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ABSTRACT

MARKOV DECISION PROCESSES
WITH RESTRICTED OBSERVATIONS

AVYSAR, Zeynep Mige
M. S. in Industrial Engineering
Supervisor : Assist. Prof. Dr. Yasemin Serin
September, 1992, 83 pages

In this study, Markov Decision Processes, are analyzed
under unobservability constraints and algorithms are developed to
find the optimal policies with respect to the objective of minimizing
the expected total discounted cost over finite planning horizon. Models
are constructed for the nonstationary and stationary policies.
Compared to the existing approaches to similar stochastic systems, the
proposed algorithms are computationally appealing. This approach can
also be considered as a state reduction method for large scale Markov
Decision Processes. A bound on cost function is developed and the
concept of "refining observations” is introduced.

Key words: Markov Decision Process under Constraints, Method of
Feasible Directions.

Science Code: 605.02.02



oz

KISITLI GOZLEM ALTINDA
MARKOV KARAR SURECLERI

AVSAR, Zeynep Mige
Tiksek Lisans Tezi, Endistri MihendisliZi Anabilim Dah
Tez Yoneticisi: Y. Dog. Dr. Yasemin Serin
Eyldd, 1992, 83 sayfa.

Bu tezde, Markov Karar Sdrecleri, kisitll gézienebitirlik
altinda incelenmis ve sonlu planilama siireleri i¢in iskonto edilmig
toplam beklenen maliyeti emazlayan politikalar bulmak dzere
algoritmalar geligtirilmigtir. Sistem zamana bagli ve zamandan
bagimsiz politikalar olmak dzere iki durum igin modellenmistir.
Varolan metotlarin bir takim fiziksel gézlem soruniari olan stokastik
sistemlere yakiasimiari yapilmasi gerekli -hesaplamalar bazinda
karsilagtiriidiginda, oOnerilen metotlar gelisme saglamigtir. Maliyet
fonksiyonu dzerinde bir sinir gelistirilmis ve detayli gbézlem yapma
Uzerine kurulu bir prosedir sunulmustur. Kullanilan yaklagima
Markov Karar Sdregleri i¢in bir durum indirgeme metodu olarak
bakitabilir.

Anahtar Sézciikler: Kisit Altinda Makov Karar Siiregleri, Gecerli Yonler
Metodu.

Bilim Dal1 Sayisal Kodu: 605.02.02
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CHAPTER I
INTRODUCTION

1.1 Introduction

The Markov Decision Process, MDP, is a methodology
established as a tool to control stochastic systems. A stochastic systetn
is modeled as a MDP by classifying the representative conditions as
states of the system and by determining the alternative actions that can
be taken with different costs. During a finite or infinite planning horizon,
condition of the system is observed by the decision maker either
continuously or periodically and accordingly an action is taken. In this
thesis, we concentrate on periodically observed systems defined by a
finite number of states and actions over a finite planning horizon. At the
peginning of every period, depending on the state of the system and the
action taken, the system immediately incurs a cost and moves to
another state to be observed at the beginning of the next period. The
events starting with observing a state and ending with incurring a cost
are all assumed t occur instantaneously at the beginning of the periods.
The Markov property results from the current state being
probabilistically dependent on only the previous state and action. The
MDP model finds a decision rule for each state with respect to the
objective of minimizing a cost function. A policy is a collection of
decision rules that describes the actions to be taken at every state. A
policy is stationary if if uses the same decision rule at every period. Our
objective, in this thesis, is to minimize the expected total discounted
¢ost. A policy is optimal if the corresponding expected total discounted
cost is minimum. The present work can easily be applied to the case of
minimizing the average cost.



In computing an optimal policy for a completely observable
MDP, where the true state of the system is known to the decision
maker at every period, policy iteration method of Howard(1971a,
1971b) for infinite planning horizon and stochastic dynamic
programming for finite planning horizon (Hillier and Lieberman, 1974)
are commonly utilized methods. Both of the infinite and finite horizon
MDP’s can be formulated as linear models. The feasible policies for this
problem are functions mapping the finite state set onto the finite action
set. The optimal policy is deterministic in both cases, ie., the decision
rule assigns an action to every state. For the infinite horizon case, there
is a stationary optimal policy.

In this thesis, we study MDP under a set of state observability
constraints over a finite horizon. Serin(1989) studied the same problem
over an infinite horizon. The idea of introducing unobservability
constraints serves for systems in which obtaining information on exact
state is physically infeasible or undesirable. A communication network
whose states change rapidly is an ¢xample for the former case. Routing
decisions at a given node should not wait for the information about the
state of the whole system, but the status of that and maybe some
neighboring nodes. Even if the exact state information can be obtained, it
becomes obsolete before it is used. Large scale MDP's are examples for
the latter case. The decision maker may prefer to avoid making detailed
observation in order to reduce observation cost. The two different nature
of stochastic control processes characterized abowe result in state
observation problems or preferences, and are extensively studied in the
literature.

Unobservability constraints imposed by the physical nature of
the system itself are studied under the heading of Partially Observable
Markov Decision Processes, POMDP (Monahan, 1982). POMDP can be
represented as a completely observable MDP whose state is the posterior
probability distribution over the finite state set, but the resulting state
space is infinite. Then, the optimal policy to the new MDP is expressed
Ly a function mapping the posterior probability distribution space to the
finite action set, which brings about the dgifficulty in the steps of



computation and implementation of optimal policy. The computation of
the optimal policy is based on dividing the posterior distribution space
into a finite number of regions. Each of these regions corresponds to a
different action. This procedure is performed at every decision epoch.
Then, in order to employ the optimal policy proposed by Smallwood and
Sondik(1973) for finite horizon problem, at each period the decision
maker has to compute the posterior probability distribution. The optimal
policy is not stationary with respect to the original state set.

Serin and Kulkarni partition the finite state set into a number
of mutually exctusive and exhaustive subsets. The unobservability is
based on taking the message of a subset if the process visits one of the
states in that subset. Then, representing condition of the system by
subsets, feasible policies are expressed over finite space of subsets,
which makes the computation step simpler than that of POMDP.
However, infinite horizon study of Serin on stationary policies shows that
optimal policy may be randomized, i.e., the decision rule at a state may
be a probability distribution over the action set, rather than an action,
which makes up a difficulty in the implementation step. In this thesis,
we study the same approach over a finite horizon by relaxing the
stationarity requirement. In this case, the optimal policy turns out to be
deterministic. ‘

Since the completely observable MDP can be formulated as a
linear model, aggregation/disaggregation procedures for stochastic LP's
by Mendelssohn(1983) and Birge{1985a, 1985b) serve for the purpose of
finding optimal policy with a reduction in the computational burden for
large scale MDP's. Partitioning the state set is also an aggregation
procedure and makes the computation step manageable. Note that
aggregation or partitioning procedures also function as approximation
schemes. In this thesis, we introduce the concept of refinement,
analogous o disaggregation, by relaxing the partitioning constraints in a
stepwise manner. In order to guide the decision maker in answering
“how t partition the state space”, "how to refine the observations®
questions, we also develop bounds on optimal expected discounted cost
to be compared to the observation cost, which is supposed to be



estimated with respect to partitions. If observing in more detail costs
more, then the decision maker has an opportunity to decide on the detail
of the observation with the information of possible improvement in the
objective value. The refinement process can continue up to observing the
original states of the MDP, for which the objective value is minimum but
the observation cost is probably mazimum.

Finally, considering the structure of the MDP model formulated
with respect to a given partition of state space, we end up with the last
extreme in literature: MDP under constraints. Ross(1989a) studies a
completely observable MDP under a number of linear cost constraints, so
linearity of the model is preserved. However, the partitioning constraints
in our case are nonlinear. The similarity is that in both cases introduction
of constraints leads to randomization in the optimal policy. A more
detailed explanation is given in Section 1.3,

In this thesis, we analyze a MDP, whose state space is
partitioned, under stationary and nonstationary policies for the objective
of minimizing the expected total discounted cost over finite planning
horizon, give some results for infinite planning horizon and discuss the
refinement concept which represents the detail of information to gather.

1.2 Definitions

As the notational conventions, P() shows the probability of
event {.} and [S| denotes the number of elements in the set S. [la|| denote
the norm of the vector .

We start with definitions related with the MDP that is
observed at discrete time intervals to be in one of the N states and
accordingly one of the M actions is taken. We consider the time intervals
with equal length and refer them as periods also. A period i3 named
(indexed) by the number of intervals from the begianing of that period
until the end of the planning horizon, e g, period 5 means there are 5
decision epochs to go until the end of the planning horizon.



4y is the random variable denoting the state of the system
when there are t periods to go until the end of the planning horizon. It
takes values in the finite state space S={1, 2, .., N}. An action, denoted
by the random variable Ay, is taken by the controller of the process as
soon as state of the system is observed at the beginning of period t. The
finite action set is A={1, 2, .., M}. The stochastic process {(Xy, A¢): tal, ..,
T}, taking values from set SXA for a planning horizon of T periods, is
called the core process. As a function of the state visited and the action
taken in pericd t an immediate cost C(Xy Ay), is incurred
instantaneously. The transition probability of being in state j in a period
given that the system was in state i and the action a was taken in the
previous period is given by Pjj{a). We consider homogeneous processes,
so the expected cost per period and the transition probabilities are
independent of time, B(C(Xy=i, At=a))ncia for every t and P(Xi-y=j| X¢=i,
Ar=a)=Pjj(a) for all t=1, ..,T and i€S, acA.

The initial condition of the system is represented by the initial
probability distribution, p;=P(Xp=i) for all i€S.

Let the function o;«+(T) denote a decision rule which indicates
the probability of taking action a given that the system is in state i in
period t, when the planning horizon is T periods, Gat(T)=PafAr=al Xy=i)
for all {eS§, agA, t=1, .., T. Then, a T-period policy «(T) is a sequence of
decision rules for each of the T periods. Noting that Pq(r)(.) represents
the probability of event {.} under policy a(T), the set of feasible policies
for a MDP is defined below:

amr M ,
A= {x(T)R T xjofT)=1for all ieS, t=1, .., T

2=y

(1.1)
and o;4(T) 2 O for all icS, acA, t=1, .., T}

We call the decision rules corresponding to a state i and/or
period t under policy & as the partial policy & of state i in period t. If
for every ieS and te{1,..T}, there is an action a such that ce=1, then &



is called a deterministic policy; Othertmse if for at least one state the
corresponding partial policy is not deterministic, then « is called a
randomized policy.

In order to define the MDP restricted by some observability
conditions of system or preferences of decision maker, we need to revise
the definitions above and introduce additional notation. Considering the
restrictions, we partition the state space into a collection 8={S, Sz, ..., Sx}
of disjoint subsets and observe the system as in one of these subsets,
rather than in an individual state. The new process which is observed at
every period to be in one of the K subsets is called the observation
process. Let 0={1, 2, .., K}. Since the observation process is defined over
the set O, we define the new stochastic observation process {Z: t=1, .., T},

Zy being the random variable denoting the subset that the system visits
in period t, i.e, X4€Sz,. Equivalently, Zy=k if and only if X4eSx.

The restriction we impose on the MDP states that the actions
taken should be the same for all the states in the same subset. This
means that, observing Z; rather than X; is sufficient to decide on an
action, because every state in a subset is assigned the same decision rule.
Let k(i) be the index denoting the state subset to which state i belongs.
The decision rule indicating the probability of taking action a given that
the system is in one of the states of subset k in period t is given by the
function Gt(T), when the planning horizon is T periods.

Qiat(T)=P{A¢=a| Xy=i)

=P(Ay=a| Zy=k (i)} for all icS, a4, t=1, ., T (1.2)
Then,

PlA¢=a) Xy=i)=P(A4=a| Xi=j) for all i,jeSg
o jcat

The set of feasible policies for restricted MDP is



knT M
Ay = {ax(T)ER  : T CypulT)=1for all kO, t=1, ., T

a=1

(1.3)
and QG (T) 2 0 for all ke, ag4, t=1, .., T}

As the definition implies, A; consists of nonstationary policies,
ie, different decision rules can be used in different periods. From this
point on, we fix the total number of periods within the planning horizon
to T and drop the argument T for notational simplification. We also
assume that we are given a partition § of the state space and the MDP
under consideration is restricted with respect to this partition.

Let ¥y be the discount factor, O«y<1. Given that the system is
in state i in period t, the expected discounted cost of employing policy
in the last t periods is defined as follows:

M N
Vila) = 2 Cygipat (%* Y2 pii(a)vj(t-l)(c)) (1.4)
a=1 =1

for all ieS, t=1, ., T, @eA], where vjp{ax) is constant, eg., v;p{x)=0.
Let cir{a) be the expected immediate cost incurred under

policy &, given that the system is in state i at the beginning of the
period t.

)
Cil&) = I QyinatCia fOrallies, t=1, ., T, @eA, (1.5)

=1

Let Pyj{ax, ) be the probability of being in state j at the beginning of the
next period, given that the system is in state i when there are t periods
to go and policy o is used.

Pijlax, t) = Pa(X¢y =]| =)



)
= 2 Oyt Piyf@) forallt=2, ., T and aed; (1.6)
a=]
Let () be the discounted probability of being in state i and taking
action a in period t, under policy
Viatl &) = ¥{T-t) Po(Xy=i, Ag=a) forall ieS, t=1, ., T, acA

and axeAy, and wit{a) be the discounted probability of being in state i in
period t, under policy «

witla) = ¥{T-t) Po (y=i) for all ieS, t=1, .., T and xed;.

For notational simplification, from now on, we drop the argument « in
v(x), y{a), wia).

Using the above notation, we define the following vectors:

P'=(p1, P2 ... Pw) is the initial probability distribution, where *
denotes transpose of the vector,

P(a) is the transition matrix under the action a,

P(a, t) is the transition matrix under the partial policy « for
period t, for all xeA;.

¥t = (Vit, ¥2t, ..., It)’

crlax) = {crelax), ca{ax), ..., em{ax))’

Wt = (Wit Wat, .., Wi)’
forallt=1{, ., T and xeA;.

¥ ={.., Viat, ...’ of dimension NMT



V' =(wr, ¥1-1, .., ¥1) which is also referred as cost function
conditioned on the initial state,

Cla) = {ep(a), ep-g{a), .., €1{ax))
W = (wr, wr-g, ., W)
for all xeA;.

By definition of A;, we allow using nonstationary policies.
Then, if we want to concentrate on stationary policies, dropping the time
index we form the set A; of all feasible stationary policies for restricted
MDP.

i M
Ay ={xeR T &ye=1forall keO

a=1

(1.7)
and o,z 0 for all Ke0, acA}

Note that A;CA;CA. Notation for stationary policy case is as follows:

M N
Vit= 2 Clide (Cu +YZ Pij(a)"j(t-i}) (1.6a)
a=1 =1
o
Ci((X) = z Kylida Cia (1.8b)
a=1
M
Pii(a) =¥ K e(ide P;,(a) (1.8¢)
-

P{ax) is the transition matrix under policy aeA; for all periods



Cla) = (cla), cla), .., e(a)') of dimension NT for all aeA,.

Our objective is o minimize the expected fotal discounted cost
function, d(a), over A; 50

» =minimtim
dlat) =T Y {Pla)} (1.92)
where
T (19
blax) =Eo| 2 ¥ C{X, Ap |for all aed; (1.9b)
t=1

where Eq represents the expectation under policy o. We also consider
the similar problem where the policles are restricted to Az For the
infinite horizon problems, taking limit as t goes to infinity,

M N
Vi= 2 Qi (Cw y2 Pifa) vj) (1.10a)

9=1 =1
where a is defined over Az, and

T -
() =T1im B S v a0 (1.10b)

-

t=1

1.3 Related Studies

In this section, we present related studies under three topics
to which the problem we consider seems to be connected, namely
POMDP, MDP under constraints and state aggregation/disaggregation in
MDP's.

Within the context of stochastic confrol processes, Partially
Observed Markov Decision Process , POMDP, is a generalization of Markov

10



Decision Process, MDP, allowing uncertainty in state observation and
information acquisition about the current state. The decision maker is
aware of the probabilistic relationship between the core process {(Xs, A¢):
t=1, .., T} and the observation process {Zi: t=1, .., T}; an observation has
the message that the current state is | when the true state is i with
probability qy =P(Z1=j| X¢=i) for all i,jeS. Recall that the problem that we
concentrate on in this thesis is a special form of as POMDP, where the
observation process has the message of subset k for all the states in Si.

In order to convert POMDP into an equivalent and completely
observable MDP, the state of the process is represented by the posterior
probability distribution 1y, me=(T14,M2t,.., M) Which is also called the
information vector, whete m;; is the probability of being in state i in
period t. Then, the state space is given as

N N
M={ mER : 3 Ty =1and m;20 for all ieS (1.11)

i=1

forallt=1, .., T. The well-known theorem leading to detection of Markov
property in POMDP is given below ( Monahan, 1982).

“Theorem: For any fixed sequence of actions Ar, Ar-1, .., A€dh, the
sequence of probabilities of being in state i in period t, M =P(X¢si), {my:
tal, .., T} is a Markov Process, that is,

P(my My, 11, .., Weat, Ater) = POMy| Theq, Agey) foratlt=t, . T"

The optimal policy for a completely observable MDP is found
by probabilistic dynamic programming moving backward period by
period since the following recursion is satisfied by the optimum expected
discounted cost function of the core process {(Xy, A¢):t=1, .., T}

- N
vy TUOUMY o 4 3 Pifalviyy > forallies, t=1,., T (1.12)
acA o

11



This recursive relationship takes a similar form under the continuous
state space definition of POMDP, as given by the following theorem,
where T(m| Zi=j, Awi=a) is defined as the posterior probability
distribution in the period t given that action a was taken in the previous
period and the current observation gives the message of state j.

“Theorem: The finite horizon optimum expected discounted cost
function of POMDP, w(m)=(v{{m), ., vr(m)), satisfies the following
recursion

min/ & y , .
vt L, & MitCierYZ Pe.gxj| Mt , Agea) vy (T 2oy, Agra))
it 1

forallt=2, ., T (1.13a)

.. N
g (UM 5 o e (1.130)"
omama¥ )

This theorem implies that the optimum policy is deterministic
over the state space II.

For optimal control of POMDP over a finite planning horizon,
Smallwood and Sondik{1973) show that the conditional expected
discounted cost function, vy(1m), when there are a finite number of
periods until the end of the planning horizon, satisfying the recursion
given by (1.13a) is a piecewise-linear and concave function of the
posterior state probabilities of the core process, implying that the space
of posterior probability distribution in that period can be divided into a
finite number of convex regions, separated by hyperplanes, over which
the conditional cost function is linear. Hence, determining the gradient of
the conditional cost function at any point in each region is sufficient to
determine the optimum action to be taken, if the posterior distribution
falls into that region. Reconstructing the regions for each decision epoch,
the optimal policy is found. However, as the time horizon becomes
longer, the number of regions may grow exponentially. From Blackwell's

12



study of “Discounted Dynamic Programming” (1965), it is known that the
infinite horizon analog of recursion in {1.13a) is as follows:

N ¥
y(m)-Tinimum T mc YD PiZ=j| m, A=a) v('f(nl Z4, Asa)) (1.14)
A ) i 1

where v is the expected discounted cost when m is the initial distribution
vector and the horizon is infinitely long. Solving the problem optimally
requires minimization operation stated by (1.14) over all points in the
space II, meaning that (1.14) itself is not sufficient to develop a
procedure to find the optimum stationary policy. Sondik(1978) studies
this probletm, where he introduces finitely transient policies over state
space Il as the stationary policies such that after a finite number of
periods the information wvector is not mapped into the points of
discontinuity of the policy. Sondik shows that if the optimum policy is
finitely transient, then the optimum cost function vlm is a piecewise
linear and continuous function, the converse is also true. Thus, in such a
case the space II can be divided into subsets in each of which the
optimum action is the same for all the points. Utilizing the properties of
finitely transient policies, Sondik makes an approximation to the cost
function and he develops a policy iteration algorithm.

Before proceeding with a summary of the models incorporating
the theory of POMDP's, we should note that Monahan{1982) gives a
complete literature review on the problem of controlling processes with
incomplete state information.

Eckles(1968) presents an expression similar to Bellman's
Principal of Optimality’ for the calculation of optimal maintenance
policies when the decision maker is not informed completely about the
system. Utilizing the complete history of all decisions and outcomes, the
decision maker can calculate age of the system at any period. Age is
assumed to characterize condition of the system. The optimum
maintenance policy is calculated by dynamic-programming.

13



Wang(1977) models the Markovian replacement system whose
condition is represented by its finite deterioration state which is not
directly observable. Similar studies in the same area are carried out by
Ross(1970, 1971) and Rosenfield(1976a, 1976b) for quality control and
replacement models. The former treats the posterior probability
distribution as the state of the system and the latter represents the state
by (i, t) meaning that t periods ago the machine was known to be in state
i and no new information is available since then. These last two studies’
primary concern is to characterize the structure of the optimal policy
rather than solving the problems.

The other applications of POMDP are cost control in accounting
by Kaplan(1969), the internal control of a corporate control system by
Hughes(1977), the learning process by Karush and Dear(1967), the
teaching process and the health-care system by Smallwood(1971a,
1971b), the intraseasonal decisions of fishing vessel operators by
Lane(1989).

There are a number of studies on structure of POMDP problem;
as the convexity of policy regions of state space II by Lovejoy(1987b),
monotonicity of conditional expected cost functions by Albright(1979),
analysis of the model by a new state variable using unnormalized
conditional law by Borkar(1991), analysis of two-state case by Sernik
and Marcus(1991). Within these, the idea forming the basis of the
Sawaki's study(1983) results in partitioning the state space exactly the
same way used in the present study. Representing the state of POMDP
by posterior probability distributions, a completely observable MDP is
obtained, put the state space becomes continuous. Sawaki calls a MP
piecowise linear if there exists a simple partition 8={ Sy, Sz, .., S} of
state space S such that vy's are equal for all ieSy, t=1, .., T and alf k=1, ..,
K, and defines a piecewise constant policy « if the same action is taken
at each state of every state subset. In this respect, Sawaki's
transformation of POMDP into piecewise linear ones has advantages for
computer applications. His conclusion follows by showing that if a MP is
piecewise linear, then the optimum policy & is piecewise constant.
 Smith(1967, 1971) partitions the state set as the same way Sawaki does,

14



and uses an (implicit) enumeration method to find an admissible policy,
which is stationary and deterministic over subset space and minimizes
the expected average cost over an infinite horizon.

The objective to approzimate completely observable large
scale MDP brings about the construction of computationally feasible
bounds for both completely observable MDP and POMDP.

Approximation scheme developed by Lovejoy(1986) reduces
the computational burden of policy iteration algorithm for MDP's with
large number of states and/or actions. Lovejoy replaces the original MDP
with a separable approximate MDP and that way generates bounds on
the optimal policy for all states. By separability assumptions, both the
state and action spaces are partitioned into the same number of subsets,
the subsets that are affected by the currently visited subset are disjoint.
These assumptions are quite restrictive and form a special case of the
MDP problems that we concentrate on in this thesis. Considering some
additional conditions, Lovejoy decomposes the MDP problem into several
subproblems with smaller state and control spaces, and shows that at
each iteration of the successive approximations of policy iteration
algorithm, the calculations can be performed in a decomposed manner
and converge to a separable, continuous optimal cost function and
generate a separable optimum policy.

The underlying idea of Runggaldier's approach(1991} is to
approximate the POMDP by a sequence of simpler approximating
Dynamic Programs such that for each approximating problem it is
possible to compute an optimal policy, and there exists an approximating
problem such that the corresponding optimal policy, when suitably
extended, is epsilon-optimal. The approximation is based on
approximating the cost, transition, observation functions by a number of
uniform step functions.

Lovejoy(1991) also studies bounds for POMDP. Since the usual

transformation of POMDP into a completely observable MDP results in an
uncountable state space, Lovejoy approximates the state space by a
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finite grid of points and obtains approxzimate nonstationary and
stationary policies.

A study of Monahan(1980), "Optimal Stopping in a POMDP with
Costly Information” is based on the idea of incurring more cost to make a
more detailed observation about the true current state of the core
process, which is basically the same as the partition-dependent
observation cost we introduce for the refinement discussion in Chapter
IT1. In both Monahan's and our model, assumption is that the decision to
make a more detailed observation, the observation itself and afterwards
employement of an action are all instantaneous. At that point, it should
be noted that for such instantaneous more detailed observations, our
process may be restricted by observability constraints imposed as a
nature of the system.

[terative  aggregation/disaggregation  procedures by
Mendelssohn(1983) and Birge(1985a, 1985b) serves for solving large
scale completely observable MDP's optimally. At each iteration, an
aggregate master problem and a sequence of smaller subproblems are
solved. Each subproblem concemntrates on a finite state, finite action MDP
with a reduced state space, which is the point similar to partitioning a
completely observable large scale MDP for the purpose of decreasing
computational burden. The procedures use linear programming
formulation of MDP and employs ideas for aggregation of LP's developed
by Vakhutinskii and Dudkin(1973), Agafanov and Makarova({1976),
Zipkin(1977,1980a, 1980b).

K. W. Ross{1989a) models the MDP as a linear program under
the long-run average cost criterion subject to a number, say H, of cost
constraints. He shows that there exists an optimal stationary policy with
randomization in at most H states. For the case of single cost constraint,
the deterministic, nonstationary round-robin type policies and steering
policies are addressed as alternative optima. Due to nonlinearity of our
model, in this thesis we do not study on the number of possible
randomizations in the optimal policy.
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A problem is called multilinear programming problem if its
variables can be classified so that when all are fixed except the ones in
one class, the resulting problem is a linear program. The models
constructed in this study are multilinear models. The methodology and
the computational experience seem to be in accordance with the results
in Drenick(1992). Further study is required to state the exact
relationship.
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CHAPTER 11
MDP WITH RESTRICTED OBSERVATIONS: NONSTATIONARY POLICIES

In this chapter, we study the problem of minimizing expected
total discounted cost under unobservability constraints with
nonstationary policies over finite planning horizon. We devote the first
section to problem formulation. The last section is the presentation of
two solution algorithms.

2.1. Finite Horizon Model

Consider a MDP {(X, A¢): t=1, .., T} with state space S={1, .., N}
and action space A={1, .., M} over a T-penod planning horizon. Suppose
there does not exist any unobservability constraint, so the observation
process is the same as the core process. A decision rule is defined by the
probability et to take action a if the state of the system is i when there
are t periods until the end of the planning horizon. A collection of
decision rules form a policy

=(Qy1, X121, o CNML, s ST, o SHMTIEACRMIT

where A is the set of feasible policies as defined in (1.1). Our optimality
criterion is minimization of the expected total discounted cost P(a) over
the T-period planning horizon, i.e,

T (-
dla) =E, 2*-((“} C(Xy, Ay (2.1)



d{ax) is well defined, since

T

1-¥ minimum
<I>(q)z-—1_Y i€S, acA {¢i) (2.2)

and S and A are finite (Ross, 1983).
Compactness of the space A and continuity of the cost function

given in (2.1) imply existence of an optimal policy a* (Derman, 1970),
ie,

Olo*) m“:;“m {d(x)) (2.3)

By the expected total discounted cost of the system starting in state i and
evolving for T periods when a given policy is employed and recalling
that the probability of being in state i initially is given by p;, we can
rewrite the expected discounted cost function as (Ross, 1983}

N
d{x)= Zpt ¥ir (2.4)

i=1
The optimal policy for this problem can be found by the probabilistic

dynamic programming moving backward period by period and using the
recursive relationship

minim N
afle Eﬁum CiatY2 Pifa) v*i4.1) (2.5)
a ot

satisfied for all ieS and t=1, ., T, assigning a constant value to v"{u's
(Hillier and Lieberman, 1974 ), eg,

vy=0 (2.6)
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If the probability p; of starting in state i is zero, the action assigned to
the state i in the first period is arbitrary (Ross, 198%a).

Using the recursive relationship given in (2.5), we can state the
expected total discounted cost minimization problem as follows:

Problem F:
N
Maximize 3 p; vz (2.7a)
iat
subject to
N
VS Cigr Y2 Pyfalvyyyy forallies, t=1, ., T, acA (2.7b)
=1
vio=0 for all ie§, acA (2.7¢)
viy unrestricted for all ieS, t=1, ., T (2.7d)

and the optimum policy &* is given by

. N
1 ifa=28M0/ ¢ 4 v3 Pb) vE, t-1)
Kiat = bea =1 ! A (2.8)

0 otherwise

for all ieS, agA, t=1, ., T, where vi's form the optimum solution to
Problem F (Ross, 1933).

Let yiqt be the dual variable corresponding to the constraint
(2.7b). Then, the dual of the Problem F is
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Problem Fp:

N X T
Minimize 2 2 Ci.{z Yiat} (293.)
{=1 =1 t=1
subject to
M
Y Vir=p; forallies (2.9b)
*1

M ¥
3 {yw i Yzymﬂ,p,-i(a)} = Ofor all ieS, t=1, ., T-1  (2.9¢)
=1 =1

Viet= 0 for all i€§, acA, t=1, ., T (2.9d)

The dual variable yia¢ can be interpreted as the discounted
probability of being in state { and taking action a in period t, ie, the
optimum solution to Problem Fp is

it = Y{T-8) Poo(Xesi, Ag=a) for all ieS, agA, t=1, ., T  (2.10)

Then, the constraint set (2.9¢) shows the relation between the
probability of being in state i at the beginning of time period t and
probabilities of being in all possible states at the beginning of the
previous period (t+1).

The Problem Fp is a linear programming formulation of the
MDP. The optimum policy «* is given by

¥*iat

M
2 7* iat

=1

*»
Qe =

for all ieS, agA, t=1, ., T (2.11)

x Py (A=l Xi=i)
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At a basic optimal sotution, yi"',,t can take a positive value for at most one
action while others are zero for each ieS and t=1, .., T, which is in
accordance with the implication of recursion (2.5), i.e., ‘the deterministic
optimum policy’. If it is not possible to be in state i at some period, some
arbitrary action is assigned to that state (Ross, 1989a). Observe that
summation of yigr over all actions is positive if the initial probability p

is positive.

Now, we may define wj as the discounted probability of being
in state i at period t under a given policy «, i.e,

wit = YY) Po(Xi=i) for all icS, t=1, ., T (2.12)
Note that
M
W=D Vi forallies t=1,..,T (2.13)
g=1

From another point of view,

Y(T-8) P o(Ry=i, Ag=a) = {y(T-t) Po(Xe=i)) PolAi=al Xe=i)
where Po(A¢=a| Xy=i) = ;. Then,
Viet = Wit Qigt for all ieS, aeA, t=1, ., T (2.14)

Now, we are ready to comsider the above MDP under
unobservability constraints. Suppose that {Z: t=1, ., T} is the
observation process defined over subset space O={1,., K} characterized
by a partition $={Sy, .., Sg}. If & is a policy with respect to partition §,
then the probability of taking action a at some period t is the same for all
the states in the same subset. Then, in terms of formulation,
unobservability constraints with respect to partition § are introduced by

imposing

Qygt=Cgt  fOr all i, § pair in the same subset
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to the feasible policy space A, and the nonstationary policy space with
respect to partition §, Aj, is obtained. A policy with respect to partition §
is

&=(xX111, X121, - SEML, o K11T, s FENMT)EA CREUT

where Qyet is the probability of taking action a when the system is
observed to be in subset k in period t, ie,

Cgat=P(A¢=a | Zy=k)
=P(A4=a | X1€Sx) for all ke0, acA, t=1, ., T.

We refer to a completely observable MDP as an unrestricted
MDP and the MDP under unobservability constraints as the restricted
MDP with respect to partition S. Note that unrestricted MDP is a MDP
with respect to partition {S;, .., Sy}, where S;={i} for all ieS.

We present the expected discounted cost minimization
problem for MDP with respect to partition § in Theorem [1.2, where we
define R, V¥, W and C(ax) as vectors and B{«) as a square matrix, all of
dimension NT.

R'=(p,0,0,.,0) (2.15a)

V'=(¥y1, .., YNT, -, YN1)

=(¥p, ¥4, .., ¥1') (2.15b)
w'=(W1T, e wHT) hidd ] WI)

=(Wr', Wr-1', .., Wy') (2.15¢)

Clax)a(cyp{ax), ..., exr(), ..., ci{a), .., cap{axl)
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=(cp{ax), cp-1{cx}, .., cy{ax)) (2.15d)

where cji{a) is the expected immediate cost incurred in period t given
that the system is in state i and under policy «,

| if i=j and t=n
B(a)it, jn=1-YPylx, £} if t-1=n (2.15¢)
0 otherwise

for all i, jeS and tn=1, .., T, where Pi,-(o;, t) is the transition probability
from state i to § under the employment of partial policy o« of period t.
Recall from definitions that

1
Ciflx) = 3 Gyt G4 for all €S, t=1, .., T, xeA;

asi

Pijjlax, t) = P (X¢-1 5| Xe=i)

M
= 2 Gyt Pif@) for all ijes, t=2, ., T and &ed,

a=1

In Lemma II.1, we point out some characteristics of the matrix B(x) and
we use them while analyzing the restricted MDP problem.

Lemma II.1: For each a&A,
a) B{x) is invertible.

b) Bla) i, in IS given below:

1 if i=j and ten
Yo, tP(a, t-1) .. Pla, n+l))y; i t>n (2.16)
0 otherwise

foralli, jeSand tn=1, ., T.



Proof: Proof of this lemma is given in Appendix A.

Theorem [I.2: The optimum policy o with respect to partition § for a
MDP is given by the solution of the following problem.

Problem Dy:
Minimize R'V (2.17a)
subject to
B{a) V = C{x) (2.170)
jof
Y Oy=1 forallkeo, t=1, T (2.17¢)
=]
Qyet= O forall keO, aeA, tal, ., T (2.174)

Proof: We start with the unrestricted MDP in Problem Fp. Introducing

the unobservability constraints with respect to partition § we obtain
Problem Dj.

Replacing all yiat's in Problem Fp by wiy Qyat's, we may restate
Problem Fp as a nonlinear model. However, in order to construct the
restricted MDP model with respect to partition §, those replacements are
made according to the relation

Viat = Wit Oigfijat O all i€S, ach, t=1, ., T (2.18}
which are, in fact, the unobservability constraints with respect to

partition § since « is defined over the policy space A;. Then, (2.9¢)
becomes

o N
2 Wit Qxlizet - Y2 2 Wite1) Pi(@) Cgipatessy = 0
o= =1a=1
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and the MDP with respect to partition 8§ is given as

Problem PDy:
N T
Min 3 2 wicilx) (2.19a)
iz t=i
subject to
wir =i for all ie$ (2.190)

N
Wit~ Y2 Wity Pu(cx, t+1) = O for all ieS, t=1,.., T-1  (2.1%)

1
M
S Qg=1 forallkeo,tsl, ., T (2.19d)
#=1
Gyt 2 0 for all keO, agh, t=1, ., T (2.19e)
wir2 0 for all ieS, t=1, ., T (2.19f)

The constraint sets (2.19b) and (2.19¢) can be written as B(a)' W = R.
Since B{ax) is invertible as shown by Lemma [I.1a, using

W'sR' B(a) ™! (2.20)

Problem PDj takes the following form:

Problem PDy:
Min R'B(x)’ Cla) (2.21a)
subject to
ol
3 Cyet= 1 forall keo, t=1, ., T (2.21b)
o=l
Gyt 2 0 forall keO, acA, t=1, ., T (2.21¢)
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Defining V=B(x)'C{a), Problem Dy follows.

From product R' B{&)™, the discounted probability of being in
state i in period t under policy & can be written as

N 1 -1
Wit =2 Z RmB(Q) jnit
1 n=T

N -1
=2 Pj B{ax) iT.it
#1

For t=1, ., T-1,

N T-1
Wit =Z pi (Y( )p(Q, T .. p(Q, te 1))’1
=1

(T-t) N
2

Pj (P(a, T) .. Plax, t+ 1))ji
=1

=y{I-® Po(X1=i) for all ieS, axeA; (2.22a)

and for t=T,

N -1
Wit = Z p,- B{x) TAT
1

’Pi
aPo(Xpsl) for all {€S, xeA; (2.220)

The summation of the discounted probabilities in a period is given as
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N T-t
T W= Y( ‘ for all i€S (2.23)

isi

Since the subset A; defined by (2.17¢) and (2.17d) is closed and
bounded, it is compact, and the objective function is a continuous
function of . So, the optimum cost is

B(o*) - Minimum {x' Blx) c(a)} (2.24)
QEAi

where

. t-1 N
(B(on) 1(:(o‘))u- clax)+ T T Y(H) (P(ox, t) .. P(x, n+1))ijc,',(a)
nel if 1 j=i
=v, forallies t=1, ., T (2.25)

Then,

* Smﬁﬁ.mum R'v
dla®) e, {R'V}

i N
= minimum {Z Pi Vn'} (226)

XREA i=1

Note that Problem Dy in (2.17), Problem PD¢ in (2.19) and Problem PDy in
(2.21) are all different statements of the same model. In an open form,
(2.17) can be written as

Problem Di:

N
dl{ax*) =Min 3 p; vir (2.27a)

i=1

subject to
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M N
Vitm 2, Xglidat {Ci‘ Y2 Pii(a)vj(‘l'l)} for all {e§, tal, ., T (2.270)
a=l =1

Vio=0 for allieS (2.27¢)
M
Y Gyge=1 forallkeo,t=1, ., T (2.27d)
=1
Quat 2 0 for all ke0, acA, t=1, .., T (2.27¢)
vt unrestricted for every ieS, t«{, ..T (2.271)

If we consider the structure of B(c) " given in Lemma II.1b or
the recursive relationship (2.27b) between v;t ‘s Problem Dy can also be

stated as follows:

Problem Dy:
A Tl a4
Minimize p'| cfa)+2 ¥ Plx, T).Pla, t+1)efax) (2.28a)
t=t

subject to
i
Y Gyqt=1 forall keO, t=1, ., T (2.28b)
=]
Cuet2 0 for all kKe0, agA, t=1, .., T (2.28¢)

From that point on, except otherwise stated, by Problem Dy we
refer to the model in (2.28).
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Hence, we have a problem with a nonlinear objective function
to be minimized over a set of linear constraints. Note that in the
objective function, every type of decision variable appears at most to the
first power in multiplication ferms. Such nonlinear programming
problems involving the sums of products of variables of at most first
degree in objective function or constraints are called muitilinear
programming problems(Drenick, 1992). The term ‘muitilinear’ comes
from the fact that the variables can be combined into sets so that if all
the variables are fixed except the ones in one set, the resulting problem
isan LP. For the statement of Problem D; in (2.28), partial policy (xy14,
21, .., CEMt) cOrresponding to period t forms a variable set, resulting in
a total of T variable sets. In literature, the solution approaches to
multilinear models are problem-specific. In a recent study,
Drenick(1992) shows that many characteristics of linear duality theory
are preserved in multilinear problems. Drenick states that "a globally
optimal sotution to a multilinear programming problem, if it exists, lies
on the boundary of its feasible region, this is true also of a locally
optimal solution™. For the present case, this observation implies that at
least for one subset k - action a - period t, the corresponding probability
it IS 2070, BUL, multilinearity leads to a stronger result for Problem Dy.

Whether the optimal policy is randomized or deterministic is
important for implementation purposes. In this respect, the result stated
in Theorem II.3 is important,

Theorem II.3: There exists a deterministic global optimal policy to
Problem Dy.

Proof: Problem Dy is bounded, and has an optimal solution. Suppose the
optimum policy o* in periods 1, 2, .., t-1, t+1, .., T is known and we are
to find the optimum partial policy for period t, (X114, .., C1Mt, K21t , -
agmt). Then, Problem Dy becomes the following linear program:

N M N
Min I w*; 2 OCg(ijat (ci,'e ¥ Pifal V*j{t-l))“' constant (2.29a)
=l el 1
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subject to

M

T Gyt =1 forall keO (2.29b)
o1
Qyuetz O for all k€0, acA (2.29c)

where w* and v* are constants defined by optimum policy of periods T,
T-1, ., t«l and t-1, ., 2, 1, respectively, and the constant term is the
optimum expected discounted cost for the first (T-t-1) periods.

The extreme points of the feasible policy space defined by
(2.29b) and (2.29¢c) correspond to deterministic policies. When the
objective function is stated as

K It N
2 2 Opet 2 Wt (cia"' Y2 Pijfa) V*j(t-l)) (2.30)
k=1 a=l i€5« =1

it can be easily observed that there is a deterministic optimal policy for
period t.

. N
if a= 28T 5 o, cipr YZ Pigld) ooy
OL’;,F beA ig5, ' =1 ” & (2.31)

0 otherwise

for all keO. Assigning this deterministic partial policy to period t and
repeating the same discussion for all periods one by one, a deterministic
optimal policy is obtained.

2.2. Solution Method

Since Problem D is defined over a finite planning horizon,
with finite action and state spaces, a deterministic optimal solution can
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be found by complete enumeration. But, as the number of actions or
subsets or length of the planning horizon increases, complete
enumeration becomes cumbersome.

For solving Problem Dy, dynamic programming can not be used
due to the structure of the recursive relationship in (2.27b). For a policy
to be feasible with respect to partition § the decision rules must be the
same for every state of a subset. Consequently, the optimality equation
takes the form given in (2.31), unlike (2.5).

In order to obtain a good solution to this problem, we use the
method of feasible directions (Bazaraa and Shetty, 1979). In the rest of
this section, we assume we have a fized policy « which is restricted with
respect to partition 8 A vector @ is a feasible direction for Problem D; at
«, if

p=zo0 (2.32)
and 3 6(g»03
(x+ 8p)cA; for all 8¢(0, 6()] (2.33)

We pick a feasible policy and search for feasible descent directions for
the problem at that point. If we can find such a direction, a line search
may provide us a policy with some improvement in the objective
function value. Then, we repeat the procedure at the improved policy
and continue that way until we are stuck in finding feasible descent
directions. Note that such points are either local minimum or saddle

point.
Lemma [[.4: g is a feasible direction at o, if

pmz 0 for Agqt = 0

(2.34a)
Pret = 0 for Qgge =1

and
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M
Y Prst=0 forallkeO, t=1,.,T (2.34b)

i

Proof: since (x+8p)eA;, we should have

0< Qygt+ Pyt < 1 forall ke, acA, t=1, .., T for 0€(0, 8(B)],

implying (2.34a). (x+6P)eA; also implies

by !
T (Gigat* OPyat) = | for all keO, t=t, ., T
321

o M
2 Cgat* O Pat = |

=1 =1

where

M
D Qpet= 1 since xeA,
a=1

Then,

by d
2 Pxet = 0 forallkeo, t=1, .., T

=1

which is (2.34b).

In order to bound the set of feasible directions, we use
normalization constraints. However, due to the structural properties of
Problem Dy, use of two different normaltization constraints brings about
two solution algorithms. Algorithm 1 iterates between deterministic
policies because the corresponding normalization constraint guarantees
policy improvement with a step size of one unit. On the other hand, the
constraint used for Algorithm II causes the algorithm to consider also the
randomized policies.
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From now on, we use the term “the direction vector p makes
¢hanges in the partial policy of period t. It means that at least two
components of B corresponding to period t, say Puet and Pype for a, beA
are nonzero for some k, so that the partial policy corresponding to period
tin x+8p is different than that of «.

Since Problem D; is a minimization problem, during the search
for a minimum the directions that we concentrate on are descent
directions. Negative directional derivative of ¢ at a point & in the
direction of @ is sufficient for B to be a descent direction.

Hence, we now aim to find a feasible direction p for which
Vo({a) p<o,ie,

LT IY)

222

%=1 a=1 t=1 9% xat

Prat < 0.

The gradient vector of the objective function is of dimension KTM as
given below:

Vo= (., P (2.35)

3% ot

From (2.27a), the partial derivative of d(x) with respect to Gyt is

N )
8@(0) = z pi avtr (236)
Ckyat sy  ICygt

Differentiating (2.27b) with respect to Qyet, we get
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N
Cia* Y2 Pif@)vi-1y if ieSyand t=n
=1

N .
doxet | YZ Pifax, n)f-w-ﬁﬁ2 if1sts(n-1)
=t 3% yqt

(2.37)

0 otherwise

for alln, t=1, .., T and k€0, acA. Using (2.36),

N
Plax) =3 p {c“ + Y2 Pii{aﬁ!gr-l)}
jo

IQgeT  igs,

where pj=wir,

N N
QX go(T-1) =t jESx m=1

N
where Y2 P; Pi{a, T)swyr.y),
a1

Plax)y ¥ ¥ X
=2ZDiYZ P&, T)Y 2 P, T-1) < Cogt¥ 2 Pem(@)¥ ii7-2)
IQpe(T-2) i=1  j=1 mESy =1

NN N
where ¥ 3 3 p; Pi{@, T) Pylax, T-1)=¥3 Wir-1) Pim{x, T-1)
jalial =1

= Win(1-2)

In general,
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N
W, 5 wu{cm v Pﬁta)vxt.n} (238)
I%get  igs, =1

for alit=1, ., T and ke0, acA. The expression in {2.38) is a weighted sum
of the test quantities used in (2.5) in stochastic dynamic programming
where the weights are the discounted probabilities. Note that, for any
given policy &, corresponding w and v can easily be computed using
(2.19b), (2.19¢) and (2.27b), (2.27¢), respectively.

Before we explain how a feasible descent direction is selected,
it Is necessary to give some results about the step size ©, which are
crucial for the solution procedure. Suppose we have a feasible descent
direction P. If we substitute the new policy vector a+8f in the objective
function of Problem Dy, we obtain a function of 8. We refer (x+6p) by
f(8) for the given @ and P, to be minimized over (0, 6(p)].

The behaviour of {(8) as a function of the step size ©, at a
given point and along a given direction, is analyzed in Proposition II.5.

Proposition I1.5: Suppose a feasible direction p makes changes in

partial policies of n periods. Then, {(8) is a polynomial of order at most n
over (0, 8(p)].

Proof: Let the feasible direction p make changes in partial policy of n
periods. If we substitute the new policy vector p=+6f in objective
function (2.28a) of Problem Dy, 8 appears only in the transition matrices
and the cost vectors of these n periods as

M
clpl= 2 (Otm}« +8Py(iat) Cia

a=1

u
=C{@) + 82 Putidat Cia

a=1
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M
Pip.t)= 3 (O‘k(i)tt *9131:(1):&) Pifa)
3

M
=Py, 1)+ 03 Pyiat Piffa)

a=1

Hence, if t is one of these n periods, each entry in P(x+6p, t) is linear in
8. The transition matrices corresponding to other periods are constants.
Hence, the highest order term in (2.28a) is

Y(r-n P (P(p, T) P(p, T-1) ... P(p, 2) cl(p))

from which Proposition I1.5 follows.

Corollary I1.&: If VO(«)'P « O for a feasible direction P changing the

partial policy of one period only, then f(©) is a linear function of 6 over
(0, 8(P)].

Thus, minimum {(8) is at 6=6(@). Similarly, if V&{a)'p = 0 for
such a @, then 1(6) = P(ax) for all ©(0, 8(B)].

[f the directional derivative at a given point a is negative for
some feasible direction @, then there exist other policies, with lower
expected total discounted cost values, to which we can reach by
proceeding along that direction. If the minimum value of directional
derivative at a is nonnegative, ie, if the necessary Kuhn-Tucker
conditions are satisfied, one of the following cases holds:

Case 1) If V@{x)' p = 0 for some feasible P, then « is either a

saddle point or a local minimum. Note that this case may also result
from a zero gradient vector Vd(a).

Case 2) If V&{a) B » 0 for all feasible p at «, then « is a
local minimum.
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2.2.1 Algorithm I

The first algorithm we develop iterates between deterministic
policies, using the fact that there exists a deterministic global optimal
policy to Problem Dsy. In order to guarantee improvement at each
iteration from one deterministic policy to another, a descent direction is
selected in such a way that the policy improvement is achieved through
changes in the partial policy of only one period, although there may be
other periods implying improvement, i.e, contributing the directional
derivative with a negative value. From Corollary 11.6, proceeding along
such a direction causes improvement at a constant rate. Then, if the
search procedure starts with a deterministic policy, iterations occur
between deterministic policies by taking a step of size one at each
iteration.

As in the case of policy iteration algorithm of Howard(1971a,
197 1b) for unrestricted MDP, we may proceed along a steepest descent
direction for solving Problem Dy, if there exists any. In order to find the
steepest descent direction at a given deterministic policy a« when
Gratk.it= 1 for Ak LIEA, we need to solve the problem of minimizing the
directional derivative under the constraints defining a feasible direction
at & and the step size is fixed at 6=1. '

Problem SD1{a):
K1 HM sl
Mo 333 Pr 2 (2.3%)
%=1 tut gmi 3K yqt
subject to
oi
S Pyst=0 for all keo, tal, ., T (2.396)
a=1
Prauapns 0 (2.39¢)

0% Prat< 1 forall ke0, t=1, .., T, acA-{d(k )} (2.39d)
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P makes changes in one period only (2.390)
p=0 (2.390)
Prat UnToStricted (2.39g)
An optimal sotution to (2.39) that is also the steepest descent

direction under the constraint (2.39e) can be identified as given in
Theorem I1.7. Let

acA3a7d(kY) | dygt | ICyaqr it
Theorem [I.7: The optimal solution to (2.39) which is the steepest
descent direction at the deterministic point &, under the constraint that
allows change in partial policy of only one period, is

(| ifttfanga. rgmin J3(®)
beA 3 b2d(R,L) | 30y
rat = (2.41)
Pt i bt and a=d(t)
Lo otherwise

where if there exists a k-t pair such that r{k t)<0, then

. K
tea ML J 5 min {r(k,t),0}> (2.42)
k=i

If r(k,t)20 for all keO, t=1, ..,T, then
t*a t“gmm{ {r(k,t)}} (2.43)

and the corresponding minimum directional derivative is
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. N
: minimum ,
min Wil ¢ P;{a)v e
kZ { agd 32 ’(kat*){igslt 1’(( n"Yi% v ite-1)

N
- Cigr Y2 Pij(d(k,t*))vi(to.l)) }0} if 3a k-t pair 3 r{k t)0
=1

and

miiigum{r(k,t*)} if r(k,t}20 for all k€0, t=1, .,T (2.44)

Proof: Let the current policy & be deterministic with Gygqx =1 for all
ke0, t=1, ., T, d(k t)eA. The problem in (2.39) is separable, i.e, it can be
written as KT subproblems, one for each subset in each period. The
optimal value of such a subproblem is r(k, t) as defined in (2.40) which
selects an action better than the current action d(k, t} if there is any, and
the optimal solution to such a subproblem is

i 1 if am argmln 5¢(Q)
beA 3 b‘d{k,t’) ﬂC\kh
-1 if a=d(k, t)

L0 otherwise

Prat=s for all keO, t=1,..T (2.452)

If rk,t)<0 for some pair, then the resulting minimum contribution from
period t is

2 rik,t) (2.45b)
k€0 3 rik,t)<0

and (2.42) follows. If r(kt):0 for all, then the objective is minimum
when t is given as (2.43) since p=0. Then, the optimal objective value is

3 minimum { rkt*)0>  if 3a k-t pair 3 r{k t)0
k€0
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mii’g“m{r(x,t*)} if £k t2>0 for afl k€0, t=1, ..,T

and the proof is complete.
Now, we can give Algorithm I.
Algorithm I

Step 0) Initialization: Choose a deterministic initial policy
QEA;.

Step 1) Policy Evaluation: Compute the expected total
discounted cost P(x).

Step 2) Policy Improvement: From (2.42) and (2.43), find the
period t implying the highest improvement among all periods and the
minimum directional derivative from (2.44). If it is positive, then stop,
$(ax) is a local minimum. If it is equal to zero, then stop, $(x) is either
a local minimum or a saddle point; if negative, go to Step 3.

Step 3) For every subsetk, if

minimum N N
agA 3 2 Wip| Cit Y2 Pif@)Vie-1y-Ciatu oy Y 2 Pifl IR PV jpe-1)
azd(k t*) | ‘€ = P

is negative, let

. ¥
| ifa- Aargmin 2 Wip| CigtY¥ 2 Pi{DI¥ye.yy
et beA 3 b=k ) 15 ot

0 otherwise

for all ke0. Go to Step 1.
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2.2.2. Algorithm II

Using feasible descent directions that change the partial policy
of only one period at an iteration may cause the algorithm to terminate
after a large number of iterations. Another disadvantage of Algorithm I
is the risk of termination with a deterministic local optimum or saddle
point in spite of the fact that there may exist a randomized local
optimum or a saddle point with a lower expected cost. The reason is
that, Algorithm I does not take randomized policies into account. Along
the line between two deterministic policies of two successive iterations
of Algorithm I, there can not be any point satisfying necessary Kuhn-
Tucker conditions, because the expected cost function decreases linearly.
However, there can be randomized policies which do not lie on any such
line.

In this section, we propose another algorithm, Algorithm II, for
solving Problem Dy which allows changes in partial policy of every
period in an iteration and proceeds along the steepest descent directions.
Recall from Proposition [1.5 that directions making changes in more than
one period cause the expected cost function to be a nonlinear function of
step size. Then, for minimizing the cost function along such directions,
the policy improvement step must include a line search, which is the
computational burden of this algorithm and may slow the algorithm in
terms of the computation time required until termination. On the other
hand, it may decrease the number of iterations. Relaxing the restriction
on the direction of Algorithm I, Algorithm II is given the chance of
detecting randomized local optima or saddle points. The line search
procedure of solving

inimum
8e(0,8(p*)] {1}

requires more effort than nonstationary case for which 9 is fized as 8=1.
In the present study, line search is carried out by evaluating f(8) which
is a polynomial of degree at most T, at 100 points and a minimum is
selected as the optimal step size.
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The steepest descent direction for Algorithm II is the solution
of Problem SD1 where (2.39¢) and (2.39d) are replaced with

Pratz 0 fOr Qygt =0
and
Prats 0 for Ciggt= 1
and (2.39e) is replaced with
H
Y |Pust|< K foreachkandt (2.46)
=1

K is a constant. If

rlg, ) Minimum aq><a)} a(b(oz)} (2.47)
AEA I Qpgp¢l | 3Qyqt aeAaak,po I gqt

is negative, then the contribution of k-t pair to the directional derivative
is given a weight of one. For the restricted MDP problem with stationary
policy over infinite horizon, Serin(1989) utilizes unit norm and
accordingly introduces the steepest descent direction, which will be
summarized in Chapter III. From Serin(1989), it immediately follows
that the direction to be selected at an iteration of Algorithm II is as
characterized by Corollary 11.8.

Corollary I1.3: The steepest descent direction for Algorithm II is
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1 i rik tyoanda. arEmin [0
2 beA 3 Qkht<l I ght

1 if ik t)<0anda= 2fEBMAX idla) (2.48)
2 bEA 3 GypP0 | 3gpt

.0 otherwise

if there is a k-t pair such that r{k t)<0. If r{k t)20 for all keO, t=1, .. T, p*
gives the nonnegative minimum directional derivative as

1 if xk*and t-t*anda- 2rgmin Plax)
2 beA 3 Qkht<1 aqkht

if k=k*and tt* and a= 2r8MAX {

1 () (2.49)
2 beh 3 X0

aam

L0 otherwise

where (k*t¥)= 2TBMID  frp 4y}
( : ke0, t=1, ...,T{ ( )}

Computation of maximum feasible step size at a randomized
policy is not straightforward as in the case of Algorithm I. The following
lemma shows how to find the feasibility limit on the step size for a given
direction at a given point.

Lemma I1.Q: The maximum feasible step size 6(p*) along the feasible
direction P* is given by
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Proof: From the definition of 8(p*), (x+0p*)ed; for all 8¢(0,0(p*)]. It
implies that

0% Cpat+ OP¥sqt <1 forall ke0,ach, t=1, ., T

Then, we have the following inequalities for all keO, t=1, ., T:

o2 ﬁf’“‘ if P¥ > 0 (2.51a)
6 1'*°““* if B¥p 4> O (2.51b)
P xat
Uget .
0 < P a— if p#kat <0 (25 ic)
| B* at]
02 ﬁ}":‘ ll if B* < O (2.514)

where (2.51a) and (2.51d) are redundant. Sifice 1-Qiyet2Ciynt fOr a,bEA,
using the definition of @*, the tightest restriction on © is given as

minimum
8z ke0

t=1, ., T {3&‘1 3 % ¢at >0 AgA 3 %0

B CCEE™) R {Zam}} (2.52)

Corollary 11.10: If the feasible direction P at a point «, makes
changes in the partial policy of one subset, m, in only one period, n, such
that Pmun’0, Pman<0 and Pyae=0 otherwise, then the maximum feasible
step size 8(P) is given by 2Cmda.

As mentioned before, it is possible that Algorithm II may stop
with a randomized policy although there is a deterministic global
optimum. The last part in this subsection gives a procedure to obtain a
deterministic policy which is equivalent to a global optimal randomized
policy. If the algorithm stops with a randomized policy, then there must
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exist a deterministic equivalent, if it is global optimal. If there is no
equivalent deterministic policy, then the current randomized policy is
not global optimal. If there is, it is possibly but not necessarily global
optimal. Before giving details of this procedure, a property of the
directional derivative at a randomized policy is given in Lemma II1.11.

Lemma II.11: Consider a point & at which for each feasible direction
the corresponding directional derivative is nionnegative. If the policy &
is randomized, then the minimum directional derivative at « is zero.

Proof: Since we assume
vd(a) p= 0 for all feasible B (2.53)

is satisfied at a«, it is sufficient to prove that there exists a feasible
direction P such that the corresponding directional derivative Vod(a)' g

is zero.

Let the partial policy corresponding to some subset m in
period n be randomized. «x satisfies necessary Kuhn-Tucker conditions
since the minimum directional is nonnegative. Let M.t and Ay be the
lagrangian multipliers corresponding to the constraints (2.28¢) and
(2.28b), respectively. Since the objective function (2.28a) and the
constraint functions are all differentiable and continuous, the necessary
Kuhn-Tucker conditions for Problem Dy can be given as follows:

W), Ayt~ Mgt =0 (2.54a)
ICgqt

- Mggt Kgat = 0 (2.54b)
Mgt 2 0 (2.54¢)
Ay UDrestricted (2.544d)

for all KeG, acA, t=1, ., T.
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Let a direction P make changes in policy of only state subset m
in period n and for actions such that O<cmsn<1. When the refation (2.54a)
is used, the corresponding directional derivative

TN
(@) Pe 333 puu 22
sitslgnl 3% grqt
takes the following form:
TN
VO() B= 2 3 3 Prat (Myat - Mt)
k=1ts1es1
= 2 2 2 Prat Myat - At Z Prat (2.55)
x=it=t \ amt

:
where Y Py.¢ = 0 by definition of B from (2.34b). Then,

=1

N

KT N
VO(x) = 2 2 2 Piet Mpat (2.56)

ksitnigni

Since Pyat is nonzero only for m, a, n such that 0<Qpen¢ !

vd(a) P 3 BumenMmen (2.57)
€A 3 0¢Cpant |

On the other hand, from (2.54b), Uman IS 2610 for all €A I 0<Qimencl. S0,
the result follows.
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Coming back to the procedure, let & be a global optimal
randomized policy. Our purpose, now, is to obtain a deterministic policy
which is equivalent to . Let

SR(x) = {t=1, .., T: O«Qgqt<1 for some ke0 and acA} (2.58a)
ie, @ makes randomization in period t if teSR{x}, and
Hi{a) = {Ke0 : 0 < Oyqt < 1 for some acA} (2.58b)

for all t=1, ., T, ie, policy « is randomized for subset k in period t if
keH{ax). Note that for every teSR(ax), Hi{ax) is not empty since « is
randomized. Select B so that it changes partial policy of only subset, m,
for meHa(x) -and neSR(a). There must exist u, deA 3 O«Gmga<l and

0<Cpun¢l for some meO, N=l, ., T. Let fuun’0, Pmdn<0 ANA Piet=0
otherwise. Then, the directional derivative V@(x) P is zero from

Lemma II.11. From Corollary I1.6 and Corollary 11.10,

f(6)=d(x) for 6=2Cp4,

So, the policy p, obtained by proceeding along the given direction g with
a step size of 8(f), is an alternative optimum to « and

Pman = Cmen for all agA-{u, d} (2.59)
2
Pman = Kman + 7
= Clman + Cmdn (2.60)
Pmda * Kmda~ ée‘
=0 (2.61)
Prat = Ogat  fOr all keO-{m}, te{l, .., T}-{n), acA (2.62)
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Note that since « is global optimum and p is an alternative to «, (2.53)
still holds at p. We, now, concentrate on the following two cases for the
purpose of obtaining a deterministic policy as an alternative to
randomized global optimal policy.

Case 1) If Gipun + Omdn = 1, i, partial policy p is deterministic
for subset m in period N With Pmun =1 aANd Pmin=0, then in period n the

number of subsets with randomized policy is decreased by one, ie., since
m¢Ha(p) [Ha(p)l = Halax)] - 1.

Case 2} If Cmun + Cmda ¢ 1, 1, partial policy p is still
randomized for subset m in period n, then in order to reach an
alternative policy <, which is deterministic for subset m in period n with
Ha{t)| = Halax)| - 1, we need to continue proceeding atong directions
having the properties of B. Afterwards, we concentrate on another
subset 1eHa(T); if we face with case (1), then we obtain another
alternative optimum to & with a deterministic partial policy for subset 1
in period n. Continuing that way for every subset for which the partial
policy & in period n is randomized, we reach an alternative optimum n
which is deterministic in period n, ie, Ha(n) is empty and [SR(n)| =
[SR{x)| - 1. If SR(n) is empty, then n is a completely deterministic
alternative optimum policy to «. On the other hand, if SR(n) is not
empty, i.e, there are still some periods with randomized partial policies,
then we need to continue with another period in the set SR(n) untit it
becomes an empty set.

This procedure is based on proceeding along directions with
zero directional derivative. This may result in cycling. For that reason,
we do not integrate this procedure into Algorithm II.

Now, Algorithm II can be presented.

Algorithm 11

Step 0) Initialization: Choose an initial policy xeA.
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Step 1) Policy Evaluation: Compute the expected total
discounted cost P{ax).

Step 2) Policy Improvement: From (2.48) or (2.49), find the
minimum directional derivative. If it is positive, then stop, d(a) is a
local minimum. If it is equal to 2ero, then stop, P(ax) is either a local
minimum or a saddle point; if negative, go to Step 3.

Step 3) Compute direction p* by (2.48) and the maximum
feasible step size by (2.50).

Step 4} Make a line search on 1(8) over 8¢(0, 6(p*)]. Pick a
policy corresponding to some step size 9y with ${x+9¢p*)«P(x), then
take a+8yP* as the new policy and go to Step 1.

Example [I.1: In order to check validity of the proposed algorithms for
unrestricted MDP, we solve an example {rom Hilller and Lieberman
(1974: 560-561).

N=4 states, M=3 actions, K=4 subsets, S= {{1}, {2}, {3}, {4} }, T=3 periods

0 0.875 0.0625 0.0625 0100 {000
0 075 0.125 0.125 0100 {000
P19 07 05 o5 | P@90100| PO 1000
0 0 0 { 0100 1000

p=[02,04,03,0.11and y=0.9

¢11=0, ¢12=4, C13=0; C21=1, C22=4 C23=0; C31=3, C32=4, C33=0; C41=00, C4p=0,
C43=6

For infinite cost values, we take 100. Let policy 1,2 and 3 denote the
following:

1 ... (Ggit, Ggat, Sxest)=(1,0,0)

2 .. (Ope1t, Ogezt, Caest)=(0,1,0)
3 ... (Cg1t, Ogzt, Cese)=(0,0,1)
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Initial policy is (1, 1, 1, 1; 1, 1, 1, 1; 1, 1, 1, 1), where the first four
entries show the policies selected for every subset in the first period of
the planning horizon, t=3, 30 semicolons separate periods.

A special form of Algorithm I making changes in one subset at
an iteration, gives

Table 2.1 Textbook Example

Iteration Policy () dla)
1 (1,1,1,5,1,1,1,1;1,1,1, 1) 72.47
2 (1,1,1,8:1,1,1,31,1,1, 1) 24.86
3 (1, 1,1, 1:1,1,1,3:1,1,1, 3) 14.63

4 (1,1,1,3,1,1,1,31,1,1,3 4.305
5 (1,1,2,31,1,1,3:1,1,1, 3) 4.07

6 (1,1,2,%,1,1,2,31,1,1,3) 3.996

which is the same result given in the textbook.
Example [[.2: Consider the following three state MDP with M=2 actions
and K=2 subsets.

S1={1} and 52={2, 3}

0.3 05 02 0.
P(1)={ 0.2 0.6 0.2 |and P(2)«f O.
04 02 04 0.

~ O

4040
1030
2010

d

¢11=2, C12=3 and ¢z1=19, C22=2 and ¢31=3, ¢33224

p=[0.2, 05, 0.3]and y=0.8

Let policy | and 2 denote the following:
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1.. (&gt Gxat)= (1,0)
2 ... {ogat, Cxat)= (0,1}

a) A summary of first iteration, by using Algorithm I for a 4-
period planning horizon, is given below:

Initial policy is (2, 2; 2, 2; 2, 2; 2, 2), d{x)=37.39.
Partial derivatives of ${x) are given in Table 2.2:
Table 2.2 Example for Algorithm I

Partial derivatives of {(xx) with respect

Action  Period to Ciyqt fOr k equals to
a t 1 2

1 l 023 2.38
2 1 0.34 7.25
1 2 0.99 7.68
2 2 1.15 16

1 3 2.40 15.8
2 3 2.48 26.12
1 4 466 28.7
2 4 4.73 32.66

Table 2.3 Example for Algorithm I

Period r(k.t) for k equals to

t | 2 __Vdlx)y g

1 -0.11 -4.37 -4.48 ‘no change
2 -0.15  -8.34 -§.49 no change
3 -0.08 -10.31 -10.39 change

4 -0.072 -395 -4.022 no change

Then t*=3. Continuing that way,
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Table 2.4 Example for Algorithm I

dla)

Iteration Policy ()

1 (2,2;2,2; 2,2, 2,2)
2 2,2; 1,1; 2,2; 2,2)
3 (2,2; 1,1; 1,1;2,2)
4 {2,2; 2,1; 1,1, 2,2)

37.39
26.99
23.91
23.85

b) A summary of first iteration, by using Algorithm II for a 4-

period planning horizon, is given below:

Initial policy is (2, 1; 2, 1; 2, 1; 2, 1), ${x)=30.53.

Partial derivatives of () are given in Table 2.5:

Table 2.5 Example for Algorithm I

Partial derivatives of ¢(ax) with respect

Action  Period t0 Gyet [OF K equals to
a t 1 2

1 1 0.32 4563
2 1 0.48 352

1 2 2.15 9.4

2 2 2.1 6.76
1 3 4.18 15.46
2 3 4.07 1156
1 4 452 26.11
2 4 4.42 20.4

Table 2.6 Example for Algorithm II

Period rik,t) for k equals to
t 1 2 Véia) g
1 -0.16 -1.11 -1.27 change
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Table 2.6 (Cont'd) Example for Algorithm II

Period rik.t) for k equals to

£ 1 2 Voi{alrp

2 006  -263 -2.63 change
3 0.12 -39 -39 change
4 0.1 -5.72 -5.72 change

Then, Algorithm II makes a line search to make changes partial policy of
subset 2 in all periods and of subset 1 in period 1. Continuing that way,

Table 2.7 Example for Algorithm II

Policy & in the period
Iteration 4 3 2 | $lax)
l {0.1.1.0) {0.1.1,0) €0.1.1,0) €0.1.1.0) 3053
2 (0.1,.67,..33) (0.1,.67,.33) (0.1,.67..33) (.33..62..67..33) 28.29
3 (.33,.67,.34,.66) (.33,.62.1,0) (.33.62.1,0) (66,3410 26.73
4 {0,1,.01,.99)  (0,1,1,00 (0,1,.62.3%) (.99,.01,.67,.33) 24.66
p (0.1,0.1)  (.01,.99.1,0) {.01,.99..68..32) (1.0..68.32) 24.60
6 (0.1,0,1)  {13,.82.1,0) (.13.82.8.2) (1.0.8.2) 2453
7 {0,1,0,1) 0.1,1.0)  €0,1,.93.07  (1,0,.67.33) 24.45
3 {0.1,0,1) (0,1,1,0) {072,930}  (1,0,.6,.4) 24.36
9 {0.1.0,1) {0,1.1,0)  (62.33.1.0)  {1,0.0.1) 23.78
10 (0,101} {0110 €1.0.1,0) €1,0,0,1) 23.70

C) A special form of Algorithm I, making changes in one
subset at an iteration for a 4-period planning horizon gives

Table 2.3 Example for Algorithm [

Iteration Policy () dlx)
1 (2,1;2,1;2,1;2,1) 3053
2 (2,2; 2,1; 2,1; 2,1) 24.82
3 (2,2;2,1; 2,1; 2,2) 24.09
4 (2,2;2,1; 1,1; 2,2) 23.85
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Table 2.3 {Cont'd) Example for Algorithm I

Iteration Policy () dlax)
(2,2;2,1; 1,1; 1,2) 237

wn

d) In Table 2.11, we give the best policies we reach for 4 to 18
period planning horizons where policy 1, 2, 3 and 4 are given as

.. 1 for subset 1 and 1 for subset 2
.. 2 for subset | and 2 for subset 2
.. 2 for subset | and 1 for subset 2
.. 1 for subset 1 and 2 for subset 2

BN Lo N e

Note the convergence of the optimal costs and the policies.

Example [I.3: The same as Example 11.2 except the cost figures;

€11=2, C12=3 and Cy1=4, C22=2 and ¢31=3.5, €32=2.4

a) Algorithm I for a 4-period planning horizon gives

Table 2.9 Example for Algorithm I

Iteration Policy () dla)
1 (1,1; 1,1; 1,1; 1,1} 9.92

2 (1,2; 1,1; 1,1; 1,1) 8.55

3 (1,2; 1,2; 1,1; 1,1) 7.65

4

(1,2; 1,2; 1,2; 1,1} 7.02

b) A special form of Algorithm I, making changes in one
subset at an iteration for a 4-period planning horizon gives
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Table 2.10 Example for Algorithm I

Iteration Policy (a) dla)
1 (2,1:2,1: 2,1; 2,1) 10.61
2 (2,2;2,1;2,1; 2,1} 3.19
2 (2,2; 2,2;: 2,1; 2,1) 827
4 (2,2;2,2;2,2;2,1) 7.60
p) (2,2;2,2,2,2,2,2) 7.07
6 (1,2;2,2; 2,2;2,2) 6.85
7 (1,2; 1,2;2,2; 2,2) 6.70
8 (1,2; 1,2; 1,2; 2,2) 6.57
9 (1,2; 1,2; 1,2; 1,2) 6.47
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Table 2.11 Policies for Increasing Horizon Length

Policies selected for period

T __$ia*) T T-1T-2 B

4 23703 2 3 1 4

5 26.812 2 3 1 2 1

5  29.626 2 3 1 2 3 1

7 31615 2 3 1 2 1 2 1

8 33244 2 3 1 2 3 1 2 1

29 34685 2 3 1 2 3 1 2 3 1

10 35703 2 3 11 2 3 1 2 1 2 1

11 36537 2 3 1+ 2 3 1 2 3 1 2 1

12 37.274 2 3 1r 2 3 1t 2 3 1 2 3 1

13 37.796 2 3 1 2 3 1 2 3 t 2 1 2 1

14 38.222 2 3 1+ 2 3 1 2 3 { 2 3 1 2 1

15 38.600 2 3} 1r 2 3 1r 2 3 1 2 3 1 2 3 1

16 38.867 2 3 1 2 3 1 2 3 1 2 3 1t 2 1 2 1
17 39.086 2 3 1+ 2 3 11 2 3 1 2 3 1 2 3 1 Z
18 39.279 2 3 1 2 3 1 2 3 1+ 2 3 1 2 3 1 2



CHAPTER III
MDP WITH RESTRICTED OBSERVATIONS: STATIONARY POLICIES

In this chapter, we study the MDP restricted with respect to a
partition S under stationary policies. The objective is again minimization
of the expected total discounted cost. The first two sections are devoted
to the finite and infinite planning horizon models. In the last section,
the concept of refinement is introduced.

3.1 Finite Horizon Model

In Chapter II, we obtain Problem Dy by introducing partition
constraints to the unrestricted MDP model. Now, in addition to that, we
restrict policles to stationary ones, ie, we impose the following
constraints

Ougt = Cgg forallt=1, ., T and k<0, acA

to the policy space Ay, and the stationary policy space with respect to
partition §, namely Aj, is obtained. Then, the transformation (2.14) in
obtaining restricted problem from unrestricted MDP takes the following
form:

Viets Wit Ox(iye forallt=1, . TandieS, acA (3.1
Before giving the model, we recall some definitions: the expected

immediate cost incurred in a period given that the system is in state i
and under the policy «x is



)
cf{x) = T Qy(inaCia fOr all i€S, axeA,

=]

and the transition probability to reach state | given that the system is

in state i and under the policy ax is

:
Pifa)s I oy Pyfa) foralli, jeSand acA,

=1

C{a) is a vector of dimension NT as

Cla) = (i{ax), .., enfax), ..., ci{ax), ..., eufax)).

The problem of finding a stationary policy to minimize expected total

discounted cost can be written as

Problem Dy
N T
Minimize 3 ¢;{ax) 2 Wy
i=1 t=1
subject to

Wit =Pi for all ieS

N
Wit - Y2 Wite1y Pu() = 0 for all ie§, t=1, .., T-1
=1

v
T Gie=1 forall keO

a=l
Qa2 O for all kKeO, acA

Wiz 0 for allie§, t=1, .., T
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{3.2b)

(3.2¢)

(3.2d)

(3.2¢)

(3.2



Similar to Lemma I1.1, by partitioning B{x) into submatrices,
B(x) ! is given as

1 if i=j and t=
B(a) Ligmed Y0 Pl@®®y i t>n (3.3)
0 otherwise

As in Problem Dy, the product B(a)™ C(ax) gives the conditional cost
function ¥=(vyr, ..., y1, .. Y11, .. V1)

- N - -
(5o "ccar)ie 3. (1 + .+ v Ppa’ “)ii ¢fa)

=1
= ¥4 (3.4}
Unlike nonstationary policy case, deterministic global optimal policy can
not be guaranteed for Problem D,. For that reason, as a solution method

we revise Algorithm II that allows randomized policies.

Starting with the gradient vector of the objective function in

(3.2a),
vdla)y = (., 2 (3.5)
3 gy
is of dimension KM where
T N
() = z 2 Wit {Ci,“' YZ pi,'(a) vj(‘l’-l}} (3.6)
%y  t=1iE5, =1
for all ke0, acA.

Similar to Lemma 1.4, the set of feasible directions, is defined for every
direction P that satisfies the following conditions:
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ﬁka?'. 0 if Qga = 0
(3.7a)
Pre= 0 if Qge=1
and

M
2 Pye=0 forall keO (3.70)

a1

Now, we use a normalization constraint on feasible directions that allows
to make changes in two actions in one subset and one period only.

Then, the steepest descent direction at a point a is found by
solving Problem SD2(ax).

Problem SD2{cx):
K I
Minimize 3 3 By Dl (3.82)
k=1 a=1 Qg
subject to
)
D Pga=0 forall keO . (3.8b)
a={
ﬁkaz 0 for Qe = 0 {3.8¢)
Pres 0 fOr Qyq= 1 (3.8d)
P makes changes in one subset only (3.8e)
p=0 (3.81)
Bra Unrestricted (3.3g)

Under the constraint (3.3e), the steepest descent direction at
& which is an optimal solution of Problem SD2{«x) is
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(1 if kek*and a. 27ERID aq’("‘)}
2 DEA I Cyp<]l | 3y
J
Pia=" -.!'_ if kelc* and 2 argmax {3(1)((1)} {3.9a)
2 DEA I Qyy?0 | 3Gy
L0 otherwise
where
r(g)= Minimum 3d(ax) | maximum | 3idP(a) (3.95)
AEA I Xye¢l | 3Gy, asA I 020 | 3y,
*___argmin
X i {rk)} (3.9¢)

From Corollary 11.10, the maximum feasible step size along g*, 8(p*), is
2 Qg Where

d= argmax 6¢(Q) (3.9d)
AEA I Qye?0 | 3Qpe,

For a given policy & and feasible direction P, substituting the
new policy vector p=a+0f in objective function of Problem D, step size
9 appears in the transition matrix P(ax+6) and the cost vector ¢{x+6p).
Using an argument similar to the proof of Proposition I1.5, it can be
shown that {(8)={(a+8p) is a polynomial of order at most T.

The solution algorithm for Problem D; is given below:

Algorithm I11

Step 0) Initialization: Choose an initial policy axeA,.
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Step 1) Policy Evaluation: Compute the expected total
discounted cost P{x).

Step 2) Policy Improvement: Compute the directional
derivative r(k) for every subset ke0. If r(k*) is positive, then stop,
dlax) is a local minimum; if it is equal to zero, then stop, P{x) is either a
local minimum or a saddle point; if negative, go to step 3.

Step 3) Compute direction p* by (3.9a) and the maximum
feasible step size using (3.9d). .

Step 4) Make a line search on {(8) over 9g(0, 8(p*)]. Pick a
policy corresponding to some step size 8g with P{ax+Gof*)«d(ax), then
take ax+8gf as the new policy and go to step 1.

Example I[II.1: The same as Example 11.3. Algorithm III for a 10-
period planning horizon gives

Table 3.1 Example for Algorithm I11

[teration Policy (&) dlax)
1 (.5,.5,.5,. 5) 12.76
2 (.5,.5,0,1) 10.28
3 (1,0,0,1) 9.84

Note that (1,0,0,1) is the policy that is used in all the periods except the
1ast for nonstationary policy case.

Example 111.2 : The same as Ezample 11.2. Algorithm III for a 10-
period planning horizon gives

Table 3.2 Ezample for Algorithm III

Iteration Policy {(x) dla)
1 (.5.5.5.3) 43.31
2 (.5,5,.665,.335) 42.07
3 (5,5,6717,.3283) 42.069
4 (5,5,.6782,.3218) 42.066
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Table 3.2 (Cont'd) Example for Algorithm III

Iteration Policy () dlai
5 {.5,.5,.68,.32) 42.065
& (1,0,68,.32) 42.033

2.2 Infinite Horizon Model

When the length of the planning horizon approaches to
infinity, revising the definition of the expected total discounted cost
given that the system is initially at state i, v;, the restricted MDP model
with respect fo a partition Sis given as

Problem D
N
dla*) =Minimum 3 p;v; (3.10a)
=
subject to
o N . .
Vi= 2 Owida| Cia* ¥2 Pyfalvy| forallic3 {3.10b)
2=1 =1
n
Y Oye=1 forallkel {3.10¢)
821
Tpez O forall keO, acA {3.104)
v; unrestricted for all ieS (3.10e)

which is the problem studied by Serin(1989). Under the normalization
restriction of Algerithm I11, the steepest descent direction c¢an be found
by inspection of the partial derivatives which take the following form
for infinite horizon problem:
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N
ad{ax) = Z Wi {Ci. + YZ Pi,{a) Vj} (31 1)

Qg  igs, =1

The solution procedure is still Algorithm II1. In that case, the line search
procedure is time consuming because {(8) is an implicit rational function
of 6 which is difficult to compute. The algorithm is not given here but
can be found in Serin(1989).

Example III.3: The same as Ezample 11.3,

Table 3.3 Example for Algorithm III

[teration Policy () dla)
1 (5,5,.5,.5) 14.29
2 (5,5,.2,.8) 12.62
3 (5,5,0,1) 11.54
4 (1,0,0,1) 11.04

Note that the final policy (1,0,0,1) is the stationary policy found for
finite horizon case.

Example III.4: The same as Example I1.2,

Table 3.4 Example for Algorithm [II

Iteration Policy (o) P}
1 (0,1,1,0) 51.01
2 (0,1,0.7,0.3) 46.93
K] (1,0,0.7,0.3) 46.97
4 (1,0,0.68,0.32) 46.96
5 (1,0,06777,.3223) 46.956

The function $(ax} for this problem is plotted against &y and «xz1 o
demonstrate the nonlinearity. This plot is given in Figure 3.1.
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20 d(a)

1"

Figure 3.1 Cost Function for Infinite Horizon Case

3.3 Refinement of Partitions and Bounds on Cost Differences

The idea of grouping the states (partitioning) of a MDP can
serve two purposes. If the information on the exact state can not be
acquired, partitioning is forced by the system. Even if acquisition of the
complete state information is physically feasible, partitioning may resuit
in computational saving.

However, in any case the decision maker faces with the
problem of how to partition the state set. Then, with respect to a given
partition finding an upper bound on the additional cost incurred due to
partitioning becomes useful. If, in addition, the decision maker has the
information on the cost of detailed observation then combining these, he
can make a choice for partitioning. On the other hand, methodology
developed in the present study provides means for changing,
specifically refining the partition, at any period if an improvement
seems possible.
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In this section, first we address the refinement concept for
infinite horizon models. Then we develop bounds for the difference of
the optimal objective values of restricted and unrestricted MDP's.
Analogous results can be easily derived for finite horizon problems.

A partition 8'={Qy, ...Qr} of state space is a refinement of the
partition 8={S;, ..,Sg} if for all 1=1, .., L Q;CSy for some k=1, .. K. Note that
the partition { {1}, .., {N}} cannot be refined any further. The feasible
policy space with respect to partition § is a subset of the feasible policy
space with respect to its refinement S'. Refining a partition corresponds
to relaxing some of the restrictions that force to use the same decision
rule over each subset. For that reason, the optimal policy with respect to
partition 8' is at least as good as the optimal policy with respect to
partition 8 On the other hand, the observation process with respect to
partition §' is more detailed, supposedly more costly, than partition §.

At every iteration of the solution algorithm, we can search for
refinements that imply improvement in the objective function.
However, we should point out that due to the unobservability
constraints of the system every refinement may not be feasible in terms
of the physical system. Theorem III.1 shows how to search for
refinement to obtain an improved policy at an optimal point to a MDP
with respect to a given partition.

Theorem I11.1: Suppose that r(k*)20 at the current policy. Let Si be
the set of states such that i=Sy and satisfies the following inequality

N N
Wi Ciatry * Y2 Pi{ulk)) ¥ - ¢igy - Y2 Pifldlk)) v, )< 0
=t =1
where

u)- argmin  JIN@N g ). argmax [ a0(@)
AEA I Oyl | kg, AEA 3 Xyl | d0ty,
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If Sy is not empty for some k€0, then there is an improved policy which
is feasible with respect to partition §'={Sy, ..,S%-1, Sx, Sk\Sk, Sg+1, ... Sk}

where S is any subset of Sg.

Proof: Suppose Siis not empty. Let Sy be a subset of Sg. Since r{k*):0,
Sk is a proper subset of Sx and Sg\Sg is not empty. Then, the
observation process Z; with respect to partition $' is defined by

2=k’ if X454

Zisk  Af XSy Sk
Zisk® if XeESi\Sy
Zi=Zy otherwise

and 0'={1, 2, ., k-1, %", k', k", k+1, ., K}. By definition of Sk, a direction
making changes in partial policy of k', gives a negative directional
derivative at the current point.

Corollary 111.2: 1f
N - N
Wil Cinti) * 'YZ pi’(‘lI(k):' Vi~ Cidtxe) - Yz pi,{d(k.:') v; =0
=1 j=1
for all ieSy, then no improvement in the objective value seems possible
with u(k) and d(k), even refining 8 to {S;, ..,Sg-1, {i1}, {iz}, ... liisui}, S+t
s SK}, Whete iy, iz, ..., iisy) €5%.
Once there is a possibility of improving the objective value by
refinement, the next question is how far the current policy is from the

unconstrained optimal.

First, we clearly have the following bound,
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*y _ * - _| minimum,,
dlax*) - $(1*) s P(ax) I fes, ach {cio> (3.12)

where « and T are the optimum policies for the restricted and
unrestricted MDP, respectively, and « is a feasible policy for restricted
MDP.

Note that if this bound is computed at every iteration of the
solution algorithm, a decreasing sequence of bounds can be obtained
because the algorithm moves to improved policies whereas second term
does not change from one iteration to another.

Now, we Dresent another upper bound on the differenice of the
optimum expected total discounted cost of MDP restricted with respect
to a partition § and the unrestricted form of the same MDP. The bound
is obtained by utilizing a feasible policy to the restricted MDP. For that
reason, we can compute the bound at each iteration of Algorithm III.
Note that if it is possible to obtain the optimum policy of unrestricted
MDP problem with a reasonable effort, then the bound functions as an
upper bound on the optimum objective function value of the restricted
MDP.

Let @ and p be feasible policies for restricted MDP and T and
n be feasible policies for unrestricted MDP. In this section, for the
conditional cost function v and the discounted probability w, we will use
the corresponding policy as an argument, as they were first introduced
in Section 1.2.

Let @ e a feasible policy for Problem D3 & is also feasible
for unrestricted form of the same MDP and the equivalent of & for
unrestricted MDP is given by T using the following relation:

Tia = Qx(ide fOr all i€S, acA (3.13)

Proposition II1.3: Let & and p be two feasible policies for a
restricted MDP. Suppose p=a+8f. Then,
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i=1 a=1

N o N
B(a)-0lp) = Twilp -63 Pcire (ci,wz P“(a)vj(a)) (3.14)
=1

Proof: Proof of Proposition I11.3 is given in Appendix B.

In obtaining the bound, we need the steepest descent
direction for the unrestricted MDP at the point T. So the Problem
SD2(x), presented in Section 3.1, is solved for unrestricted form of the
MDP over all feasible directions replacing (3.8¢) and (3.3d) by

PyaS1-Cyqand Py z-0y, for all ke0, ach

and taking the step size 8=1. By Theorem I11.4, we give the bound.

Theorem I11.4: Let «"and 1" be the optimum policies for restricted
and unrestricted problems of the same MDP, respectively. Let & be a
feasible policy to restricted infinite horizon problem and T be the
equivalent of « for unrestricted MDP. Suppose Algorithm III moves
from « to p along direction P and the Howard's algorithm from t to n
along direction P*, which is obtained by Problem SD2(1), ie, p=x+6f
and n=1+ §". Then,

dlax*)-d(1*) s Pp)-P(0)

+

M N
L maximumd -3 P Cia* Y Pfalw{t) | % (3.15)
Y hes | e 1

Proof: From (3.14),

N M N
G(0)-d(nd= T win) -2 p*q (Cw-"fz Pi,(a)v,(t)) (3.16a)

i=1 a=1 !
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On the other hand, let T =t+@. Then, again from (3.14),

N M N
G(0)-P(1*)= T wi(t") -2 9ia (Chi'YZ Pii(a)V,{‘t)) (3.16b)
1

i={ a=1

Recall from Section 2.1 that

3 wio) =L
WilQ) =
i -y

for all aeAd; Note that A;=A when partition 3 is defined for
unrestricted MDP, ie, as S;={i} for all ieS. As a result, since

N n N
2 -y wilt®)| - T @ia| Cia* Y2 Pif@)v (T
jat

isl a=1

is a convex combination of

o N
-2 PialCiat Y2 pij(a) V,(T)

=1 =1

terms and P is the steepest descent direction, ie.,

el =1

M N M N
z p*u (C“-O-szﬁ(a)vi('t))s z Pia (Ch'l"fz pii(a)Vj(‘t)) for ail ieS (317)
a1 =1
ne L S e g ~
O(O)-P(1*) = -L—Yma:ﬁmum -2 BYial Ciat Y2 pij{a)vj(‘[) (3.18)
ies &1 =1

Also, we can use the above reasoning to obtain
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. M N
q)(a)'d)(p) 2 'ﬁ mﬁiégum -8 2 ﬁk{i}a (C£Q+Yz pﬁ(a)vi((x)) (3.19)
B =1 =1

Thus, from (3.18) and (3.19) and T being equivalent to aie,
d{ax) = P(1), (3.15) is obtained.

Example I11.5: The same as Example II.3.

Table 3.5 Example for Bounds

Iteration P{ax) Bounds corresponding to
(3.12) (3.15)
1 16.720 6.72 8.945
4 11650 1.65 0.488
5 11.04 1.04 0

Example I111.6: The same as Example 11.3 for infinite planning horizon.
Starting with partition $ ={ {1,2,3} },

Table 3.6 Ezample for Refinement

[teration (&xyq, &q2) d(ax)

1 (0.5, 0.5) 14.288
2 (0.2, 0.8) 12.964
3 (0, 1) 12.086

At the last iteration, S;= {1} and the upper bound on d{ax*)-P(t*) is
zero. Then, continuing with partition 8 ={ {1}, {2,3} }
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Table 3.7 Example for Refinement

[teration (&34, &y2; X321, X22) dla)
1 {0,5; 0, 1) 12.086
2 (1,00, 1) 11.04
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CHAPTER 1V
CONCLUSION

In this thesis, we considered MDP under unobservability
constraints. These constraints state to use the same decision rule for a
class of states. So, not the state of the process but only the class it
betongs to should be known to take an action. Our objective is to
minimize the expected total discounted cost over a finite planning
horizon. We consider (i) nonstationary and (ii) stationary policies

separately.

We formulate the problems by introducing unobservability
constraints to the linear model of a MDP. The models can be
constructed fo have a nonlinear objective function to be minimized
over a sel of linear constraints defining the policy space. The
algorithm that we propose to solve these problems, is in fact the
method of feasible directions described in Bazaraa and Shetty (1979).
It is also similar to the Howard's policy iteration algorithm developed
for unrestricted MDP's. The algorithm is initialized by a feasible policy,
the corresponding discounted cost is computed at the policy
evaluation step, and it iterates to an improved policy if a descent
direction can be found. At every iteration, improvement is guaranteed
but the global optimality of the termination point is not due to the
nonlinearity of the model. Algorithm terminates at a point satisfying
necessary Kuhn-Tucker conditions, i.e, at a local optimum or a saddle
point.

We check the wvalidity of this solution method by solving
some problems using the nonlinear programming software MINOS and
using proposed algorithm (Example 11.2). In addition, we solved



several textbook problems using the algorithm we propose with §
=Sy, ...Su} where S;={i} for all ieS. We end up with the same results.

For restricted MDP problems with nonstationary policies, we
observed that there exists a deterministic global optimal policy, whereas
the optimal stationary policy could be randomized. Due to the nature of
the MDP's, randomized policies create implementation problems. The
same problem is encountered by Serin (1989) for infinite horizon model
of restricted MDP. The models developed in this study are all
multilinear programming problems as explained in Section 2.1. We can
deepen our studies on multilinear programming to improve the results
about the structure of the problems. On the basis of problem (i) our
study can be eztended to rolling horizon procedures, where a T-period
problem is solved at every pericd and the decision for the first period is
employed. Shapiro{1968) and Hopp et al. (1987,1989) studied on the
asymptotic behavior of the optimal policy for the discounted case of
homogeneous and nonhomogeneous MDP, respectively. In both of the
studies, observation is that convergence of optimal policy results from
convergence of the expected total discounted cost to the optimal infinite
horizon cost for every initial state, ie, vir(a*(T)) converges to vi{x*),
where a* is the optimal stationary policy for infinite horizon problem,
which could not be shown in the present case.

Ross (1989a) studied MDP models . under k linear cost
constraints. The optimal policy makes randomization in at most k states.
It is not possible to obtain similar structure in the present case. The
effects of different partitioning may be significant also in terms of
identifying the structure, like the number of randomizations, of the
optimal solution. Since the partition { {1}, {2}, ., N} } leads to a
deterministic optimal solution, grouping the states gradually, eg,
starting with { {1,2}, {3}, .., {N} } partitioning effect can be analyzed.
There is the problem of implementation of a randomized policy. We are
aware of that there is lack of comparison of numerical results of the
current approach and POMDP approach. The main reason is the
insufficient number of numerical results in POMDP literature.
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The proposed solution procedure seems to be an extension of
Howard's policy iteration algorithm to partitioned MDP. The linearity of
the ezpected discounted cost function guarantees convergence to the
global optimal solution for unrestricted MDP. In policy improvement
step, we check the existence of a better policy by computing the steepest
descent direction. This check is performed on the basis of comparing the
partial derivatives of the expected discounted cost function which is a
weighted sum

N
2 Wilciet Y2 Pifa) vy,
iS5, =1

of Howard's test quantities

N
Ciat Y2 Pya)v;.
=t

The weight w; is the discounted probability of being in state i and
computed using the initial probability distribution. Considering
independence of the unrestricted optimal policy from initial
distribution, this observation may seem to be counter intuitive, but it is
in fact directly related with not satisfying the Bellman's optimality
equation. For finite horizon case specifically, it is the reason for not being
able to use dynamic programming as a sotution procedure. Moreover, the
policy obtained by using POMDP method also depend on the initial
distribution.

We introduce the concept of refinement and develop bounds
on the optimal cost value that could be evaluated at every iteration of
the algorithm. For our sample problems, the bounds do not perform well,
implying a further study on obtaining stronger bounds. As in all
aggregation/disaggregation procedures of Mendelssohn(1983), Birge
(1985a, 1985b), there is the problem of answering the question “how to
partition?”, if a natural one is not imposed by the system or when an
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aggregation that would dominate the natural one is preferred. In this
respect, refinement discussion and strong bounds may be very useful.
The following rough bound, for instance, gives the principal that the
closer the cost figures of states in a subset are the closer the optimal cost
value, $(ax*), to the unconstrained cost, H(1*),

< BDla™ - ity <« 1 maximum minimum
05 Blo) - $(T) 5 1 El Z a0 T o

Note that the upper bound decreases as the starting partition is refined
more.

It is possible to bound the number of changes from a policy to
the next by changing the normalization constraint on the feasible
directions, ¢g., allowing changes in one period only. As we allow less
number of changes, the algorithm performs slower in terms of the
number of iterations. On the other hand, as the number of changes
increase, the line search step becomes harder if an exact minimization is
carried out because the degree of the polynomial to be minimized is the
number of changes. Study on a large scale example may provide
opportunity for better comparison of these directions.

Our primary concern is on obtaining an optimal policy not on
the performance of algorithm in terms of CPU time or number of
iterations. In these respects, study on a large scale MDP may be useful,
and can help to improve the algorithm.
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APPENDIX A
PROOF OF LEMMA I1.1

a) If the matrix B(a) is partitioned as

= I  -yPlx, T) 0 - 0 0 -
0 I -¥Plx, T-1) . .. 0 0
‘0o 0 ... 1 -yPla, 2)
. 0 0 0 - AP 0 I -
(A.1)

I is the identity matrix of dimension N. It can be easily seen that the
rows of B{ax) are independent, meaning that B{«) is nonsingular.

b) Recall the partitioned form of B(x) given by (A.1), noting
that for square matrices A, C, D where D is invertible, A is also
invertible.

NI I EE-

Then, if we partition B(ax) as matrix A, we obtain square matrices, which
are known to be nonsingular by the reasoning stated in part a of Lemma
I1.1, in the south-east corner of B(«x) as matrix D; and the result follows.
The partitioned form of B{a)™ is given below:



- I yPlx, T)
0 I
o o
0 0

. 0 0

YPla, T-1) .

0

- YPla, 3)

[
0

¥ plax, T).Plx, 2) =
Y72 Pla, T-1).Pla, 2)

v2 Plax, 3P(ax, 2)

YPla, 2)
I

A3

Note that all entries of B(x)™ are nonnegative for all i, jeS and all t,
n=1, .., T, since 0« ¥y < 1 and P's are transition matrices and I's are

identity matrices of dimension N.
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APPENDIX B
PROOF OF PROPOSITION I11.3

We will obtain (3.14) by analyzing the difference between
vi{x) and vi(p)'s. In general,

) N
Vi) = 2 Ayiel Cia*t Y2 Pifavia) (B.1a)
a=1 =1
- n H -
7iP) = 2 Pt Ciat YZ Pifalvi(p) (B.1b)
s=1 =1

for all iS. Since pPgg = Qge + SPs,

N
vi{a) - 7p) = ¥Z Pi{ax) (v,-(o.) - v,-(p))
=1

a=l 1

¥ N

-8 Putial Cia* YZ Pif@lvip)
N

= "{Z p”‘:ﬁ) (V’(Q) - V,(p))
1

v ! N
+ 92 Pitide YZ pii(a) (?,-(a) - v,{p))

a=1 =1



M N
- 82 Putide (cia"' Y2 Pii(a)vj{‘l)) (B.2)
=1

=1

Using
N n N N
Y2 Pifa) +83 Byaye YZ Pifa) = ¥Z Piflp),
=1 a1 j=1 =1

N
vi{a) - v(p) = YZ Pyflp) (V) - vi(p))
=t

a=1

o N
-62 ﬁk(i)a(cia'f Y2 pij(a)vj(a)) (B.3)
i=1
for all ieS. Then,

N <1 v N
Vi(Q) - Vi(p) = 2 (I-YP(pJ) ij -62 pk{))a (Cja*’{ Z ij(a) 'fm(a)) (B.4)
j=1 e31 m=1

Multiplying both sides by the probability of being in state i initially and
taking summation over all states, we obtain the difference of objective
function vatues for the two policies.

¥ N ) M N ‘
dla) - Plp)= 2 p; 2 Blp) :,- -8 Pripa (%* ¥y ij(a)vm(cx)) (B.5)
3=1 m=1

st =t

where
N -
2 pi Blp) :j = wip) (B.6)

il

and the proof is complete.
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