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Finite mass gravitating Yang monopoles

Hakan Cebeci∗

Department of Physics, Anadolu University, 26470, Eskişehir, Turkey
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We show that gravity cures the infra-red divergence of the Yang monopole when a proper
definition of conserved quantities in curved backgrounds is used, i.e. the gravitating Yang
monopole in cosmological Einstein theory has a finite mass in generic even dimensions (in-
cluding time). In addition, we find exact Yang-monopole type solutions in the cosmological
Einstein-Gauss-Bonnet-Yang-Mills theory and briefly discuss their properties.

PACS numbers: 11.15.-q, 04.50.Gh, 14.80.Hv, 04.50.Kd

I. INTRODUCTION

About 30 years ago, Yang [1], generalizing the Dirac monopole, found a (singular) spherically
symmetric solution of the five-dimensional Euclidean Yang-Mills (YM) theory with the SU(2)
gauge group. In the same paper, he also showed that his SU(2) monopole does not exist in more
than five dimensions. Yang’s monopole (on which we shall dwell a bit more in a moment) went
pretty much unnoticed up until it emerged in a rather unlikely place, in the study of the four-
dimensional analog of the quantum Hall effect [2]. [We have nothing more to say about the Yang
monopole in its relevance to the quantum Hall effect, except to remark that no solution of the YM
theory seems to be wasted!]

The present work was inspired by and follows closely the recent article by Gibbons and Townsend
[3], which does a couple of things at once. It introduces gravity into the picture to get gravitating
Yang monopoles, and gives a reconstruction (and reinterpretation) of the higher dimensional ver-
sions (with gauge groups other than SU(2)) of both the curved and the flat space Yang monopoles.
[See [4] for an earlier discussion of the higher dimensional Yang monopoles.] Before we explain how
we “improve” on the work of Gibbons-Townsend, let us recapitulate some properties of the Yang
monopole.

The way Yang constructed his solution is quite interesting: He considered self-dual, spherically
symmetric single instanton (and anti-instanton) solutions on S4 and showed that they solve the
full YM equations in five Euclidean dimensions. As five-dimensional solutions, these instantons
have a singularity at the origin just like their three-dimensional cousin, “the Dirac monopole”. The
action of the single self-dual instanton,

∫

F ∧F integrated over S4, becomes a conserved monopole
charge of the five-dimensional Yang monopole. [Note that even though there are instantons whose
charge can take an arbitrary integral value in four dimensions, none save the ±1 charge solves the
five-dimensional YM equations. Put in another way, there are no Yang multi-monopoles! This is a
curious result, but can be shown to be valid by topological arguments [4], as we will also argue.] As
summarized in [3], the rare appearance of the Yang monopole in high energy physics literature might
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be due to the fact that unlike the ultra-violet (UV) divergence [
∫

d3xB2 → g2
∫∞

0 dr/r2 → ∞] of the
Dirac monopole, the Yang monopole has an infra-red (IR) divergence, i.e. its mass is IR divergent.
We know that when compact Maxwell theory with Dirac monopoles is considered as a low energy
limit of, say, a broken SO(3) Georgi-Glashow type theory, finite mass ’t Hooft-Polyakov monopoles
emerge, which look exactly like Dirac monopoles from a distance. Therefore, UV divergence of the
Dirac monopole is not a great concern if some unified theory picture is adopted. In the case of
the Yang monopole, one needs to construct a microscopic theory which takes over in the IR limit,
which, of course, is quite a difficult task. [See [5, 6] where some higher derivative YM actions with
Higgs fields are used to construct regular monopole solutions in higher dimensions.]

Note that all of the discussion about the mass-divergence of the Yang monopole above is in flat
space. If we turn on gravity, as we shall do in this paper, the picture changes drastically. Gravity
could be blamed for introducing UV divergences, curvature singularities and black holes, but since
it clumps matter and fields, it should be a good cure for IR divergences. Gibbons-Townsend [3]
introduced the self-gravitating Yang monopole and argued that, in contrast to this expectation,
the mass is still IR divergent (beyond four dimensions in their classification). Here, we show that
once the proper mass-energy definitions in asymptotically flat and AdS spaces are employed, the
Yang monopole does indeed have a finite mass in all dimensions. The main issue here has to do
with the choice of a proper background to work out the relevant mass-energy formula.

Our second aim in this paper is to find Yang-monopole type solutions in more generic gravity
theories coupled with YM systems. To this end, we consider the cosmological Einstein-Gauss-
Bonnet (GB) theory, which appears as a low energy limit of some string theories, and construct
new solutions. Compared to General Relativity, GB theory behaves better in the UV region, which
is not our main concern here, but exact solutions in this rather complicated theory are always good
to have, since there are very few known anyway.

The organization of this paper is as follows. In the next section, we briefly review the Dirac
and Yang monopoles in flat space. In section III, we show how the IR divergence mentioned above
is overcome. We describe the cosmological Einstein-GB-YM theory in section IV, and present our
ansatz for the Yang monopole, our assumptions and the field equations we obtained from these in
section V. Section VI is devoted to the solutions found and their properties. Finally we conclude
with section VII.

II. DIRAC AND YANG MONOPOLES IN FLAT SPACE

As there can be occasional confusions with regard to gauge symmetries, spacetime symmetries
and the charge definitions of higher dimensional singular monopoles, we start by giving a brief
recollection of these concepts in flat space, with the help of [7] and [8].

Let us start with Yang’s generalization of the three-dimensional Dirac monopole. The latter
lives on R

3 with the origin removed. The Maxwell field strength F is a 2-form whose flux
∫

S2 F
gives the magnetic charge which can take any integral value up to a normalization. Even though
the vector potential A does not reflect it, the physical field F is spherically symmetric, i.e. it is
invariant under the action of SO(3). [This in fact means that spatial rotations can be undone with
gauge transformations.] As is well known, the singular Dirac monopole can be described by pure
geometry: R3 − {0} is homotopically equivalent to S2, therefore one may study the corresponding
principal bundle P (S2, U(1)). [For the charge-1 monopole, this is the Hopf fibration of S3.] Then
the transition functions defined on the equator S1 of S2 classify the magnetic charge; namely, they
map S1 → U(1), having π1(U(1)) = Z. A complementary picture is provided by the first Chern
character of this “monopole” bundle, i.e. the magnetic flux equals

∫

S2 ch1(F).
Let us now look at the “original” Yang monopole [1] in R

5−{0}, which is homotopically equiv-
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alent to S4. Yang considered the field strength F to be an su(2)-valued 2-form that “generalizes”
the Dirac monopole in the sense that the physically measurable quantities are SO(5) invariant.
Now the relevant geometrical object is the principal bundle P (S4, SU(2)). Even though the cor-
responding homotopy group π3(SU(2)) equals Z which arises from the maps S3 → SU(2), the
Euclidean YM equation in five dimensions admits only two of these solutions. These are just the
four-dimensional self-dual and anti self-dual solutions (BPST instanton having the charge ±1).
The charge is now given (up to a normalization) by the integral of the second Chern character

∫

S4

ch2(F) =

∫

S4

Tr (F ∧ F) = ±1 .

III. THE EFFECT OF GRAVITY ON MONOPOLES

Here we will show how gravity cures the IR divergence of the mass-energy of the Yang monopole
in any even dimensions (time included), just as it cures the UV divergence of the 3+1-dimensional
Dirac monopole. [In this context, the latter is nothing but the celebrated Reissner-Nordstrom
black hole.] Note that our result about the mass of the Yang monopole is not in agreement
with [3], who incorrectly claimed that the divergence persisted in the presence of gravity except
for four dimensions. The gist of the problem lies in the correct definition of gravitational mass-
energy. For this purpose, we resort to the procedure developed in [9, 10, 11]. Stated briefly,
the idea is to define gauge invariant conserved charges in a diffeomorphism invariant theory by
employing the generalized “Gauss law” provided there exist asymptotic Killing symmetries of the
relevant spacetimes. Put in another way, one chooses a vacuum that satisfies the field equations
as the background with respect to which background gauge invariant quantities (such as energy)
is calculated. These charges are expressible as surface integrals and, by construction, their value
for the background itself is always zero. The latter is quite important.

Given a background Killing vector ξ̄µ, the corresponding conserved charges can be written as
[21] [10, 11]

Qµ(ξ̄) =
1

4Ωn−2

∫

dn−2x ξ̄ν G
µν
L , (1)

where Gµν
L denotes the linearized Einstein tensor about the background and Ωn−2 is the solid angle

on the unit (n− 2)-sphere. As it would be too much of a digression to redrive this formula and its
form as a surface integral, we refer the reader to [10, 11] for the details and simply employ it here.

For the gravitating Yang-monopole type solutions found in [3], the spacetime metric in
Schwarzschild-like coordinates is simply given by

ds2 = −f2(r) dt2 +
dr2

f2(r)
+ r2 dΩ2

n−2 , (2)

where dΩ2
n−2 is the metric on the (n−2)-sphere and the function f(r) reads (in the form presented

by [3] but adapted to our conventions for n ≥ 4)

f2(r) = 1−
2m

rn−3
−

µ2

r2
−

2Λ r2

(n− 2)(n − 1)
. (3)

Here the constant µ is given by

µ2 =
8π(n − 3)

(n− 5)σ2
,
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which follows from the normalization choice for the generators Σij of the gauge group SO(n − 2)
(see [3] for details), and cannot be chosen as zero. This is a rather important point. Together with
the cosmological term, the µ2 piece in (3) constitute the background with respect to which any
spacetime with nonvanishing m can have a finite and meaningful mass. Otherwise, apart from the
special n = 4 case, one always finds a divergent mass for (2). Thus taking the background to be
the spacetime (2) with m = 0 in (3), which has the timelike Killing vector ξ̄µ = (−1, 0, . . . , 0) in
the notation and conventions of [10, 11], one finds the total energy of these solutions as

E =
1

4Ωn−2
Ωn−2 (2(n − 2)m) =

m(n− 2)

2
.

This is the result of the surface integration at r → ∞ in the notation of [10, 11]. To see how gravity
modifies the IR divergence of the Yang monopole, let us also compute the (gauge non-invariant)
energy contained in a ball of radius R about the origin of spacetime. One then finds

E(R) =
(n− 2)mRn−5

[

2ΛR4 + (n− 1)(n − 2)(µ2 −R2)
]

2
(

[2ΛR4 + (n− 1)(n − 2)(µ2 −R2)]Rn−5 + 2(n − 1)(n − 2)m
) , (4)

which is finite in contrast to the flat space result, that goes like Rn−5 and diverges as R → ∞ for
n ≥ 6 [3].

IV. THE COSMOLOGICAL EINSTEIN-GB-YM THEORY

Let us now describe the cosmological Einstein-GB-YM theory, the assumptions we make and
the solutions they lead to in various dimensions. We start with the action

I[e,A] =

∫

L , (5)

where the Lagrangian density n-form

L =
1

2
Rab ∧ ∗(ea ∧ eb)−

1

2σ2
Tr(F ∧ ∗F) + Λ ∗ 1 +

γ

4
Rab ∧Rcd ∧ ∗(ea ∧ eb ∧ ec ∧ ed) (6)

contains the Einstein-Hilbert term, the YM Lagrangian for the 2-form field F with coupling con-
stant σ, a cosmological constant Λ and a second order Euler-Poincaré term (the so called GB term
in this case) with coupling constant γ.

The basic gravitational field variables are the coframe 1-forms ea in terms of which the spacetime
metric is decomposed as g = ηab e

a ⊗ eb, where ηab = diag (−,+,+, . . . ) is the Minkowski metric.
The Hodge duality map is specified by the oriented volume element ∗1 = e0 ∧ e1 ∧ · · · ∧ en−2 ∧ en.
The torsion-free, Levi-Civita connection 1-forms ωa

b satisfy the first Cartan structure equations

dea + ωa
b ∧ eb = 0,

where metric compatibility implies ωab = −ωba. The corresponding curvature 2-forms follow from
the second Cartan structure equations

Ra
b = dωa

b + ωa
c ∧ ωc

b .

The GB term in the Lagrangian density (6) can also be written in the alternative form

Rab ∧Rcd ∧ ∗(ea ∧ eb ∧ ec ∧ ed) = 2Rab ∧ ∗Rab − 4Pa ∧ ∗P a +R2
(n) ∗ 1 ,
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where the Ricci 1-form P a = ιbR
ba and the curvature scalar R(n) = ιa ιb R

ba have been utilized via
the interior product operator ιa = ιXa for which ιXb(ea) = δb

a.
Before moving on to the field equations, let us present our setting on the YM sector as well. We

take the YM potential A to be a Lie algebra g-valued 1-form. The YM 2-form field follows from

F = dA+
1

2
[A,A] (7)

in the usual way and satisfies the Bianchi identity

DF = dF + [A,F ] = 0 . (8)

The field equations read

1

2
Rab ∧ ∗(ea ∧ eb ∧ ec) = −

1

4σ2
τc[F ]− Λ ∗ ec −

γ

4
Rab ∧Rdg ∧ ∗(ea ∧ eb ∧ ed ∧ eg ∧ ec) , (9)

D ∗ F = d ∗ F + [A, ∗F ] = 0 . (10)

Here

τc[F ] = 2Tr (ιcF ∧ ∗F − F ∧ ιc ∗ F) (11)

is the corresponding stress-energy (n− 1)-form for the gauge field F .

V. THE ANSÄTZE AND EQUATIONS FOR THE FIELDS

Following [1] and [3], we will consider solutions that have field strengths only on an (n − 2)-
sphere. [Namely, there will be no radial components. In fact, as explained in [3], when radial
components are introduced, one usually gets a different class of (numerical) solutions such as the
ones obtained by Bartnik-McKinnon in four dimensions [12].] This naturally leads to the choice of
the gauge group G to be SO(n−2) (for n ≥ 4) and the Ansätze for the metric and gauge potential
follow accordingly. Let us decompose the local coordinates for the spacetime as

xM =
{

x0 ≡ t, xn ≡ r, xi where i = 1, 2, . . . , (n − 2)
}

.

We think of xi as a parameterization of the local coordinates on an (n − 2)-sphere whose radius
equals ρ, i.e. we take ρ2 = xix

i, and consider the spacetime metric to be in the form [22]

ds2 = −f2(r) dt2 + u2(r) dr2 + g2(r)
n−2
∑

i=1

dxi dx
i

(1 + ρ2/4)2
. (12)

We choose the coframe 1-forms for the metric (12) as

e0 = f(r) dt, en = u(r) dr, ei = g(r)
dxi

(1 + ρ2/4)
, i = 1, 2, . . . , (n− 2) . (13)

Levi-Civita connection 1-forms follow easily from the first Cartan structure equations as

ω0
i = 0, ωi

j =
1

2g
(xiej − xjei), ω0

n =
f ′

fu
e0, ωi

n =
g′

ug
ei, (14)

where prime denotes derivative with respect to r. The curvature 2-forms that follow from these
read

R0n = B e0 ∧ en, Rij = Aei ∧ ej , R0i = C e0 ∧ ei, Rin = Gen ∧ ei, (15)
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where we have used

A =
1

g2

(

1−
(g′

u

)2
)

, B = −
1

fu

(f ′

u

)′

, C = −
f ′g′

u2fg
, G =

1

ug

(g′

u

)′

. (16)

As for the YM potential 1-form, we employ the ansatz

A =
1

2
Σij

xidxj − xjdxi

(1 + ρ2/4)
, (17)

where the matrices Σij denote the generators of the gauge group SO(n − 2) in the fundamental
representation. Specifically, we choose them as

Σαβ
ij = δαi δβj − δαj δβi , (18)

with 1 ≤ α < β ≤ n− 2. This choice leads to the so(n− 2) commutation relations

[Σij ,Σkℓ] = 2 (δℓ[i Σj]k − δk[iΣj]ℓ) , (19)

so that one obtains via (7) the YM 2-form field strength to be

F =
1

2
Σij

dxi ∧ dxj

(1 + ρ2/4)2
=

1

2g2
Σij e

i ∧ ej . (20)

It is not hard to show that F satisfies (8) and (10) thanks to (19). Our choice (18) also leads to

Tr (Σik Σkj) = 2(n − 3) δij and
∑

i<j

Tr (Σij Σij) = −(n− 2)(n − 3) . (21)

Note that (17), and thus (20), satisfy the flat space YM equations as well. Therefore, before
moving onto the gravitational field equations, we want to make a digression and consider Yang’s
problem reviewed in section II for n = 6 with gravitation still turned off. This time we want to
replace the SU(2) gauge group by SO(4) ≃ (SU(2)× SU(2))/Z2. Following the discussion above,
the corresponding bundle is P (S4, SO(4)) and the relevant homotopy group π3(SO(4)) equals
Z ⊕ Z, therefore one may be inclined to think that if there are solutions, their charges should be
labelled by two independent integers. However, this is not the whole story since the gauge fields
do have to satisfy the Euclidean YM equations as well. Using the 2-form field strength (20) (with
g = 1) for n = 6, if one naively calculates the charge as before using the analogous expression, one
immediately finds

∫

S4

Tr (F ∧ F) =

∫

S4

ch2(F) = 0 .

Nevertheless, one is saved by the topological quantity that takes the place of the charge which
turns out to be the Euler characteristic given by [4, 8]

χ(S4) =
1

32π2

∫

S4

ǫαβγδ F
αβ ∧ Fγδ =

1

128π2

∫

S4

ǫαβγδ Σ
αβ
ij Σγδ

kl ǫ
ijkl ∗̂1(4) = 2 ,

where ∗̂1(4) denotes the volume element of the 4-sphere. We remark that for n ≥ 6 and n even
with the gauge group SO(n− 2), a similar argument goes through analogously. Namely

∫

Sn−2

TrF (n−2)/2 =

∫

Sn−2

ch(n−2)/2(F) = 0 ,
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and the Euler characteristic reads χ(Sn−2) = 2. In fact, for generic n

χ(Sn−2) =

{

0 , n is odd
2 , n is even

,

and since the Euler characteristic vanishes for any odd-dimensional manifold, one is urged to set
n even. Thus from now on, we always take n ≥ 6 and even. The solutions thus obtained are what
we mean by flat-space Yang monopoles in higher (even) dimensions.

Finally, turning on gravity, the use of (21) in (9) lead to the following system of coupled ordinary
differential equations:

B + (n− 3)
(n− 4

2
A+ C −G

)

=
(n− 2)(n − 3)

4σ2g4
− Λ

−γ̃
(

AB − 2CG+A(n− 5)
(

C −G+
n− 6

4
A
)

)

, (22)

(n− 2)
(n− 3

2
A+ C

)

= −
(n− 2)(n − 3)

4σ2g4
− Λ− (n − 2)γ̃A

(n− 5

4
A+ C

)

, (23)

(n− 2)
(n− 3

2
A−G

)

= −
(n− 2)(n − 3)

4σ2g4
− Λ− (n − 2)γ̃A

(n− 5

4
A−G

)

, (24)

where we have defined and used γ̃ = (n− 3)(n − 4)γ.

VI. THE SOLUTIONS AND THEIR PROPERTIES

Setting u(r) = 1/f(r) in (16), one finds that (23) and (24) yield g′′ = 0, and this leads to two
independent cases: Either i) g(r) = g0 = constant or ii) g(r) = r. It follows that (22), (23) and
(24) admit two classes of solutions corresponding to each case:

i) The first case leads to a cylindrical metric

ds2 = −f2(r) dt2 +
dr2

f2(r)
+ g20

n−2
∑

i=1

dxi dx
i

(1 + ρ2/4)2
, (25)

where f2(r) = C0 r
2 + C1 r + C2 . Here C1 and C2 are integration constants, and C0 is given by

C0 = −
1

g20 + γ̃

(

(n− 2)(n − 3)

2σ2g20
+

n(n− 3)

4
+

(n− 5)γ̃

g20

)

.

Note that the metric (25) is conformally flat when C0g
2
0 = 1, which was also observed in [13]. We

will not be interested in this solution.
ii) The second case is definitely more interesting and leads to the cosmological Einstein-GB

Yang-monopole type solutions

ds2 = −f2(r) dt2 +
dr2

f2(r)
+ r2

n−2
∑

i=1

dxi dx
i

(1 + ρ2/4)2
, (26)

where

f2(r) = 1 +
r2

γ̃

(

1±

√

1− 4γ̃

(

Λ

(n− 2)(n − 1)
−Mr1−n +

(n− 3)

4σ2(n− 5)
r−4

)

)

(27)

now. Here, as we will see, the constant M is related to the gravitational mass of the solution.
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Before we move on to studying the physical properties of this solution, we should note that
there is yet another, perhaps simpler, way of obtaining the solutions (25) and (26). It is based on
inserting in the action (5) (and (6)) the gauge fixed, static, spherically symmetric metric (12) with
the corresponding YM field content calculated using (20) and (21). This method was originally
introduced by Weyl [14] for obtaining the exterior Schwarzschild solution of General Relativity,
but was put on solid ground much later in [15]. [See also [16] and [17] for some applications of this
technique to various theories of gravitation.] The method considerably simplifies the labor involved
in obtaining the relevant field equations. Moreover, one can also use it to show that the Birkhoff’s
theorem holds for the solution (25): If the functions f and u in the metric (12) are also allowed to
depend on the time coordinate t, the Lagrangian density (6) turns out to be t-independent [16, 18].
Thus all spherically symmetric solutions are static in this model.

Let us look at various limits of this solution. For γ → 0, we recover the solutions presented in
[3] by choosing the − branch. When one takes Λ = 0 and σ → ∞ in (27), one recovers the external
solutions of the Einstein-GB theory given in [19]. The branching of the solutions with either a
Schwarzschild f2(r) = 1 − 2Mr3−n or a Schwarzschild-AdS f2(r) = 1 + 2Mr3−n + 2r2/γ̃ type of
asymptotics is recovered. For both sign choices in f2(r), the gravitational energy is found to be
(up to some normalizations) proportional to M by employing the energy definition of [10, 11].

Now we consider the singularity structure of our solution. It is clear that there is a curvature
singularity at r = 0, which follows from Rab ∧ ∗Rab = O(r1−n) ∗ 1. There is an event horizon at
rH > 0 (f2(rH) = 0), depending on the choice of parameters. In the most general case, this is a
complicated analysis, but can be carried out along the lines of [20]. For simplicity, we concentrate
on n = 6 (the case of the Yang monopole) with Λ = 0 and γ 6= 0 [23]. For this choice the location
of the event horizon is given by the roots of the equation

r3 + 3
( 1

2σ2
+ γ
)

− 2M = 0 ,

which always has a real root rH if

( 1

2σ2
+ γ
)3

+M2 ≥ 0 ,

and moreover, that root is positive if M > 0 and γ > 0.
Let us now compute the mass of this solution. Given a background Killing vector ξ̄µ, the

corresponding conserved charges of the model (6) can be written as [10, 11]

Qµ(ξ̄) =
1

4Ωn−2

√

1−
4Λ γ̃

(n− 1)(n − 2)

∫

dn−2x ξ̄ν G
µν
L . (28)

Note that all the information coming from the GB part is encoded in the coefficient. The correct
background to work with is the spacetime (26) with M = 0 in (27), and of course, with the timelike
Killing vector ξ̄µ = (−1, 0, . . . , 0) again. For convenience we also choose the − branch [24], which
is asymptotically flat. One then finds the total energy according to (28) as

E =
1

4Ωn−2

2(n− 2)M
√

1− 4Λγ̃
(n−1)(n−2)

√

1−
4Λγ̃

(n − 1)(n − 2)
Ωn−2 =

(n− 2)M

2
,

which is finite.
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VII. CONCLUSIONS

We have shown that, contrary to the claim in [3], the Yang monopole defined in even dimensions
has a finite mass once gravity is introduced. This has been achieved by employing the method
developed in [9, 10, 11] for which a proper choice of background is essential. Specifically, we have
shown that out of the three generic parameters m,µ and Λ of the gravitating Yang monopole,
the first one can be interpreted as a mass once the remaining two are allowed to constitute the
background.

We have also extended the family of Yang-monopole type solutions by studying the cosmological
Einstein-GB-YM theory in higher even dimensions. We have also shown that these solutions have
black hole singularities and event horizons for a proper choice of parameters.

Throughout this work, our discussion has been relying on SO(n−2) gauge theory and on static
spherically symmetric n-dimensional metrics. If one abandons spherical symmetry, one ends up
with quite a nontrivial task of solving highly complicated differential equations. For example there
is no solution describing a rotating Yang monopole. As for the case of the (cosmological) Einstein-
GB theory, the problem is even harder: Let alone a rotating Yang monopole, there are no known
exact rotating black hole solutions.

Acknowledgments

We would like to thank Yıldıray Ozan and Turgut Önder for useful discussions. This work is
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[17] S. Deser, Ö. Sarıoğlu and B. Tekin, Gen. Rel. Grav. 40, 1 (2008) [arXiv:0705.1669 [gr-qc]].
[18] S. Deser and J. Franklin, Am. J. Phys. 73, 261 (2005) [arXiv:gr-qc/0408067].
[19] D.G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656 (1985).
[20] T. Torii and H. Maeda, Phys. Rev. D 72, 064007 (2005) [arXiv:hep-th/0504141].
[21] Throughout, we set the Newton’s constant Gn = 1.

http://arxiv.org/abs/cond-mat/0110572
http://arxiv.org/abs/hep-th/0604024
http://arxiv.org/abs/hep-th/0502025
http://arxiv.org/abs/hep-th/0408068
http://arxiv.org/abs/hep-th/0205318
http://arxiv.org/abs/hep-th/0212292
http://arxiv.org/abs/0801.2110
http://arxiv.org/abs/gr-qc/0306114
http://arxiv.org/abs/0705.1669
http://arxiv.org/abs/gr-qc/0408067
http://arxiv.org/abs/hep-th/0504141


10

[22] Note that the change of variable χ = ρ/(1+ρ2/4) transforms the metric (12) to the following equivalent
form:

ds2 = −f2(r) dt2 + u2(r) dr2 + g2(r)

(

dχ2

1− χ2
+ χ2 dΩ2

n−3

)

,

where dΩ2

n−3
denotes the metric on the unit (n− 3)-sphere.

[23] γ = 0 case was considered in [3].
[24] One can also proceed with the + branch, in which case the spacetime is asymptotically AdS.


	 Introduction
	 Dirac and Yang monopoles in flat space
	 The effect of gravity on monopoles
	 The cosmological Einstein-GB-YM theory
	 The Ansätze and equations for the fields
	 The solutions and their properties
	 Conclusions
	Acknowledgments
	References

