Stone, Sutton and Kuhlmann applied reinforcement learning to learn
higher-level decision in keepaway sub-task (Stone and Sutton 2001; Stone et al. 2005). They
treat the problem as a semi-Markov decision process by using action choices consisting of
high level skills instead of primitive actions provided by the simulator, and focus on learning
policies for keepers that are within kickable distance to the ball when playing against other
keepers and takers with predefined behavior (for example hand-coded or random). Using
SMDP version of the SARSA(λ) algorithm with linear tile-coding function approximation
and replacing eligibility traces, Stone et al. showed that such players can learn policies that
significantly outperform a range of benchmark policies, improving the overall performance
of the keepers team. Furthermore, they demonstrated that their approach scales well as the
complexity of the task increases.2

6.2 Extended sequence tree method applied to standard reinforcement learning algorithms

We first applied the sequence tree method to standard reinforcement learning algorithms
on six-room maze and three different versions of the Taxi domain with three different grid
sizes, namely 5 × 5, 8 × 8 and 12 × 12. The chosen reinforcement learning algorithms were
Q-learning, SARSA(λ) and SMDP Q-learning. While Q-learning is an off-policy algorithm,
SARSA(λ) is an on-policy algorithm that uses eligibility traces; in their original form both
algorithms consider all actions as primitive actions (i.e., without macro actions). SMDP Q-
learning is an extension of Q-learning for learning in SMDPs (Bradtke and Duff 1994) using
the update rule given in (3); in SMDP Q-learning, the agent can choose from the primitive
or macro actions (either hand-coded or learned). The method is guaranteed to converge
when similar conditions as for standard Q-Learning are met (Parr 1998). Q-learning and
SARSA(λ) with extended sequence tree are the variants of the learning model described in
the previous section, in which the underlying reinforcement algorithm is either Q-learning
or SARSA(λ).

By laying a regular grid over the parameter set, we performed a set of systematic initial
experiments to determine the optimal values of parameters involved in the learning process.
Based on the outcomes of these experiments, the learning rate α is set to 0.125, and the
eligibility decay rate λ in the SARSA(λ) algorithm is taken as 0.98 for the six-room maze
problem and 0.90 for the taxi problems (see Fig. 8). The p-values for the pairwise compar-
ison of performance curves for different values of λ indicate that in regular SARSA(λ) the
difference is significant (p < 0.001 except for the case of λ = 0.60 and 0.70), whereas in
SARSA(λ) with sequence tree there is evidence that the hypothesis of no effect of λ cannot
be rejected in all cases (Appendix Table 4). The state-action values (Q-values) are initially
set to 0. For action selection, the agent followed an ε-greedy strategy with ε = 0.1. In this
strategy, at each state one of the actions having the maximum Q-value is selected with prob-
ability 1 − ε, and a random action is selected uniformly with probability ε; as ε increases
the policy behaves more like a random policy. The effect of ε on learning performance is
significant (see Fig. 9 and Appendix Table 5). The reward discount factor γ is set to 0.9. For

2For more detailed information about simulated robotic soccer one can refer to Noda et al. (1998). Full details
of the SMDP approach to keepaway along with extensive empirical results are available in Stone et al. (2005).
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Fig. 8 The effect of λ. The median of total reward per episode over 50 runs. (a) SARSA(λ), and
(b) SARSA(λ) with sequence tree in the 5 × 5 taxi problem; the shaded areas show the range of values
falling between the first and the third quartiles for λ = 0.90. The curves are smoothed for visual clarity.
Note that, although smaller values of λ initially perform better in SARSA(λ), their performances degrade
subsequently

Fig. 9 The effect of ε in ε-greedy action selection mechanism. The median of total reward per episode over
50 runs. (a) Q-learning, and (b) Q-learning with sequence tree in the 5 × 5 taxi problem; the shaded areas
show the range of values falling between the first and the third quartiles for ε = 0.10. The curves are smoothed
for visual clarity

the SMDP Q-learning algorithm (Bradtke and Duff 1994), we implemented problem spe-
cific hand-coded options. In the six-room maze problem, these options move the agent from
any cell in a room, except the bottom rightmost one which contains the goal location, to one
of two doorways that connect to neighboring rooms in minimum number of steps; in the taxi
problem, they move the agent from any position to one of predefined locations in shortest
possible way.3 Unless stated otherwise, while building the sequence tree the eligibility decay
rates and the eligibility thresholds are taken as 0.95 for ψdecay, 0.99 for ξdecay, and 0.01 for
both ψthreshold and ξthreshold . Note that, only these last three parameters are related to the pro-
posed method; all the other parameters are general learning parameters. The sequence tree is
generated during learning without any prior training session. At decision points, actions are
chosen by following an ε-greedy strategy based on the expected cumulative reward values
associated with the tuples. The complete list of parameters are presented in Table 1; we will
analyze the effect of different values of these parameters on learning performance later in

3In all versions of the taxi problem, the number of predefined locations was 4. Therefore, there were four
such options each corresponding to one of these locations.
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Table 1 The list of parameters

General Learning Parameters

Parameter Default Value Description

α 0.125 Learning rate

γ 0.9 Discount factor

λ 0.9 and 0.98 Eligibility decay rate in SARSA(λ) algorithm (see
Fig. 8)

ε 0.1 Probability of choosing a random action in ε-greedy
action selection mechanism (see Fig. 9)

Extended Sequence Tree Parameters

ψdecay 0.95 Eligibility decay rate for edges in the extended
sequence tree (see Fig. 17)

ξdecay 0.99 Eligibility decay rate for tuples in the extended
sequence tree

{ψ,ξ}threshold 0.01 Eligibility thresholds (see Fig. 20)

this section. The reported experiments are repeated 30 times for the keepaway problem and
50 times for all other cases.

Figures 10 and 11 show the progression of the total reward obtained per episode for the
5 × 5 taxi problem with one passenger and the six-room maze problems, respectively. As
apparent from the learning curves, both SARSA(λ) and SMDP Q-learning converge faster
compared to regular Q-learning. When the sequence tree method is applied to Q-learning
and SARSA(λ), the performance of both algorithms improve substantially. In SMDP Q-
learning algorithm, the agent receives higher negative rewards when options that move the
agent away from the goal are erroneously selected at the beginning of training; SMDP Q-
learning needs to explore and learn which options are optimal to execute and under what
context. The effect of this situation can be seen in the six-room maze problem, where it
causes SMDP Q-learning to converge slower compared to SARSA(λ). On the contrary, al-
gorithms that employ sequence tree start to utilize shorter sub-optimal sequences immedi-
ately in the initial stages of learning; this results in more rapid convergence with respect to
hand-coded options. The results of pairwise randomized ANOVA procedures between Q-
learning with sequence tree and other algorithms indicate that in all cases except SARSA(λ)
in the six-room maze problem and SARSA(λ) with sequence tree in the taxi problem, the
null hypothesis of no algorithm effect can be rejected (p < 0.001); we also observed the
same outcome when the first n ∈ {50,100,200,300,400,500}, data points are omitted and
the results are compared for the remaining points.4 Furthermore, the learning curve of the
SMDP Q-learning algorithm in which the extended sequence tree acts as a single online
option (top rightmost sub-figure in Fig. 10) indicates that such an approach may suffer from
the “forgetting” effects and result in sub-optimal behavior.

4Pairwise comparisons of Q-learning with sequence tree with SARSA(λ) in the six-room maze problem and
SARSA(λ) with sequence tree in the 5 × 5 taxi problem result in p > 0.244 for n = 100 and p > 0.863 for
n = 50.
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Fig. 10 The median of total reward per episode for the 5 × 5 taxi problem with one passenger over 50 runs;
the shaded areas show the range of values falling between the first and the third quartiles for the algorithm
denoted by the solid black line. The reference curves show the performance of the Q-learning algorithm
with sequence tree (ψdecay = 0.95). The top rightmost figure plots the performance of the SMDP Q-learning
algorithm when the extended sequence tree is employed as a single option that evolves

Fig. 11 The median of total reward per episode for the six-room maze problem over 50 runs. The leftmost
figure and the reference curves in other figures show the performance of the Q-learning algorithm with se-
quence tree (ψdecay = 0.95); the shaded areas show the range of values falling between the first and the third
quartiles for the algorithm denoted by the solid black line
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Fig. 12 The median of total reward per episode for (a) 8 × 8, and (b) 12 × 12 taxi problem with one
passenger over 50 runs. The leftmost figures and the reference curves in other figures show the performance
of the Q-learning algorithm with sequence tree (ψdecay = 0.95); the shaded areas show the range of values
falling between the first and the third quartiles for the algorithm denoted by the solid black line

Figure 12 shows the results for the 8 × 8 and 12 × 12 taxi problems with one passenger;
these problems have larger state spaces and contain more obstacles compared to the origi-
nal 5 × 5 taxi problem. In both cases, we observed similar learning curves as in the 5 × 5
version, and algorithms that are enhanced with the proposed method learn much faster com-
pared to their regular counterparts. In both cases, the effect of the algorithm is statistically
significant (p < 0.001 for pairwise randomized ANOVA tests in comparison to Q-learning
with sequence tree; p > 0.136 after 1000 time-steps between SARSA(λ) and Q-learning
with sequence tree in the 8 × 8 taxi problem).

In order to test how our approach performs in a challenging machine learning task, we
implemented the method described in Stone et al. (2005) for the keepaway sub-task of sim-
ulated robotic soccer using the publicly available keepaway player framework (Stone et al.
2006). The method used by Stone et al. is an SMDP version of the SARSA(λ) algorithm with
linear tile-coding function approximation and replacing eligibility traces. We integrated the
extended sequence tree to their algorithm, and conducted the experiments in a 3 keepers
vs. 2 takers setting playing within a 20 m × 20 m region. All players were given noiseless
visual sensory information. The state representation used by a learning agent (i.e. a keeper)
is a mapping of the available environment information to 13 continuous variables that are
computed based on the positions of the players and center of the playing region. In order
to approximate the state-action value function, 32 uniformly distributed tilings are overlaid
for each variable which together form a feature vector of length 416 that maps continuous
space into a finite discrete one. By using an open-addressing hashing technique, the size
of the state space is further reduced. More detailed information about the state variables
and this particular mapping can be found in Stone et al. (2005). Since the feature vector
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Fig. 13 The progression of the episode duration in the keepaway problem over 30 runs (higher episode
duration signifies better behavior); the shaded areas show the range of values falling between the first and the
third quartiles for the algorithm denoted by the solid black line. The base RL algorithm is SMDP SARSA(λ)
as described in Stone et al. (2005)

spans an extremely large space and hashing does not preserve locality, i.e., states with sim-
ilar feature vectors may get mapped to unrelated addresses, an alternative discretization
method is needed while generating the sequence tree. For this purpose, we chose 5 most
important variables out of 13 available state variables that are shown to display similar re-
sults to those obtained when all state variables are utilized (see Stone and Sutton 2001;
Stone et al. 2005). Each variable is then discretized into 12 classes and together used to
represent states while building and employing the sequence tree. The immediate reward re-
ceived by each agent after selecting a high level skill is defined as the number of primitive
time steps that have elapsed while following the high level skill. The takers use a hand-
coded policy implemented in Stone et al. (2006): A taker either tries to (a) catch the ball
if it is the closest or second closest taker to the ball or if no other taker can get to the ball
faster than it does, or (b) position itself in order to block a pass from the keeper with the
largest angle with vertex at the ball that is clear of takers. We used the default values of
learning parameters and λ in SARSA(λ) is set to 0.9. The learning curves showing the pro-
gression of episode duration with respect to training time have been plotted in Fig. 13. Since
the learning agents are trying to keep the ball away from the takers as long as possible,
higher episode duration indicates better behavior. We repeated each experiment 30 times.
The SMDP SARSA(λ) algorithm with sequence tree converges faster, achieving an episode
time of around 14 seconds in almost one third of the time required by its regular counterpart.
This data also supports the fact that the proposed sequence tree based method is success-
ful in utilizing useful abstractions and improves the learning performance in more complex
domains.

6.2.1 Scaling on the taxi domain

In the taxi problem, the number of situations in which sub-tasks can be applied increases
with the number of passengers to be transported. This also applies to other problems; a new
parameter added to the state representation leads to a larger (usually exponential) state space.
Consequently, the number of instances of sub-tasks that involve only a subset of variables
also increase. Therefore, more significant improvement in learning performance is expected
when sub-tasks can be utilized effectively. Results for the 5 × 5 taxi problem with multiple
passengers (from two up to four) are presented in Fig. 14. Note that the performance of the
algorithms that do not make use of abstractions degrade rapidly as the number of passengers
increases, and consequently common sub-tasks become more prominent. The results also
demonstrate that the proposed method is effective in identifying solutions in such cases.
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Fig. 14 The median of total reward per episode for the 5 × 5 taxi problem with (a) two, and (b) four passen-
gers over 50 runs. The left-most figures and the reference curves in other figures show the performance of the
Q-learning algorithm with sequence tree (ψdecay = 0.95); the shaded areas show the range of values falling
between the first and the third quartiles for the algorithm denoted by the solid black line

Fig. 15 The median size of the
sequence trees with respect to the
size of state space for the 5 × 5
taxi problem with one to four
passengers; the shaded areas
show the range of values falling
between the first and the third
quartiles. The number of
passengers are indicated to the
right of the corresponding curves

Based on pairwise randomized ANOVA tests, in all cases the null hypotheses of no effect of
the sequence tree on the learning performance can be rejected (p < 0.001).

Figure 15 shows the size of the sequence tree in terms of the number of nodes with
respect to the number of observed states in the state space (from the beginning up to the
current episode) for different number of passengers in the 5 × 5 taxi problem. Note that as
new passengers are added, the state space increases exponentially with respect to the number
of passengers, i.e., multiplies with the number of predefined locations, whereas the relative
space requirement decreases indicating that the proposed method scales well in terms of
space efficiency.
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6.3 Level of abstraction

Apart from the performance, other important factors that need to be considered are the struc-
ture of the sequence tree, its involvement in the learning process, and their overall impact.
The content of the sequence tree is mostly determined by the π -histories generated based on
the interactions of the agent with the environment. Due to the complex structure of the tree,
it is not feasible to directly give a snapshot of it to expose what kind of abstractions it con-
tains. Rather, we opt to take a more comprehensible and qualitative approach, and at various
stages of the learning process examined how successful the tree is in generating abstractions
belonging to similar sub-tasks.

Note that in the taxi problem the agent must first navigate to the location of the passenger
to pick him up regardless of the destination of the passenger; for regions of the state space
that differ only in the destination of the passenger, the sub-task to be solved is the same and
one expects the agent to learn similar action sequences within these regions. This means
that states which only differ in the variable corresponding to the destination of the passenger
must appear in the tuple lists of the same nodes in the extended sequence tree; during the
learning process, the ratio of the actual number of such states in the tuple list of a node
to the number all possible such states (which we can easily enumerate for this problem)
can be used as an indicator of the level of abstraction attained by the sequence tree. This
ratio, which we will call state abstraction ratio, must be close to 1 if action sequences that
involve a particular state are also applicable to other states having different destinations for
the passenger.

In order to analyze how this ratio evolves, we conducted a set of experiments on the 5×5
taxi problem with one passenger. The results of the experiments are presented in Fig. 16.
Each of the four columns denotes the case in which the passenger is at a specific predefined
location from A to D, and each row shows the abstraction level attained by the sequence tree
generated after 50, 100, 150 and 200 episodes. The intensity of shading in each cell indicates
the state abstraction ratio corresponding to the state in which the agent is positioned at that
cell (regardless of the destination of the passenger); black represents 1, white represents
0 and the intensity of intermediate values decreases linearly. One can observe that after
50 episodes all cells have non-white intensities which get darker with increasing number
of episodes and eventually turn into black, i.e., the state abstraction ratios converge to 1;
this means that the sequence tree is indeed successful in identifying abstractions that cover
multiple instances of the same or similar sub-tasks starting from early stages of the learning.

6.4 The effects of the parameters

Other than the π -histories, the structure of the sequence tree also depends on the eligibility
decay rate and threshold parameters that regulate the amount of information to be retained
in the sequence tree. We found out that from these parameters the most prominent one
that causes the most significant difference is the edge eligibility decay rate, ψdecay. The
results for various ψdecay values presented in Fig. 17 show that the size of the sequence tree
decreases considerably for both six-room maze and taxi problems as ψdecay gets smaller. This
is due to the fact that only more recent and commonly used sequences have the opportunity
to be kept in the tree and others get eliminated. Note that since such sequences are more
beneficial for the solution of the problem, unless ψdecay is chosen to be small (in this case,
less than 0.80) different ψdecay values show near optimal behavior (see Fig. 18 and pairwise
randomized ANOVA results of no ψdecay effect on performance presented in Table 2 where
each entry gives the p-value testing for difference between the two values of psi in the row
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Fig. 16 State abstraction levels for four predefined locations (A to D from left to right) in 5 × 5 taxi problem
after 50, 100, 150 and 200 (a–d) episodes. Darker colors indicate higher abstraction

and column). Hence, by selecting ψdecay parameter appropriately, it is possible to reduce
memory requirements without degrading the performance. We observe a similar effect for
the SMDP Q-learning algorithm in which the extended sequence tree acts as a single online
option (Fig. 19); however, the performance drop is more noticeable and ψdecay needs to
be larger in order to attain near optimal behavior. Here, we also would like to stress the
inherent relationship between ψdecay and ψthreshold . Although a wide range of ψthreshold values
perform similar for large ψdecay values, as ψdecay decreases large ψthreshold values lead to early
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Fig. 17 The median size of sequence trees for different ψdecay values for Q-learning with sequence tree in
(a) six-room maze, and (b) 5 × 5 taxi problem with one passenger; the shaded areas show the range of values
falling between the first and the third quartiles

Fig. 18 The median of total reward per episode for different ψdecay values for Q-learning with sequence tree
in 5 × 5 taxi problem with one passenger; the shaded areas show the range of values falling between the first
and the third quartiles

removal of nodes from the extended sequence tree and has a negative effect on the learning
performance (Fig. 20).

6.5 Limiting the length of sequences

Other than lowering the value of the eligibility decay rate ψdecay, another possible way to
reduce the size of the extended sequence tree is to limit the length of the probable π∗-
histories that are added to it. After generating probable histories using Algorithm 2, in-
stead of the entire π -history h = s1a1r2 . . . rt st , we can only process h up to lmax steps
(i.e., s1a1r2 . . . rlmax+1slmax+1) in Algorithm 3 by omitting the observations after lmax steps.
This corresponds to having conditionally terminating sequences of length at most lmax, and
therefore the maximum depth of the extended sequence tree will be bounded by lmax. Since
shorter abstractions are prefixes of longer abstractions, and the applicability of abstractions
decreases with the increase in length, it is plausible to apply pruning without drastically af-
fecting the performance of learning. The learning curves of Q-learning with sequence tree on
the 5×5 taxi problem with one passenger for different lmax values are presented in Fig. 21(a)
and the size of the corresponding sequence trees as plotted in Fig. 21(b). We observe that
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Table 2 The p-values of the sample statistic Fψdecay for the learning performance curves of Q-learning with
sequence tree for different ψdecay values in (a) six-room maze and (b) 5 × 5 taxi problem with one passenger,
and (c) SMDP Q-learning with sequence tree acting as a single online option in the 5 × 5 taxi problem

ψdecay 0.90 0.95

0.80 0.009 0.104

0.90 1 0.372

(a)

ψdecay 0.95 0.99

0.90 0.275 0.003

0.95 1 0.04

(c)

ψdecay 0.70 0.80 0.90 0.95 0.99

0.60 0.305 0.01 0.001 0.001 0.001

0.70 1 0.176 0.039 0.099 0.321

0.80 1 0.456 0.776 0.735

0.90 1 0.683 0.318

0.95 1 0.57

(b)

Fig. 19 The median of total reward per episode for different ψdecay values for SMDP Q-learning with
sequence tree acting as a single online option in 5 × 5 taxi problem with one passenger; the shaded areas
show the range of values falling between the first and the third quartiles

starting from a maximum π -history length of 7, the characteristics of the learning curves are
similar to the learning curves that are obtained without limiting the length of the π -histories,
conforming to our expectation. The results of pairwise randomized ANOVA tests indicate
that the null hypothesis of no effect of lmax on the learning performance cannot be rejected.
The SMDP Q-learning algorithm in which the extended sequence tree acts as a single on-
line option requires relatively longer history lengths, otherwise the performance deteriorates
(Table 3).

6.6 The effect of non-determinism in the environment

In order to examine how the non-determinism of the environment affects the performance,
we conducted a set of experiments by changing pfail, i.e., the probability that movement ac-
tions fail, in the taxi domain. The results are presented in Fig. 22. Except for increased fluc-
tuation in the received reward due to increased non-determinism, the proposed method pre-
serves its behavior and methods that employ sequence tree consistently learn more rapidly
compared to their regular counterparts. Based on the results of randomized ANOVA tests,
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Fig. 20 The relation between the eligibility threshold ψthreshold and decay rate ψdecay.
ψthreshold ∈ {0.95,0.90,0.80,0.60} for four different values of ψdecay (0.005,0.02,0.05, and 0.1) in
the 5 × 5 taxi problem with one passenger. The curves are smoothed for visual clarity

Fig. 21 (a) The median of total reward per episode for different maximum history lengths for Q-learning
with sequence tree in the 5 × 5 taxi problem with one passenger, and (b) corresponding median size of the
sequence trees; the shaded areas show the range of values falling between the first and the third quartiles

Table 3 The p-values for the sample statistics Flmax and Finteraction (left and right values in each cell,
respectively) for the learning performance curves of (a) Q-learning with sequence tree, and (b) SMDP Q-
learning with sequence tree acting as a single online option for different maximum sequence lengths in the
5 × 5 taxi problem with one passenger

lmax 7 10 12 15 ∞

5 0.051 0.003 0.001 0.001 0.001

7 1 0.554 0.169 0.354 0.352

10 1 0.398 0.712 0.709

12 1 0.652 0.589

15 1 0.969

lmax 7 10 12 15 ∞

5 0.001 0.001 0.001 0.001 0.001

7 1 0.001 0.001 0.001 0.001

10 1 0.151 0.013 0.1

12 1 0.253 0.319

15 1 0.873

(a) (b)
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Fig. 22 Results with different levels of non-determinism (i.e. different values of pfail—the probability that
the movement actions fail) in the 5 × 5 taxi problem with one passenger. In each figure, the sub-figures show
the performance of Q-learning (left), Q-learning with sequence tree (ψdecay = 0.95, middle), and SMDP
Q-learning with sequence tree acting as a single online option (ψdecay = 0.95, right); the shaded areas show
the range of values falling between the first and the third quartiles

the null hypothesis of no algorithm effect can be rejected (p < 0.001). The SMDP Q-
learning algorithm in which the extended sequence tree acts as a single online option is
more sensitive to the level of non-determinism in the environment.

6.7 The performance of the intermediate abstractions represented by the extended
sequence tree

The results given so far demonstrate the on-line performance of the method, i.e., while the
extended sequence tree is continuously evolving and abstractions that it represents change
dynamically. As our main goal is to solve the given problem and learn an optimal behavior,
this is a more efficient approach since it does not require an off-line pre-learning stage to
determine the options. However, this also brings a certain weakness: it is not straight-forward
to assess the quality of the evolving abstractions represented by the sequence tree in the sense
that whether the abstractions at a given instant of the learning process are really meaningful
and beneficial or not. In order to accomplish this, we employed the following procedure:
we applied our method to the standard Q-learning algorithm, and let the extended sequence
tree evolve for different number of episodes. Then, we converted each of the obtained trees
into a single pseudo option, and run a separate instance of the SMDP Q-learning algorithm
for each of them with an action set that includes the primitive actions and the corresponding
pseudo option. This allows us to isolate and observe the effect of the discovered abstractions
in a controlled manner.

The results of the experiments for the 5 × 5 taxi problem with one passenger are pre-
sented in Fig. 23. The learning curves of the SMDP Q-learning algorithm demonstrate that
even sequence trees in their early stage of training accommodate useful abstractions. The
sequence tree generated after 20 episodes is quite effective and leads to a substantial im-
provement. The performance of SMDP Q-learning increases with the number of episodes
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Fig. 23 SMDP Q-learning algorithm when the previously generated sequence tree is employed as a single
online option; the shaded areas show the range of values falling between the first and the third quartiles. Each
number in the key denotes the number of episodes used to generate the tree in the prior training phase. The
reference curves show the performance of the SMDP Q-learning algorithm with predefined options

used to generate the sequence tree and then saturates. This indicates that the sequence tree
based approach is successful in finding meaningful abstractions, improving them and pre-
serving the most useful ones.

6.8 Running time

Our focus in this work and the proposed sequence tree approach is to allow agent learn
more efficiently in terms of its interactions with the environment, that is to learn success-
ful policies with less experiences. The results presented so far aim to demonstrate this goal
under different settings and provide insight into the effects of various parameters involved.
Nonetheless, in real-world applications the running time of an algorithm is an important fac-
tor; we therefore analyzed the running time of our approach in comparison to the standard
reinforcement learning algorithms. As discussed in Sects. 6.4 and 6.5, the eligibility decay
rate (ψdecay) and the maximum history length have a direct effect on the size of the resulting
sequence tree which consequently affects the running time. Hence, in the experiments we
opted to test different values for these parameters as well. All algorithms and sample prob-
lems are implemented in C++ language and compiled using the GCC compiler suite on x86
architecture with maximum level of optimizations.

The running times of Q-learning with sequence tree and other algorithms for the 5 × 5
taxi problem with one passenger are presented in Fig. 24. For each case, we measured the
total running time of 50 consecutive runs where the duration of each run is 600 episodes;
we computed the average over 10 such trials and normalized the results by the average total
running time of the Q-learning algorithm. We can observe that although standard reinforce-
ment learning algorithms are more efficient in terms of execution time, unless ψdecay and
maximum history length are chosen to be large, the running time of the proposed approach
also stays within acceptable limits outperforming SARSA(λ) when the maximum length is
small because the number of updates on the sequence tree could be less than the number
of updates required to propagate the eligibility trace. The results for the two and three pas-
senger versions of the same problem, in which the duration of each run is taken as 2000
and 6000 episodes respectively, indicate that despite the relative increase in the running
time the behavior of the proposed approach is consistent (Fig. 25); we would like to note
that the state space increases exponentially with the number of passengers. Over all trials,
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Fig. 24 The average running times of Q-learning with sequence tree for different maximum history lengths
and ψdecay values in the 5 × 5 taxi problem with one passenger; the results show the total running time of 50
consecutive independent runs repeated 10 times and are normalized by the running time of Q-learning

Fig. 25 The average running times of Q-learning with sequence tree for different maximum history lengths
and ψdecay values in the 5 × 5 taxi problem with (a) two and (b) three passengers; the reported results (see
right hand side) show the total running time of 50 consecutive independent runs repeated 10 times. The
running times of Q-learning and SARSA(λ) are highlighted
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the variances of total running times were between 0.2% to 1.8% and are omitted in the
figures.

6.9 Comparison to acQuire-macros algorithm

Finally, we compared the performance of our method with the acQuire-macros algorithm
of McGovern (1998, 2002), which formed the starting point of the work presented in this
manuscript and which is also based on conditionally terminating sequences. In order to
compare the published results with the proposed method, the experiments are conducted on a
problem already studied by McGovern, the 20×20 empty grid world problem, i.e., one room
maze without any obstacles. In this problem, the agent is initially positioned at the lower left
corner of the grid and tries to reach the upper right corner. The action set and dynamics of the
environment are the same as in the six-room maze problem. The agent receives an immediate
reward of 1 when it reaches the goal cell, and 0 otherwise. The discount rate γ is set to 0.9.
In order to comply with the existing work, a learning rate of α = 0.05 and ε-greedy action
selection with ε = 0.05 are used. Note that, in this problem several abstractions, such as
moving diagonally as exemplified in Sect. 5.1, are quite useful to fulfill the specified task;
they help to reduce the distance to the goal state which the agent must reach in as few steps as
possible. Although instances of these abstractions are abundant in the policy space, shorter
abstractions are subsumed by longer abstractions (moving n cells away compared to n + 1)
and when treated as sub-goals to be found and solved must be learned independently leading
to the aforementioned drawbacks.

In order to determine best parameter setting, we applied acQuire-macros algorithm using
various minimum support, minimum eligibility value and minimum sequence length val-
ues. The results of the experiments show that as the minimum eligibility value gets smaller
the acQuire-macros algorithm converges to optimal policy faster irrespective of the mini-
mum support. A moderate minimum support of 0.6 performs better than a fairly high value
of 0.9 that filters out most of the sequences. Lower minimum support values lead to high
number of options, and in the extreme fails to converge to optimal behavior. Best result
is achieved with minimum sequence length of 4. More detailed analysis of the effects of
the parameters in acQuire-macros algorithm can be found in the Appendix (see Figs. 28
and 29).

Results for various learning algorithms are presented in Fig. 26. Although acQuire-
macros performs better than regular Q-learning, it falls behind SARSA(λ). This is due to the
fact that options are not created until sufficient number of instances are observed and there
is no discrimination between options based on their expected total discounted rewards. The

Fig. 26 Results for the 20 × 20 grid world problem
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sequence tree based Q-learning algorithm does not suffer from such problems and shows a
fast convergence by making efficient use of the abstractions in the problem.

7 Conclusions

In this paper, we proposed and analyzed the interesting and useful characteristics of a tree-
based learning approach that utilizes stochastic conditionally terminating sequences. We
showed how such an approach can be utilized for better representation of temporal ab-
stractions. First, we emphasized the usefulness of discovering Semi-Markov options au-
tomatically. Then, we demonstrated the importance of constructing a dynamic and com-
pact sequence-tree from histories. This helps identify and compactly represent frequently
used sub-sequences of actions together with states that are visited during their execu-
tion. As learning progresses, this tree is constantly updated and used to implicitly lo-
cate and run the appropriately represented options. Experiments conducted on three well-
known domains—with bottleneck states, repeated sub-tasks and continuous state space
with macro-actions, respectively—highlighted the applicability and effectiveness of uti-
lizing such a tree structure in the learning process. The reported test results demonstrate
the advantages of the proposed tree-based learning approach over the other learning ap-
proaches described in the literature. Our future work will examine the adaptation of the
method to larger domains using function approximation, such as neural networks, to store
the eligibility values of states in the tuples of the nodes of the sequence tree. In addition,
we want to investigate the computational cost of the proposed algorithm on theoretical
basis.

Appendix

A.1 Conditionally terminating sequences and semi-Markov options

Lemma A.1 For every conditionally terminating sequence σ , one can define a correspond-
ing Semi-Markov option oσ .

Proof Let σ = 〈I1, a1〉 . . . 〈In, an〉 be a conditionally terminating sequence. A history htτ =
s ′
t , a

′
t , r

′
t+1, s

′
t+1, a

′
t+1, . . . , r

′
τ , s

′
τ is said to be compatible with σ if and only if its length is

less than the length of σ , for i = t, . . . , τ − 1, s ′
i ∈ Ii−t+1 ∧ a′

i = ai−t+1, and s ′
τ ∈ Iτ−t+1, i.e.,

observed states were consecutively in the continuation sets of σ starting from I1 and at each
step actions determined by σ were executed. Let Hσ denote the set of possible histories in
� that are compatible with σ . We can construct a Semi-Markov option oσ = 〈I,π,β〉 as
follows:

I = Iσ,1

π(htτ , a) =
{

1, if htτ ∈ Hσ ∧ a = aσ,τ−t+1

0, otherwise

β(htτ ) =
{

0, if htτ ∈ Hσ

1, otherwise
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oσ can only be initiated at states where σ can be initiated. When initiated at time t , the
execution of oσ continues if and only if the state observed at time t +k, 0 ≤ k < n, is in Ik+1.
At time t + k, action ak+1 is selected, for every other possible action a 	= ak+1,π(·, a) = 0.
Therefore, oσ behaves exactly as σ . �

A.2 Stochastic conditionally terminating sequences

Stochastic conditionally terminating sequences (S-CTS) extend conditionally terminating
sequences to allow alternative action sequences be followed depending on the history of
events starting from its execution. They make it possible to define a broader class of abstrac-
tions in a compact form.

Definition A.1 (Stochastic conditionally terminating sequence) Let initς denote the set of
states at which a stochastic conditionally terminating sequence ς can be initiated, and first-
actς be the set of possible first actions that can be selected by ς . A stochastic conditionally
terminating sequence (S-CTS) is defined inductively as:

1. A conditionally terminating sequence σ is a S-CTS; its initiation set and first action set
are initσ and {first-actσ }, respectively.

2. Given a conditionally terminating sequence u and a S-CTS v, their concatenation u ◦ v,
defined as executing u followed by v is a S-CTS. initu◦v is equal to initu and first-actu◦v

is equal to first-actu.
3. For a given set of S-CTSs 
 = {ς1, ς2, . . . , ςn} such that each ςi conforms to either rule

(1) or rule (2) and for any two ςi and ςj ∈ 
,first-actςi
∩ first-actςj

= ∅, i.e., their first
action sets are disjoint, then �t
 defined as defined as:

�t


{
ςi, if s ∈ initςi

\ ⋃
j 	=i initςj

μ
,t , otherwise

is a S-CTS. In this definition, s denotes the current state, and μ
,t : � × 
 → [0,1] is a
branching function which selects and executes one of ς1, . . . , ςn according to a probabil-
ity distribution based on the observed history of the last t steps. �t
 behaves like ςi if no
other ςj ∈ 
 is applicable at state s. init�t 
 = initς1 ∪· · ·∪ initςn and first-act�t 
 = first-
actς1 ∪ · · · ∪ first-actςn . Note that, since they are of the form (1) or (2), the first action set
of all S-CTSs in 
 has a single element. �t
 in effect allows conditional branching of
action selection and corresponds to a decision point of order n = |
|.

4. Nothing generated by rules other than 1–3 is a S-CTS.

Given a conditionally terminating sequence σ = 〈C1, a1〉 . . . 〈Cn,an〉, let σ [i:j ] =
〈Cσ,i , aσ,i〉 . . . 〈Cσ,j , aσ,j 〉 be the conditionally terminating sequence obtained from σ by
taking continuation sets and action tuples starting from i up to and including j ; let σ [i:]

denote the suffix of σ which starts from the ith position (i.e. σ [i:|σ |]).
The action pattern that combines σee , σenn and σenen as described in Sect. 5.2 can now be

represented by the S-CTS:

ςσee,σenn,σenen = (σ [1:1]
ee ∪ σ [1:1]

enn ∪ σ [1:1]
enen ) ◦ �1{σ [2:]

ee , (σ [2:2]
enn ∪ σ [2:2]

enen ) ◦ �2{σ [3:]
enn , σ [3:]

enen}}
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Fig. 27 After first step, ςσen,σee

behaves like σen if the current
state is in the right light shaded
area, behaves like σee if it is in
top light shaded area, and either
as σen or σee if it is in dark
shaded area

Algorithm 7 Algorithm to construct the sequence tree corresponding to a given S-CTS.
1: function CREATE-SEQ-TREE(ς ) � Returns the sequence tree of S-CTS ς

2: Create a new node root
3: BUILD(root, ς )
4: return root
5: end function

6: procedure BUILD(parent,u)
7: if u = 〈I, a〉 then
8: Create a new node child with initchild = I

9: Connect parent to child by an edge with label a

10: else if u = σ ◦ ς where σ is a CTS then
11: Create a new node child with initchild = initσ
12: Connect parent to child by an edge with label first-actσ
13: if |σ | = 1 then
14: BUILD(child, ς )
15: else
16: BUILD(child, σ 2 ◦ ς )
17: end if
18: else
19: u is of the form �t {ς1, . . . , ςn}
20: for i = 1 to n do
21: BUILD(parent, ςi )
22: end for
23: end if
24: end procedure

which is by definition equivalent to (expanding σ s)

= 〈Cσee,1 ∪ Cσenn,1 ∪ Cσenen,1 , e〉

◦ �1

{ 〈Cσee,2 , e〉,
〈Cσenn,2 ∪ Cσenen,2 , n〉 ◦ �2

{ 〈Cσenn,3 , n〉,
〈Cσenen,3 , e〉〈Cσenen,4 , n〉

}}

Note that ςσee,σenn,σenen , and in general a S-CTS, also favors abstractions which last for
longer duration by executing 〈Cσee,2, e〉 directly if the state s observed after the termination
of 〈Cσee,1 ∪ Cσenn,1 ∪ Cσenen,1 , e〉 is in Cσee,2 but not in Cσenn,2 ∪ Cσenen,2 . Similarly, the S-CTS
corresponding to the other branch is initiated at once if s is in Cσenn,2 ∪ Cσenen,2 , but not
in Cσee,2.
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Given a S-CTS ς , its corresponding sequence tree can be constructed by using Algo-
rithm 7, given next. The main function CREATE-SEQ-TREE creates a root node and then
calls the auxiliary BUILD procedure to recursively construct the sequence tree representing
ς . BUILD takes two parameters, a parent node and a S-CTS u. If u is a conditionally ter-
minating sequence of length one, then a new node with continuation set initu is created and
connected to the parent by an edge with label first-actu. If u is of the form σ ◦ ς , where σ

is a conditionally terminating sequence, then BUILD creates a new node, child, with contin-
uation set initσ , connects parent to child by an edge with label first-actσ ; child is connected
to the sequence tree of ς if |u| = 1 or else to the sequence tree of ς [2:] ◦ ς . Otherwise, u is
of the form u = �t {ς1, . . . , ςn}; for each ςi BUILD calls itself recursively to connect parent
to sequence tree of ςi .

Note that if a S-CTS u is of the form �t {ς1, . . . , ςn}, then by definition each ςi is either
a conditionally terminating sequence or of the form σi ◦ υi , where σi is a conditionally
terminating sequence. Therefore, at every call to BUILD, a new node representing an action
choice is created either directly (lines 8 and 11) or indirectly (line 21). As a result, CREATE-
SEQ-TREE requires linear time with respect to the total number of action sequences that can
be generated by the S-CTS ς to construct the corresponding sequence tree.

Instead of creating more functional and complex S-CTSs from scratch, one can extend
the union operation defined in Definition 5.2 for conditionally terminating sequences to
combine behaviors of a conditional terminating sequence and a S-CTS. As we will show
later, this also makes it possible to represent a set of conditionally terminating sequences
as a single S-CTS. The extension is not trivial since one needs to consider the branching
structure of a S-CTS. For this purpose we define a time dependent operator ⊗t .

Definition A.2 (Combination operator) Let u be a conditionally terminating sequence and v

be a S-CTS.5 The binary operator ⊗t , when applied to u and v, constructs a new syntactically
valid S-CTS u ⊗t v that behaves both like u and v, and is defined recursively as follows,
depending on the form of v:

1. If v is a conditionally terminating sequence, then

• If action sequence of u is a prefix of action sequence of v (or vice versa), then u⊗t v =
u ∪ v (or v ∪ u).

• If first actions of u and v are different from each other, then u ⊗t v = �t {u,v}.
• Otherwise, action sequences of u and v have a maximal common prefix of length k−1,

and u ⊗t v = (u[1:k−1] ∪ v[1:k−1]) ◦ (�t+k{u[k:], v[k:]}).
2. If v = σ ◦ ς , where σ is a conditionally terminating sequence, then,

• If the action sequence of u is a prefix of action sequence of σ , then u⊗t v = (σ ∪u)◦ς .
• If action sequence of σ is a prefix of action sequence of u, then u⊗t v = (σ ∪u[1:|σ |])◦

(u[|σ |+1:] ⊗t+|σ |+1 ς).
• if first actions of u and σ are different from each other, then u ⊗t v = �t {u,v}.
• Otherwise, action sequences of u and σ differ at a position k ≤ |σ |, and u ⊗t v =

(σ [1:k−1] ∪ u[1:k−1]) ◦ (�t+k{u[k:], σ [k:] ◦ ς}).

5It is also possible to define a more general combination operator that acts on two S-CTS. However the
definition is more complicated and the operator is not required for the algorithms in this paper, therefore we
preferred not to include it.
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3. if v = �·{ς1, . . . , ςn}, then

u ⊗t v =
{�t {ς1, . . . , ςi−1, u ⊗t ςi , ςi+1, . . . , ςn} if first-actu ∈ first-actσi

�t {ς1, . . . , ςn, u} otherwise.

The operator ⊗t combines u and v by either directly unifying u with a prefix of v, or
by creating a new branching condition or updating an existing one depending on the action
sequence of u and the structure of v. When v is represented using a sequence tree T , it
can easily be extended to represent u ⊗t v by starting from the root node of the tree and
following edges that match the action sequence of u. Let current denote the active node of
T , which is initially the root node. At step k, if there exists an edge with label au,k connecting
current to node n, then the kth continuation set of u is added to the continuation set of n

and current is set to n. Otherwise, there are three possible cases depending on the number
of out-going edges of current. In all cases, a new sequence tree for u[k:] is created and
connected to current by unifying the root node of the created tree with current. If current
has a single out-going edge, then it becomes a decision point of order 2. If current is already
a decision point, then its order increases by one. The construction of the sequence tree of
u ⊗t v from the sequence tree of v is linear in the length of u and completes at most after
|u| steps.6

One important application of the ⊗t operator, as we show next, is that given a set of
conditionally terminating sequences to be used in a reinforcement learning problem, by iter-
atively applying ⊗t one can obtain a single S-CTS which represents the given conditionally
terminating sequences and extend their overall behavior to allow different action sequences
be followed depending on the history of observed events.

Definition A.3 (Combination of a set of CTSs) Let 
 = {σ1, . . . , σn} be a set of condi-
tionally terminating sequences and assume that the sequence to be initiated at state s is
chosen on the basis of the probability distribution P (s, ·) determined by a given function
P : S × 
 → [0,1]. The S-CTS

∏

 defined as

∏

 =

{
σ if 
 = {σ }
σ1 ⊗0

∏{σ2, . . . , σn} otherwise

such that the branching function μ{ς1,...,ςk},t at decision point �t {ς1, . . . , ςk} satisfies

μ{ς1,...,ςk},t (η, ς) = max{P (s, σi)|σi ∈ 
,A
σ

1,t−1
i

= �η,t−1 and aσi ,t ∈ first-actς }

where �η,t is the sequence of actions taken during the last t steps of history η ∈ �, is called
the combination of CTSs in 
.

Suppose that the conditionally terminating sequence to be initiated at state s is cho-
sen on

∏

 combines sequences in 
 one by one, and μ·,t selects a branch based on the

initiation probability of conditionally terminating sequences that are compatible with the

6Proof is by induction on u.
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sequence of actions observed until time t . Suppose that
∏


 is initiated at state s, and let
s1 = s, s2, . . . , sk and a1, . . . , ak−1 be the sequence of observed states and actions selected by∏


 until termination, respectively. Then, by construction of
∏


, for each i = 1, . . . , k −1
there exists a conditionally terminating sequence σi ∈ 
 such that si ∈ Cσi,i and the action
sequence of σi starts with a1 . . . ai (i.e., A

σ
1,i
i

= a1 . . . ai ). Furthermore, one can prove that

if στ ∈ 
 is selected by P at state s and executed successfully |στ | steps until termination,
then initiated at s,

∏

 takes exactly the same actions as στ , and exhibits the same behavior

as we show next.

Theorem A.1 If τ ∈ 
 is selected by P at state s and executed successfully |τ | steps until
termination, then initiated at s and given the same observations,

∏

 takes exactly the same

actions as τ , and exhibits the same behavior.

Proof Let s = s1, s2, . . . , s|τ | be the sequence of observed states during the execution of τ .
By definition, these states are members of the initiation sets of tuples in τ , i.e., for all
i = 1..|τ |, si ∈ Cτ,i . Let u be a S-CTS, and a be an action in first-actu. The behavior of
u after selecting action a can be represented by a S-CTS, u → a, defined as follows:

• If u is a conditionally terminating sequence then u → a = u[2:].
• If u = σ ◦ ς where σ is a conditionally terminating sequence then

u → a =
{

σ [2:] ◦ ς if |σ | > 1
ς otherwise

• If u = �·{ς1, . . . , ςn}, then there exists a unique σi such that a ∈ first-actςi
and u → a =

ςi → a.

Suppose that
∏


 chose actions aτ,1, . . . , aτ,k−1 followed by a′ 	= aτ,k . Let
∏


i de-
note the resulting S-CTS after selecting actions aτ,1, . . . , aτ,i , i.e.,

∏

i = ∏


 → aτ,1 →
·· · → aτ,i . By construction of

∏

, sk ∈ init∏
k−1 and aτ,k ∈ first-act∏
k−1 . Depending on

the form of
∏


k−1, we have the following cases:

• ∏

k−1 = σ ◦ ς , where σ is a conditionally terminating sequence. Hence, sk ∈ initσ and

a′ = aσ,1 = aστ ,k .⊥
• ∏


k−1 = �k{ς1, . . . , ςn}. Since aτ,k ∈ first-act∏
k−1 , by definition, there exists a S-CTS
ςψ which contains aτ,k in its first action set, i.e., aτ,k ∈ fist-actςψ

, and therefore sk is in
the initiation set of ςψ . Let X be the set of S-CTSs {ς1, . . . , ςn}, which can continue from
state sk , i.e., X = {ςi : sk ∈ initςi

}. If |X| = 1, then a′ ∈ first-actςψ
; but by the construction

of a S-CTS first-actςψ
= {aτ,k}, and consequently a′ = aτ,k . Otherwise, by definition, we

have

μX,k(η, ςi) = max{P (s, σj ) : σ 1,k−1
j = τ 1,k−1 and aσj ,k ∈ first-actςi

}
But, for all ςi ∈ X other than ςτ , we have μX,k(η, ςi) < μX,k(η, ςψ) = P (s, στ ), since στ

is selected by P , and thus a′ ∈ first-actςψ
= {aστ ,k}.⊥

Both cases lead to a contradiction, completing the proof. �

Note that, the total number of action sequences in 
 = {σ1, . . . , σn} is
∑n

i=1 |σi | and
hence it is possible to build the corresponding sequence tree for

∏

 in linear time.
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Fig. 28 Results for the acQuire-macros algorithm using different values of minimum support on the 20 × 20
grid world problem

Fig. 29 Results for the
acQuire-macros algorithm using
different minimum sequence
lengths on 20 × 20 grid world
problem. Minimum support and
minimum eligibility values are
taken as 0.6 and 3, respectively;
the curves are smoothed for
visual clarity

A.3 The effect of parameters in acQuire-macros algorithm

Figures 28 and 29 show plots justifying the choice of parameters for the acQuire-macros
algorithm. In Fig. 28 the learning curves for different minimum eligibility values of 1, 3,
6 and 9 are plotted and compared with regular Q-learning; the curves are smoothed for
visual clarity; minimum sequence length is taken as 4.

A.4 Auxiliary results

Each entry in Table 4 gives the p-value testing for difference between the two values of λ in
the row and column. On the other hand, each entry in Table 5 gives the p-value testing for
difference between the two values of ε in the row and column.
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Table 4 The p-values of the sample statistics Fλ and Finteraction (left and right values in each cell, respec-
tively) for the pairwise comparison of different values of λ. (a) SARSA(λ), and (b) SARSA(λ) with sequence
tree (ψdecay = 0.95)

λ 0.70 0.80 0.85 0.90 0.95 0.99

0.60 0.131 0.193 0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.70 1 1 0.001 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.80 1 1 0.001 0.054 0.001 0.001 0.001 0.001 0.001 0.001

0.85 1 1 0.001 0.001 0.001 0.001 0.001 0.001

0.90 1 1 0.001 0.007 0.001 0.001

0.95 1 1 0.001 0.021

(a)

λ 0.70 0.80 0.85 0.90 0.95 0.99

0.60 0.011 0.61 0.003 0.207 0.001 0.116 0.001 0.024 0.001 0.003 0.001 0.006

0.70 1 1 0.901 0.446 0.052 0.699 0.003 0.843 0.001 0.25 0.001 0.06

0.80 1 1 0.043 0.472 0.002 0.245 0.001 0.025 0.001 0.074

0.85 1 1 0.162 0.16 0.001 0.354 0.001 0.029

0.90 1 1 0.019 0.049 0.001 0.028

0.95 1 1 0.022 0.009

(b)

Table 5 The p-values of the sample statistics Fε and Finteraction (left and right values in each cell, respec-
tively) for the pairwise comparison of different values of ε. (a) Q-learning, and (b) Q-learning with sequence
tree (ψdecay = 0.95)

λ 0.10 0.15 0.20 0.25 0.40

0.05 0.001 0.872 0.001 0.104 0.001 0.001 0.001 0.001 0.001 0.001

0.10 1 1 0.001 0.762 0.001 0.179 0.001 0.001 0.001 0.001

0.15 1 1 0.001 0.487 0.001 0.003 0.001 0.001

0.20 1 1 0.001 0.539 0.001 0.001

0.25 1 1 0.001 0.001

(a)

λ 0.10 0.15 0.20 0.25 0.40

0.05 0.001 0.186 0.001 0.005 0.001 0.043 0.001 0.001 0.001 0.001

0.10 1 1 0.001 0.251 0.001 0.932 0.001 0.018 0.001 0.001

0.15 1 1 0.001 0.099 0.001 0.4 0.001 0.001

0.20 1 1 0.001 0.136 0.001 0.001

0.25 1 1 0.001 0.048

(b)
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