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Abstract

The radiative B → τ+τ−γ decay is investigated in the framework of the Standard

Model. When only short (short and long together) distance contributions are taken

into account, the Branching Ratio is found as 9.54× 10−9 (1.52× 10−8), for the value

of the cut δ = 0.01 imposed on the photon energy.
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1 Introduction

Experimental discovery of the inclusive and exclusive B → Xsγ and B → K∗γ [1] decays
stimulated the study of the radiative rare B meson decays with a new momentum. From
theoretical point of view this is due to the fact that they are very sensitive to the flavor
structure of the electroweak interactions, as well as QCD radiative corrections and the new
physics beyond the Standard Model (SM) [2]. From experimental point of view studying
radiative B–meson decays allows more precise determination of the parameters of the SM,
such as the elements of the Cabibbo–Kobayashi–Maskawa (CKM) matrix, the leptonic
decay constants etc., which are yet poorly known (see for example [3]).

Currently there is impressive effort in this direction, and many new facilities are under
construction for studying the rare B–meson decays, namely, symmetric and asymmetric
B–meson factories at Cornell, KEK and SLAC. Progress is also being made in hadronic
environment at HERA–B and there are some plans for TeV –B and LHC–B. These ma-
chines will serve to measure the processes, for which SM predicts very small Branching
Ratios. Among the rare decays, the flavor changing decays of the B–meson which proceed
via electroweak penguins, are of special interest due to their relative cleanliness and their
sensitivity to the new physics. The rare B → τ+τ−γ decay belongs to this category.

From helicity arguments it is clear that the matrix element of B → ℓ+ℓ− (ℓ = e, µ)
decay will be proportional to the lepton mass and therefore the corresponding Branching
Ratios will be strongly suppressed. Note that in SM, B(B → e+e−) ≃ 4.2 × 10−14 and
B(B → µ+µ−) ≃ 1.8×10−9. It is well known however that the the B(B → τ+τ−) ≃ 8×10−7

in SM [4], and thus this decay can be measured in future B–factories with high enough
efficiency.

When photon is emitted in addition to the lepton pair, no helicity suppression exists,
and a ”large” Branching Ratio is expected. Indeed in [5] it was shown that the B(B →
e+e−γ) ≃ 2.35 × 10−9. For B → ℓ+ℓ−γ (ℓ = e, µ), the contributions of the diagrams,
where photon is radiated from any charged internal line, can safely be neglected, as they
are strongly suppressed by a factor m2

b/m
2
W in the Wilson coefficients (see [5]). Moreover,

it follows from helicity arguments that, the contributions of the diagrams where a photon
is emitted from the final charged lepton lines, must be proportional to the lepton mass
mℓ (ℓ = e, µ), and hence they are negligible as well. Therefore in B → ℓ+ℓ−γ (ℓ = e, µ),
the main contribution should come from the diagrams, where photon is emitted from the
initial quarks.

In B → τ+τ−γ decay, the situation becomes very different. In this case, we cannot
neglect the contribution of the diagrams, where photon is radiated from the final τ–leptons,
since the mass of the τ–lepton is not so much smaller than that of the B–meson. So, in
B → τ+τ−γ decay comparable contributions come from diagrams where photon is radiated
both from initial and final fermions. These contributions can give essential information
about the relative roles of the strong and electroweak interactions.

In this work we investigate the B → τ+τ−γ decay, and the paper is organized as follows.
In Section 2 we give the necessary theoretical framework for the B → τ+τ−γ decay. Section
3 is devoted to the numerical analysis and the discussion of the results. In Appendix the
detailed description of the cancellation of the infrared (IR) singularities, is given.

1



2 Theoretical framework for the B → τ+τ−γ decay.

The matrix element for the b → sτ+τ−γ decay can be obtained from that of the b→ sτ+τ−.
It is well known that the short distance contributions to b→ sτ+τ− decay comes from the
box, Z– and photon–mediated penguins. Thus, in the SM, QCD–corrected amplitude for
b→ sτ+τ− can be written as [6, 7].

M =
αGF

2
√
2π

VtbV
∗

ts

{

Ceff
9 s̄γµ(1− γ5)b τ̄γµτ + C10s̄γµ(1− γ5)b τ̄γµγ5τ

− 2C7
mb

p2
s̄iσµνpν(1 + γ5)b τ̄γµτ

}

. (1)

In Eq. (1) p is the momentum transfer, and the mass of the strange quark is neglected,
Vij’s are the corresponding elements of the CKM matrix. The analytical expression of all

Wilson coefficients Ceff
9 , C10 and C7 can be found in [6, 7]. In order to obtain the matrix

element for b → sτ+τ−γ, it is necessary to attach photon to any charged internal, as well
as external line. Contributions of the diagrams with photon attached to the any charged
internal line, are strongly suppressed and therefore we shall neglect these in the following
discussions. Thus, as explained previously the main contributions to the b→ sτ+τ−γ decay
comes from diagrams, when photon is radiated from initial and final fermions.

When a photon is attached to the initial quark lines, the corresponding matrix element
for the B → τ+τ−γ decay can be written as

M1 = 〈γ|M|B〉 =
αGF

2
√
2π

VtbV
∗

ts

{

Ceff
9 τ̄ γµτ〈γ|s̄γµ(1− γ5)b|B〉

+ C10τ̄ γµγ5τ〈γ|s̄γµ(1− γ5)b|B〉

− 2C7
mb

p2
〈γ|s̄iσµνpν(1 + γ5)b|B〉τ̄γµτ

}

. (2)

These matrix elements can be written in terms of the two independent, gauge invariant,
parity conserving and parity violating form factors [5, 8]:

〈γ|s̄γµ(1− γ5)b|B〉 =
e

m2
B

{

ǫµαβσǫ
∗

αpβqσ g(p
2)

+ i
[

ǫ∗µ(pq)− (ǫ∗p)qµ
]

f(p2)

}

,

〈γ|s̄iσµνpν(1 + γ5)b|B〉 =
e

m2
B

{

ǫµαβσǫ
∗

αpβqσ g1(p
2)

+ i
[

ǫ∗µ(pq)− (ǫ∗p)qµ
]

f1(p
2)

}

. (3)
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Here ǫµ and qµ are the four vector polarization and four momentum of the photon, respec-
tively, and p is the momentum transfer. Substituting Eq. (3) in (4), for the matrix element
M1 (structure dependent part) we get

M1 =
αGF

2
√
2π

VtbV
∗

tse

{

ǫµαβσǫ
∗

αpβqσ [A τ̄γµτ + C τ̄γµγ5τ ]

+ i
[

ǫ∗µ(pq)− (ǫ∗p)qµ
]

[B τ̄γµτ +D τ̄γµγ5τ ]

}

, (4)

where

A =
1

m2
B

[

Ceff
9 g(p2)− 2C7

mb

p2
g1(p

2)

]

,

B =
1

m2
B

[

Ceff
9 f(p2)− 2C7

mb

p2
f1(p

2)

]

,

C =
C10

m2
B

g(p2) ,

D =
C10

m2
B

f(p2) . (5)

When a photon is radiated from the final τ–leptons, the corresponding matrix element
is (Bremstrahlung part)

M2 =
αGF

2
√
2π

VtbV
∗

tseifBC102mτ

[

τ̄

(

6ǫ 6PB
2p1q

− 6PB 6ǫ
2p2q

)

γ5τ

]

, (6)

where PB is the momentum of the B–meson. In obtaining this expression we have used

〈0|s̄γµγ5b|B〉 = − ifBPBµ ,

〈0|s̄σµν(1 + γ5)b|B〉 = 0 , (7)

and the conservation of the vector current.
Finally, the total matrix element for the B → τ+τ−γ decay is obtained as a sum of the

M1 and M2:

M = M1 +M2 . (8)

The square of the matrix element, summed over the spins of the τ–leptons and the polar-
ization of the photon, can be written as

|M|2 = |M1|2 + |M2|2 + 2Re (M1M∗

2) , (9)

where

3



|M1|2 =

∣

∣

∣

∣

∣

αGF

2
√
2π

VtbV
∗

ts

∣

∣

∣

∣

∣

2

4πα

{

8Re (B∗C + A∗D) p2 (p1q − p2q) (p1q + p2q)

+ 4
[

|C|2 + |D|2
] [(

p2 − 2m2
τ

) (

(p1q)
2 + (p2q)

2
)

− 4m2
τ (p1q) (p2q)

]

+ 4
[

|A|2 + |B|2
] [ (

p2 + 2m2
τ

) (

(p1q)
2 + (p2q)

2
)

+ 4m2
τ (p1q) (p2q)

]

}

, (10)

2Re (M1M∗

2) = −
∣

∣

∣

∣

∣

αGF

2
√
2 π

VtbV
∗

ts

∣

∣

∣

∣

∣

2

4πα

{

16C10fBm
2
τ

[

Re(A)
(p1q + p2q)

3

(p1q) (p2q)

+ Re(D)
(p1q + p2q)

2 (p2q − p1q)

(p1q) (p2q)

]}

, (11)

|M2|2 = −
∣

∣

∣

∣

∣

αGF

2
√
2 π

VtbV
∗

ts

∣

∣

∣

∣

∣

2

4πα

{

− 32 + 8
m2
τ

(p1q)
2

(

p2 + 2p2q
)

+
16

p1q

[

3m2
τ − p2 − p2q

]

+ 8
m2
τ

(p2q)
2

(

p2 + 2p1q
)

+
16

p2q

[

3m2
τ − p2 − p1q

]

+ 8
p2

(p1q) (p2q)

[

2m2
τ − p2

]

}

. (12)

Here p1, p2 are momenta of the final τ–leptons, and q is the photon momentum. The
quantity |M|2 depends only on the scalar products of the momenta of the external particles.
In the rest frame of the B–meson, all these scalar products are fixed, if the photon energy
Eγ and the lepton energy E1 are specified. The Dalitz boundary is given as

0 ≤ Eγ ≤
m2
B − 4m2

τ

2mB
, (13)

mB −Eγ
2

− Eγ
2

√

√

√

√1− 4m2
τ

m2
B − 2mBEγ

≤ E1 ≤
mB − Eγ

2
+
Eγ
2

√

√

√

√1− 4m2
τ

m2
B − 2mBEγ

. (14)

The |M1|2 term is completely infrared–free; the interference term has an integrable infrared
singularity. Thus infrared divergence appears only in |M2|2. The infrared singularity
originates in the Bremstrahlung processes, when photon is soft. It is clear that in this
limit, the B → τ+τ−γ decay cannot be distinguished from B → τ+τ−. Therefore both
processes must be considered together in order to obtain finite result for the decay rate.
In the Appendix we show that IR singular terms in |M2|2 exactly cancel the O(α) virtual
correction in B → τ+τ− amplitude.

In this work, our point of view is slightly different from the standard description.
Namely, we consider the Bremstrahlung process as a different process but not as the α
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correction to the B → τ+τ− decay. In other words, we consider the photon in B → τ+τ−γ
as a hard photon. Therefore, in order to obtain the decay width of the B → τ+τ− +
(hard photon), we must impose a cut on the photon energy, which will correspond to the
experimental cut imposed on the minimum energy for detectable photon. We require the
energy of the photon to be larger than 50 MeV , i.e., Eγ ≥ amB, where a ≥ 0.01.

After integrating over the phase space, and taking into account the cut for the photon
energy, for the decay rate we get,

Γ =

∣

∣

∣

∣

∣

αGF

2
√
2π

VtbV
∗

ts

∣

∣

∣

∣

∣

2
α

(2 π)3
m5
Bπ

×
{

1

12

∫ 1−4r

δ
x3 dx

√

1− 4r

1− x
m2
B

[ (

|A|2 + |B|2
)

(1− x+ 2r)

+
(

|C|2 + |D|2
)

(1− x− 4r)
]

− 2C10fBr
∫ 1−4r

δ
x2 dxRe (A) ln

1 +

√

1− 4r

1− x

1−
√

1− 4r

1− x

− 4 |fBC10|2 r
1

m2
B

∫ 1−4r

δ
dx

[

(

2 +
4r

x
− 2

x
− x

)

ln

1 +

√

1− 4r

1− x

1−
√

1− 4r

1− x

+
2

x
(1− x)

√

1− 4r

1− x

]}

, (15)

where x =
2Eγ
mB

is the dimensionless photon energy, r =
m2
τ

m2
B

and δ = 2a, satisfying

δ ≤ x ≤ 1− 4m2
τ

m2
B

.

From Eq. (15) it follows that for calculating the decay width we need explicit forms of
the form factors g, f, g1 and f1. These form factors are calculated in the framework of
light–cone QCD sum rules in [4] (see also [8]), and their p2 dependences, to a very good
accuracy, can be represented in the following dipole forms,

g(p
2) =

1 GeV

(1− p2

5.62
)2
, f(p

2) =
0.8 GeV

(1− p2

6.52
)2
,

g1(p
2) =

3.74 GeV 2

(1− p2

40.5
)2
, f1(p

2) =
0.68 GeV 2

(1− p2

30
)2

, (16)

which we will use in the numerical analysis.
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3 Numerical analysis and discussion

For the input parameters, which enter into the expression for the decay width we use the fol-
lowing values: mb = 4.8GeV, mc = 1.35 GeV, mτ = 1.78GeV, mB = 5.28 GeV, |VtbVts∗| =
0.045. We use the pole form of the form factors given in Eq. (16). For B–meson life time we
take τ (Bs) = 1.64× 10−12 s [9]. The value of the Wilson coefficients C7 (mb) and C10 (mb),
to the leading logarithmic approximation, are (see for example [6, 7]):

C7 (mb) = − 0.315, C10 (mb) = − 4.6242 . (17)

The expression Ceff
9 (mb) for the b→ s transition, in the next–to–leading–order approx-

imation, is given as

Ceff
9 (mb) = C9(mb) + 0.124w(ŝ) + g(m̂c, ŝ)(3C1 + C2 + 3C3 + C4 + 3C5 + C6)

−1

2
g(m̂q, ŝ)(C3 + 3C4)−

1

2
g(m̂b, ŝ)(4C3 + 4C4 + 3C5 + C6)

+
2

9
(3C3 + C4 + 3C5 + C6) , (18)

with

C1 = − 0.249, C2 = 1.108, C3 = 1.112× 10−2, C4 = − 2.569× 10−2,

C5 = 7.4× 10−3, C6 = − 3.144× 10−2, C9 = 4.227 , (19)

where m̂q = mq/mb, ŝ = p2/m2
b . The value of C

eff
9 for the b→ d transition can be obtained

by adding to Eq. (18) the term

λu [g (m̂c, ŝ)− g (m̂d, ŝ)] (3C1 + C2) ,

where

λu =
VubV

∗

ud

VtbV
∗

td

,

and replacing VtbV
∗

ts in Eq. (15) by VtbV
∗

td. In Eq. (18), w(ŝ) represents the one gluon
correction to the matrix element of operator O9, and its explicit form can be found in
[6, 7], while the function g(m̂q, ŝ) arises from the one–loop contributions of the four quark
operators O1–O6, i.e.,

g(m̂q, ŝ
′) = −8

9
ln(m̂q) +

8

27
+

4

9
yq −

2

9
(2 + yq)

√

|1− yq|

×
{

Θ(1− yq)

(

ln
1 +

√
1− yq

1−√
1− yq

− iπ

)

+Θ(yq − 1)arctg
1√
yq − 1

}

,

where yq = 4m̂2
q/ŝ

′, and ŝ′ = p2/m2
b .

For a more complete analysis of the B → τ+τ−γ decay, one has to take into account the
long distance contributions. For this aim it is necessary to make the following replacement

g(m̂c, ŝ
′) → g(m̂c, ŝ

′)− 3π

α2

∑

V=J/ψ,ψ′

m̂VB(V → τ+τ−)Γ̂Vtot
ŝ′ − m̂2

V + im̂V Γ̂Vtot
, (20)
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where m̂V = mV /mb, Γ̂tot = Γ/mb.
Our results for the Branching Ratio B(B → τ+τ−γ) for two different values of the cut

(δ = 0.01 and δ = 0.02) are presented in Table 1.

Short Distance Short and Long Distance

Contributions to the Contributions to the

Branching Ratio Branching Ratio

δ = 0.01 δ = 0.02 δ = 0.01 δ = 0.02

Structure 4.19× 10−9 4.19× 10−9 9.95× 10−9 7.68× 10−9

dependent part

Bremstrahlung 4.11× 10−9 3.16× 10−9 4.11× 10−9 3.16× 10−9

part

Interference 1.24× 10−9 1.23× 10−9 1.16× 10−9 1.16× 10−9

part

Total 9.54× 10−9 8.59× 10−9 1.52× 10−8 1.20× 10−8

Table 1:

Note that, when only short distance effects are taken into consideration, the structure–
dependent and the Bremstrahlung parts give, more or less, comparable contributions. How-
ever, if long distance contributions are also considered in addition to the short ones, the
structure–dependent part contributes more as compared to that of the Bremstrahlung part.
This is due to the fact that, the structure dependent part contains (J/ψ, ψ′) resonance con-
tributions in the latter case (see Eq. (20)).

From these results it follows that there is a good chance for detecting τ lepton decay in
the future B–meson factories, provided that the efficiency is ∼ 1/3.
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Figure Captions

1. Dependence of the Differential Branching Ratio for the B → τ+τ−γ decay on the dimen-

sionless variable x =
2Eγ
mB

, for the value of the cut δ = 0.01 imposed on the photon energy.

In this figure, the curve with the sharp peak represents the long distance contributions.

2. Same as Fig. 1, but for the cut value δ = 0.02.
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Appendix : Cancellation of the infrared divergences

In this section we will show the explicit cancellation between the infrared singularities
arising from the Bremstrahlung of a soft photon in the B → τ+τ−γ rate and in the O(α)
virtual corrections to the B → τ+τ− amplitude.

As we have explained in Section 2, we are not going to include O(α) virtual corrections to
the B → τ+τ− amplitude in the calculation of the rate of B → τ+τ−γ. The Bremstrahlung
process here is not considered as an O(α) correction to the B → τ+τ− amplitude, but as a
different process, namely the decay of a B–meson into τ–lepton pair plus a hard photon. In
order to calculate the physical rate of interest, we just have to impose a cut on the energy
of photon, which will correspond to the experimental cut imposed on the minimum energy
for detectable photon.

In this sense our approach is very similar to the one given in [11], in studying Bs →
Xsγγ decay. Therefore, in the present Appendix we will consider only those aspects of the
discussion which are necessary to show the cancellation of the infrared singularities. For
removing the infrared singularities we will use the method presented in [12], where the main
idea is to use the dimensional regularization method, i.e., to replace

d3q

2Eγ (2π)3
→ d(n−1)q

2 |q| (2π)(n−1)
, (A.1)

where q = (q0, qi) is an n dimensional light–like vector:

q0 = |q| =
(

|q1|2 + · · ·+ |qn−1|2
)1/2

.

All calculations are performed in the rest frame of the B–meson. We are interested in the
situation when charged lepton is observed in the energy interval Em − ∆E ≤ E ≤ Em,
where Em is that of the charged lepton energy in the two–body decay B → τ+τ− and
∆E << Em. We will retain terms of logarithmic and zeroth order in ∆E. It is clear that in
this limit, only soft photons give contributions.

Let us first consider the Bremstrahlung part. From |M2|2 it follows that only terms
proportional to 1/ (p1q)

2 , 1/ (p2q)
2 and 1/ [(p1q) (p2q)] give infrared singularities (we will

omit the terms which give finite contributions to the to the decay rate), i.e.,

|M2|2IR = −
∣

∣

∣

∣

∣

αGFVtbV
∗

tsfBC10

2
√
2π

∣

∣

∣

∣

∣

2

m2
τ4πα

×
{

8m2
τ

p2

(p1q)
2 + 8m2

τ

p2

(p2q)
2 + 16m2

τ

[

(p1q)

(p2q)
2 +

(p2q)

(p1q)
2

]

+ 16m2
τ

p2

(p1q) (p2q)
− 8

p4

(p1q) (p2q)

}

.

(A.2)

Let us consider the first term in the bracket

I =
∫

d3 ~p1
2E1

d3 ~p2
2E2

d(n−1)q

2 |q| (2π)n−1

p2

(p1q)
2

1

(2π)2
δ(pB − p1 − p2 − q)

=
∫

d3 ~p1
2E1

d(n−1)q

2 |q| (2π)n−1

p2

(p1q)
2

1

(2π)2
δ
(

m2
B − 2mBE1 − 2mBq

0 + 2E1q (1− βz)
)

,

(A.3)

10



where β = |~p1| /E1, and we choose the first axis along the direction of ~p1. The integrand
depends only on the angle θ1 = θ, so that we can immediately perform integration over the
other angles. Integration over all of the angular variables leads to the following result

∫

d(n−1)q → 2πn/2−1

Γ (n/2− 1)

∫

d |q| q(n−2)
∫ 1

−1
dz

(

1− z2
)n/2−2

, (A.4)

where z = cosθ. Using (A.4), and performing integration over radial d |q| we obtain

I =
1

2 (2π)n−1

1

(2π)2
2πn/2−1

Γ (n/2− 1)

∫ Em

Em−∆E

4πβ dE1

4E1

∫

dz
(1− z2)

n/2−1

(1− βz)2

×
{

m2
B

(m2
B − 2mBE1)

n−5

[2mB − 2E1 (1− βz)]n−4 − 2mB
(m2

B − 2mBE1)
n−4

[2mB − 2E1 (1− βz)]n−3

}

.

(A.5)

Second term gives finite contribution and therefore we will omit it. In our case Em = mB/2.
Introducing next a new variable t = Em − E1 and expanding all terms in Taylor series

about E1 = Em, we get

I =
1

2n+2πn/2+1

1

Γ (n/2− 1)

∫

dz
(1− z2)

n/2−2

(1− βmz)
2

βm
Em

×
∫ ∆E

0
dt

mn+3
B tn−5

2En−4
m (1 + βmz)

n−4 .

(A.6)

After integrating over t we have

I =
1

2n+2πn/2+1

1

Γ (n/2− 1)

βm
2

×
{

(

1

n− 4
+ ln∆E

)
∫ 1

−1
dz

(1− z2)
n/2−2

(1− βmz)
2

1

(1 + βmz)
n−4

}

.

(A.7)

The last step is to expand (A.7) in a Laurent series about n = 4 and perform trivial
integrations over dx (retaining only 1/(n − 4) and ln∆E terms). Calculating in a similar
manner all the other terms, we get (we retain only infrared divergent terms and those that
are proportional to ln∆E)

ΓIR = −
∣

∣

∣

∣

∣

αGFVtbV
∗

tsfBC10

2
√
2 π

∣

∣

∣

∣

∣

2

m2
τm

2
B

α

4
βmπ

−n/2 1

2mB

×
{

(

1

n− 4
+ ln∆E

)

[

8 + 4
(

1 + β2
m

)] 1

βm
ln
1− βm
1 + βm

+ · · ·
}

.

(A.8)

Now let us calculate O (α) virtual corrections to the B → τ+τ− decay. The matrix
element for the B → τ+τ− decay with virtual corrections can be represented as

M = M0 {1 + 4παK+ (Zm − 1)} , (A.9)
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where

M0 =
αGF

2
√
2 π

fBC10VtbV
∗

ts2mτ τ̄ γ5τ ,

is the matrix element for B → τ+τ− decay without virtual corrections, K denotes O (α)
corrections due to the photon exchange (vertex) to the M0, and the last term corresponds
to the wave function renormalization. Note that all the calculations were performed in the
Landau gauge. The matrix element square with summation over spins of the final particles
is given as

|M|2 = |M0|2
{

1 + 4πα2Re(K) + 2 (Zm − 1)
}

. (A.10)

In the Landau gauge, fermion wave function renormalization constant is given as

Zm − 1 =
α

4π

(

6

n− 4
− 4

)

. (A.11)

After standard calculation for the infrared singular part for the virtual corrections, we
finally get

ΓIR =

∣

∣

∣

∣

∣

αGFVtbV
∗

tsfBC10

2
√
2π

∣

∣

∣

∣

∣

2

m2
τmB

αβ

4π2

×
{

1

n− 4

[

4 +
2

β
(1 + β)2

]

ln
1− β

1 + β
+ · · ·

}

.

(A.12)

From Eqs. (A.8) and (A.12) we see that the infrared singular terms from Bremstrahlung
and vertex corrections exactly cancel each other, and the decay rate is infrared–free.
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