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POLYOMINO CONVOLUTIONS AND TILING

PROBLEMS

ALI ULAS OZGUR KISISEL

Abstract. We define a convolution operation on the set of poly-
ominoes and use it to obtain a criterion for a given polyomino not
to tile the plane (rotations and translations allowed). We apply
the criterion to several families of polyominoes, and show that the
criterion detects some cases that are not detectable by generalized
coloring arguments.

1. Introduction:

Tiling properties of polyominoes have been studied by many authors
using various methods (see for instance [1], [2], [5], [7]). We will assume
that a polyomino f is a map from Z × Z to Z that takes the values
0 and 1. We associate a value 1 of f at (n,m) with the unit square
[n, n + 1] × [m,m + 1]. This allows us to envision polyominoes in the
usual way as tiles in the plane. We assume f has finitely many occupied
squares. (Several authors including S. Golomb refer to these objects
as quasi-polyominoes ([4], pg. 85), and reserve the term polyomino for
rookwise connected figures. A figure is rookwise connected if it can
be constructed by placing squares in a way that each square except
for the first shares an edge with a previously placed square. We will
not assume rookwise connectedness or topological connectedness unless
declared.)

Definition 1. Let f be any map Z × Z → Z (not necessarily a poly-
omino map). Suppose f(n,m) is nonzero for finitely many pairs (n,m).
Let |f |1 =

∑
n,m |f(n,m)|, and let |f |∞ be the number of pairs (n,m)

such that f(n,m) is not zero. Both of these are norms in the usual
sense. The assumption implies that both |f |1 and |f |∞ are finite, and
we say that f has finite area. If f is a polyomino, the two norms are
equal, and we use the notation |f |.

Definition 2. For any map f as above, of finite area, let diam(f)
denote the maximum of the distances between pairs of points of support
of f under the taxicab metric. The taxicab distance between two points
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is the minimum number of grid steps from one point to the other (A
grid step is a move from (x, y) to (u, v) where |x− u|+ |y − v| = 1).

Definition 3. Suppose f and g are two maps Z×Z → Z such that at
least one of them has finite area. Define h = f ⋆ g as:

h(n,m) =
∑

k,l

f(k, l)g(n− k,m− l)(1)

h(n,m) counts the number of intersections of f with an (n,m) trans-
late of the reflection of g across the origin. It is clear that the sum in
the definition is finite for a fixed (n,m), and h has finite area if both f

and g do. We call h the convolution of f and g. It is easy to see that
diam(h) ≤diam(f)+diam(g).
If f and g are polyominoes, then their convolution h = f ⋆ g is not

a polyomino in general since h may assume values other than 0 or 1.
But one may obtain a polyomino from h by reducing each h(n,m) to
0 or 1 depending on its congruence class modulo 2. In this way, we
obtain a convolution operation on the set of polyominoes. This oper-
ation inherits the associativity and bilinearity properties of the usual
convolution, since reduction modulo 2 commutes with the operations
of addition and multiplication that constitute the convolution. Denote
the composition of convolution and the reduction modulo 2 by f ⋆2 g.
Similarly, denote the composition of convolution and reduction modulo
n for an arbitrary modulus n by f ⋆n g.
Here is our main observation:

Theorem 1. Suppose that f is a polyomino symmetric under rotations
of 90 degrees. Suppose g is a polyomino. Then if |f ⋆n g|1 < ¯|f ||g|, or
if |f ⋆n g|∞ < sgn( ¯|f |)|g|, where ¯|f | denotes the unique integer among
0, 1, ..., n−1 congruent to |f | modulo n, then copies of g cannot tile the
plane (i.e. cover it without overlaps) , translations and rotations being
allowed.(Here we are thinking of g’s as tiles)

Proof: Say that copies of g tile the plane. This is another way to say
that the full plane is a sum of non overlapping translates of copies of g
and its rotations. Since f is rotationally symmetric, f convolved with
g has the same norms as f convolved with a rotation of g. Consider
a minimal pattern of g’s in this tiling that contains a full N by N

square. Call this figure G for reference. G is certainly contained in
a N + 2diam(g) by N + 2diam(g) square, otherwise it wouldn’t be
minimal. Since G is obtained as a disjoint sum of g’s, its norm is
simply the sum of the norms of its constituents. We are going to
estimate norms of f ⋆n G from two directions.
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First of all, f ⋆ G has at least (N − 2diam(f))2 points of value |f |,
since at least that many translates of f fall completely into the N by N

square. Reducing modulo n, we obtain |f ⋆nG|1 ≥ (N − 2diam(f))2 ¯|f |
and |f ⋆nG|∞ ≥ (N−2diam(f))2sgn( ¯|f |). On the other hand G is made

up of at most (N+2diam(g))2

|g|
copies of g. If we assume to the contrary that

the inequalities in the hypothesis may hold, by the triangle inequality
we obtain that

(N + 2diam(g))2
¯|f ||g| − 1

|g|
≥ |f ⋆n G|1 ≥ (N − 2diam(f))2 ¯|f |(2)

or

(N + 2diam(g))2
sgn( ¯|f |)|g| − 1

|g|
≥ |f ⋆n G|∞ ≥ (N − 2diam(f))2sgn( ¯|f |)

(3)

Both inequalities fail to hold asymptotically for large values of N , since
the coefficients of N2 on the left hand sides of the equations are strictly
less than those on the right hand sides. This contradiction finishes the
proof. ✷
We remark that the theorem remains valid if we replace g by a finite

collection of prototiles g1, ..., gk such that the inequalities hold for each
of them separately.

2. Some Applications

We would like to show some applications of the criterion. Our first
example is a certain sequence of disconnected polyominoes.
We define a sequence Dn of polyominoes as follows: Dn is obtained

by aligning n dominoes horizontally along their longer sides, leaving
a spacing of one square between any two consecutive dominoes (see
figure 1). For instance, an accordingly positioned Dn would occupy the
squares (0, 0), (1, 0), (3, 0), (4, 0), (6, 0), (7, 0), ..., (3n− 3, 0), (3n− 2, 0).
D1 is a domino itself. Therefore it tiles the plane in many ways. The
question for n ≥ 2 has the following answer:

Proposition 1. Dn tiles the plane iff n ≤ 3, translations and rotations
allowed.

Proof: Examples of tilings for D2 and D3 are shown in figures 3 and
4 respectively. Both tilings are doubly periodic, thus only one funda-
mental region is shown in either case. We must remark that a tiling
pattern for D2 or D3 needs to obey severe restrictions, and our guess
is that the D3 tiling is essentially unique.



4 ALI ULAS OZGUR KISISEL

Next we prove the impossibility part of the assertion. Suppose that
S3×3 represents the 3 by 3 square polyomino. It is not hard to check
that |S3×3⋆2Dn| = 6 for any value of n (see figure 2). This happens since
all but 6 translates of S3×3 meet Dn in an even number of squares. The
6 are those where S3×3 meets the first or last square of Dn. Therefore,
by Theorem 1 , Dn cannot tile the plane if |Dn| = 2n > 6, i.e. if n > 3.
✷

There are many ways that one can seek generalizations of this ex-
ample. A similar argument works for the negative part of the corre-
sponding assertion on higher dimensional analogues. We show another
generalization since it uses the other norm |f |

∞
:

Proposition 2. Let Dn,a,b represent the polyomino obtained by align-
ing n horizontal bars of length a, leaving a spacing of b blank squares
between any two consecutive bars (Therefore, the Dn above are Dn,2,1

with this notation). Then, if b2 is not divisible by a, Dn,a,b cannot tile

the plane if n >
2(a+b)(a−1)

a
.

Proof: Let S(a+b)×(a+b) represent the square polyomino of side length
(a+b). Then |S(a+b)×(a+b)⋆aDn,a,b|∞ = 2(a−1)(a+b), and |Dn,a,b| = na.
Thus the inequality follows from the theorem unless (a+b)2 is 0 modulo
a. This is equivalent to a|b2. ✷
Next, we consider some rookwise connected polyominoes. All such

polyominoes of area 6 or less tile the plane ([6]), so we have to consider
larger polyominoes. The first polyomino in figure 5 is a 9-omino that
clearly doesn’t tile. This is provable by our criterion as well, as demon-
strated in the same figure. Figure 8 shows another non-tiler , and this
is also easy to prove directly.
We will call a polyomino L a “log” if it is an a by b rectangle with

a > 1 and b > 1. Let L
′

be the a + 2 by b + 2 rectangle containing L

in the middle. We define a “log with spikes” (or a “spiky log”) to be a
polyomino obtainable from such an L by adjoining a number of 1 by 1
squares directly to L (each sharing an edge with a square of L) so that
there are at least two blank squares between any two of them (Around
corners, count along the squares of L

′

−L). We call the 1 by 1 squares
“spikes”.

Proposition 3. No log with more than four spikes (moreover, no finite
collection of such prototiles) can tile the plane.

Proof: Convolve the polyomino with the X pentomino modulo 2. One
may verify that convolving an a by b rectangle with the X pentomino
gives a polyomino of norm ab + 8, and each spike placed on the log
reduces the norm of the result by 1, while increasing the norm of the
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initial object by 1. Therefore, if 5 or more spikes are placed, the con-
volution is norm decreasing. (See the example in figure 7)✷
We call a polyomino a “snake” if no subset of its squares is a T

tetromino or a square tetromino. We say that the snake makes n “U-
turns” if it has n distinct subsets forming U-pentominoes.

Proposition 4. No snake making 3 or more U-turns (moreover, no
finite collection of such prototiles) can tile the plane.

Proof: Convolve the polyomino with the X pentomino modulo 3 and
look at the | |1 norm. Except for the two squares at the ends, each
square of the snake has three neighbors (counting the square itself),
so these do not contribute. The squares at the ends may contribute 4
in total at most. Any square not on the snake makes a contribution
only if it shares an edge with the snake. If the snake has n squares,
the maximum possible total contribution of this type is the number of
edges, 2n+ 2. Every U-turn costs 3, therefore if there are more than 2
U-turns, the norm of the convolution is less than 2n, and the criterion
gives the result. ✷
Golomb defines a “reptile” to be a polyomino that tiles a larger copy

of itself [4]. All reptiles tile the plane. Therefore snakes making 3
U-turns (actually even 2 U-turns) cannot be reptiles!

3. A Comparison to Coloring Arguments

There are several other sufficient criteria to prove the impossibility
of tiling a given figure by another. Of these, perhaps the best known
are coloring and generalized coloring arguments. One may ask where
our criterion stands. We show that there exist tiling problems such
that the impossibility is detected by our criterion whereas no general-
ized coloring argument can do so. We follow the method in [2]. If a
generalized coloring argument proves impossibility of tiling R with f ,
then it also proves impossibility of a “signed tiling” of R with f . A
signed tiling permits using the map −f as well as f , and of course,
overlaps allowed.

Theorem 2. (i) It is not possible to tile a torus by D4’s.
(ii) There exist signed tilings of a 24 by 12 torus by D4’s.

Proof: (i) is clear. If D4 tiled a torus, it would tile the plane in a
doubly periodic way. But this was shown not to happen.
(ii) Notice that f superposed with −f shifted 3 squares to the right

gives a map g such that g(0, 0) = g(1, 0) = 1, g(12, 0) = g(13, 0) = −1,
and 0 otherwise. Horizontally, stack 6 g’s, with a shift of two squares
between consecutive g’s. We obtain a new map h such that h(k, 0) = 1
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Figure 2. D3 ⋆ s3×3
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Figure 3. Tiling a 12× 6 torus by D2’s

for k = 0, ..., 11, h(k, 0) = −1 for k = 12, ..., 23, and 0 otherwise.
Rotate h 90 degrees clockwise.
Next, stack 12 D4’s vertically. We get a figure of 4 rectangles of

dimensions 12 by 2, longer sides vertical, with one horizontal separation
between neighboring rectangles. Using copies of h, we can shift the
2nd and 4th rectangles up by 12 spaces while leaving the other two
untouched. A horizontal stack of three copies of this final figure gives
a torus tiling. ✷
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Figure 4. Tiling an 18× 18 torus by D3’s
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Figure 5. A 9-omino which doesn’t tile
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Figure 6. A snake making 3 U-turns can’t tile
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Figure 7. A spiky log with 5 spikes can’t tile

2
=*

Figure 8. A 12-omino which doesn’t tile
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