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1 Introduction

Flavor–changing neutral current (FCNC) b → s(d)ℓ+ℓ− transitions provide potentially the
most sensitive and stringiest test for the standard model (SM) in the flavor sector at loop
level, since FCNC transitions are forbidden in the SM in the Born approximation. At the
same time these decays are very sensitive to the new physics beyond the SM. New physics
appear in rare decays through the Wilson coefficients which can take values different from
their SM counterpart or through the new operator structures in an effective Hamiltonian
[1].

First measurements of the B → Xsγ decay were reported by CLEO Collaboration [2]
and at present more precise measurements are currently being carried out in the experiments
at B factories [3]. Exclusive decay involving the b → sγ transition has been measured in
[4]–[6]. After these measurements of the radiative decay induced by the b → sγ transition,
main interest has been focused on the rare decays induced by the b → sℓ+ℓ− transition,
which have relatively large branching ratio in the SM. These decays have been extensively
studied in the SM and its various extensions [7]–[22].

The exclusive B → K∗(K)ℓ+ℓ− decays, which are described by b→ sℓ+ℓ− transition at
inclusive level, have been widely studied in literature (see [22]–[26] and references therein).
Recently BaBar Collaboration announced evidence of theB → Kℓ+ℓ− andB → K∗ℓ+ℓ− de-
cays with the branching ratios B(B → Kℓ+ℓ−) = (0.78+0.24+0.11

−0.20−0.18)×10−6, B(B → K∗ℓ+ℓ−) =
(1.68+0.68

−0.58 ± 0.28) × 10−6 [27]. The B → Kℓ+ℓ− decay has been also observed at BELLE
detector [28] with the branching ratio B(B → Kℓ+ℓ−) = (0.75+0.25

−0.21 ± 0.09) × 10−6. An-
other exclusive decay which is described at inclusive level by the b → sℓ+ℓ− transition is
the baryonic Λb → Λℓ+ℓ− decay. Interest to the baryonic decays can be attributed to the
fact that, unlike mesonic decays, they could maintain the helicity structure of the effective
Hamiltonian for the b → s transition. Note that, new physics effects in the Λb → Λγ decay
were studied in [29].

In this work we analyze the possibility of searching for new physics in the heavy baryon
Λb → Λℓ+ℓ− decay by measuring the polarization of Λ baryon, using the most general
model independent form of the effective Hamiltonian. It should be mentioned here that the
sensitivity of the lepton polarization to the new Wilson coefficients, which are responsible
for the existence of new physics beyond the SM in the B → Kℓ+ℓ− and B → K∗ℓ+ℓ− and
Λb → Λℓ+ℓ− decays, is investigated in [30], [31] and [32], respectively, using the most general
form of the effective Hamiltonian. It is shown in these works that the lepton polarizations
are really very sensitive to the new physics effects.

The paper is organized as follows. In section 2, using the most general form of the
effective Hamiltonian , the general expressions for the longitudinal and normal polarizations
of the Λ baryon are derived. Section 3 is devoted to the study of the dependence of the Λ
polarizations on the new Wilson coefficients.

2 Lepton polarizations

At quark level, the matrix element of the Λb → Λℓ+ℓ− decay is described by the b→ sℓ+ℓ−

transition. The effective Hamiltonian responsible for the b → sℓ+ℓ− transition can be
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written in terms of twelve model independent four–Fermi interactions as [24, 33]

M =
Gα√
2π
VtbV

∗
ts

{
CSLs̄Riσµν

qν

q2
bLℓ̄γ

µℓ+ CBRs̄Liσµν
qν

q2
bRℓ̄γ

µℓ + Ctot
LLs̄LγµbLℓ̄Lγ

µℓL

+ Ctot
LRs̄LγµbLℓ̄Rγ

µℓR + CRLs̄RγµbRℓ̄Lγ
µℓL + CRRs̄RγµbRℓ̄Rγ

µℓR

+ CLRLRs̄LbRℓ̄LℓR + CRLLRs̄RbLℓ̄LℓR + CLRRLs̄LbRℓ̄RℓL + CRLRLs̄RbLℓ̄RℓL

+ CT s̄σµνbℓ̄σ
µνℓ+ iCTEǫµναβ s̄σ

µνbℓ̄σαβℓ

}
, (1)

where the subindices L and R stand for the chiral operators L = (1 − γ5)/2 and R =
(1 + γ5)/2. The coefficients of the first two terms, CSL and CBR describe the penguin
contributions, which correspond to −2msC

eff
7 and −2mbC

eff
7 in the SM, respectively. The

next four terms with coefficients Ctot
LL, C

tot
LR, CRL and CRR in Eq. (1) describe vector

type interactions. Two of these coefficients Ctot
LL and Ctot

LR contain SM results in the form
Ceff

9 − C10 and Ceff
9 − C10, respectively. For this reason we can write

Ctot
LL = Ceff

9 − C10 + CLL ,

Ctot
LR = Ceff

9 + C10 + CLR , (2)

where CLL and CLR describe the contributions of new physics. The next four terms in
Eq. (1) with coefficients CLRLR, CRLLR, CLRRL and CRLRL represent the scalar type
interactions. The remaining last two terms led by the coefficients CT and CTE are the
tensor type interactions.

The amplitude of the exclusive Λb → Λℓ+ℓ− decay is obtained by calculating the ma-
trix element of Heff for the b → sℓ+ℓ− transition between initial and final baryon states
〈Λ |Heff |Λb〉. We see from Eq. (1) that for calculating the Λb → Λℓ+ℓ− decay amplitude,
the following matrix elements are needed

〈Λ |s̄γµ(1∓ γ5)b|Λb〉 ,
〈Λ |s̄σµν(1∓ γ5)b|Λb〉 ,
〈Λ |s̄(1∓ γ5)b|Λb〉 .

The relevant matrix elements parametrized in terms of the form factors are as follows
(see [34, 35])

〈Λ |s̄γµb|Λb〉 = ūΛ
[
f1γµ + if2σµνq

ν + f3qµ
]
uΛb

, (3)

〈Λ |s̄γµγ5b|Λb〉 = ūΛ
[
g1γµγ5 + ig2σµνγ5q

ν + g3qµγ5
]
uΛb

, (4)

〈Λ |s̄σµνb|Λb〉 = ūΛ
[
fTσµν − ifVT (γµq

ν − γνq
µ)− ifST (Pµq

ν − Pνq
µ)
]
uΛb

, (5)

〈Λ |s̄σµνγ5b|Λb〉 = ūΛ
[
gTσµν − igVT (γµq

ν − γνq
µ)− igST (Pµq

ν − Pνq
µ)
]
γ5uΛb

, (6)

where P = PΛb
+ PΛ and q = PΛb

− PΛ.
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The form factors of the magnetic dipole operators are defined as

〈Λ |s̄iσµνqνb|Λb〉 = ūΛ
[
fT1 γµ + ifT2 σµνq

ν + fT3 qµ
]
uΛb

,

〈Λ |s̄iσµνγ5qνb|Λb〉 = ūΛ
[
gT1 γµγ5 + igT2 σµνγ5q

ν + gT3 qµγ5
]
uΛb

. (7)

Note that, using the identity

σµνγ5 = − i

2
ǫµναβσ

αβ ,

the second expression in Eq. (7) can be written as

〈Λ |s̄iσµνγ5qνb|Λb〉 = ūΛ
[
fT iσµνγ5q

ν
]
uΛb

.

Multiplying (5) and (6) by iqν and comparing with (7), one can easily obtain the following
relations between the form factors

fT2 = fT + fST q
2 ,

fT1 =
[
fVT + fST (mΛb

+mΛ)
]
q2 = − q2

mΛb
−mΛ

fT3 ,

gT2 = gT + gST q
2 , (8)

gT1 =
[
gVT − gST (mΛb

−mΛ)
]
q2 =

q2

mΛb
+mΛ

gT3 .

The matrix element of the scalar (pseudoscalar) operators s̄b and s̄γ5b can be obtained
from (3) and (4) by multiplying both sides to qµ and using equation of motion. Neglecting
the mass of the strange quark, we get

〈Λ |s̄b|Λb〉 =
1

mb
ūΛ
[
f1 (mΛb

−mΛ) + f3q
2
]
uΛb

, (9)

〈Λ |s̄γ5b|Λb〉 =
1

mb
ūΛ
[
g1 (mΛb

+mΛ) γ5 − g3q
2γ5
]
uΛb

. (10)

Using these definitions of the form factors, for the matrix element of the Λb → Λℓ+ℓ−

we get [35, 36]

M =
Gα

4
√
2π
VtbV

∗
ts

{
ℓ̄γµℓ ūΛ

[
A1γµ(1 + γ5) +B1γµ(1− γ5)

+ iσµνq
ν [A2(1 + γ5) +B2(1− γ5)] + qµ[A3(1 + γ5) +B3(1− γ5)]

]
uΛb

+ ℓ̄γµγ5ℓ ūΛ
[
D1γµ(1 + γ5) + E1γµ(1− γ5) + iσµνq

ν [D2(1 + γ5) + E2(1− γ5)]

+ qµ[D3(1 + γ5) + E3(1− γ5)]
]
uΛb

+ ℓ̄ℓ ūΛ(N1 +H1γ5)uΛb
+ ℓ̄γ5ℓ ūΛ(N2 +H2γ5)uΛb

+ 4CT ℓ̄σ
µνℓ ūΛ

[
fTσµν − ifVT (qνγµ − qµγν)− ifST (Pµqν − Pνqµ)

]
uΛb

+ 4CTEǫ
µναβ ℓ̄σαβℓ iūΛ

[
fTσµν − ifVT (qνγµ − qµγν)− ifST (Pµqν − Pνqµ)

]
uΛb

}
, (11)
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where the explicit forms of the functions Ai, Bi, Di, Ei, Hj and Nj (i = 1, 2, 3 and j = 1, 2)
are as follows [35]

A1 =
1

q2

(
fT1 − gT1

)
CSL +

1

q2

(
fT1 + gT1

)
CBR +

1

2
(f1 − g1)

(
Ctot
LL + Ctot

LR

)

+
1

2
(f1 + g1) (CRL + CRR) ,

A2 = A1 (1 → 2) ,

A3 = A1 (1 → 3) ,

B1 = A1

(
g1 → −g1; gT1 → −gT1

)
,

B2 = B1 (1 → 2) ,

B3 = B1 (1 → 3) ,

D1 =
1

2
(CRR − CRL) (f1 + g1) +

1

2

(
Ctot
LR − Ctot

LL

)
(f1 − g1) ,

D2 = D1 (1 → 2) , (12)

D3 = D1 (1 → 3) ,

E1 = D1 (g1 → −g1) ,
E2 = E1 (1 → 2) ,

E3 = E1 (1 → 3) ,

N1 =
1

mb

(
f1 (mΛb

−mΛ) + f3q
2
)(
CLRLR + CRLLR + CLRRL + CRLRL

)
,

N2 = N1 (CLRRL → −CLRRL; CRLRL → −CRLRL) ,

H1 =
1

mb

(
g1 (mΛb

+mΛ)− g3q
2
)(
CLRLR − CRLLR + CLRRL − CRLRL

)
,

H2 = H1 (CLRRL → −CLRRL; CRLRL → −CRLRL) .
From the expressions of the above-mentioned matrix elements we observe that Λb →

Λℓ+ℓ− decay is described in terms of many form factors. It is shown in [37] that when HQET
is applied the number of independent form factors reduces to two (F1 and F2) irrelevant of
the Dirac structure of the corresponding operators, i.e.,

〈Λ(pΛ) |s̄Γb|Λ(pΛb
)〉 = ūΛ

[
F1(q

2)+ 6vF2(q
2)
]
ΓuΛb

, (13)

where Γ is an arbitrary Dirac structure, vµ = pµΛb
/mΛb

is the four–velocity of Λb, and
q = pΛb

− pΛ is the momentum transfer. Comparing the general form of the form factors
given in Eqs. (3)–(9) with (13), one can easily obtain the following relations among them
(see also [34])

g1 = f1 = fT2 = gT2 = F1 +
√
rF2 ,

g2 = f2 = g3 = f3 = gVT = fVT =
F2

mΛb

,

gST = fST = 0 ,

gT1 = fT1 =
F2

mΛb

q2 ,
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gT3 =
F2

mΛb

(mΛb
+mΛ) ,

fT3 = − F2

mΛb

(mΛb
−mΛ) , (14)

where r = m2
Λ/m

2
Λb
.

Having obtained the matrix element for the Λb → Λℓ+ℓ− decay, our next aim is the
calculation of Λ baryon polarizations using this matrix element. For this purpose we write
the Λ baryon spin four–vector in terms of a unit vector ~ξ along the Λ baryon spin in its
rest frame as

sµ =



~pΛ · ~ξ
mΛ

, ~ξ +
~pΛ(~pΛ · ~ξ)
EΛ +mΛ



 , (15)

and choose the unit vectors along the longitudinal, transversal and normal components of
the Λ polarization to be

~eL =
~pΛ
|~pΛ|

, ~eT =
~pℓ × ~pΛ
|~pℓ × ~pΛ|

, ~eN = ~eT × ~eL , (16)

respectively, where ~pℓ and ~pΛ are the three momenta of ℓ and Λ, in the center of mass frame
of the ℓ+ℓ− system.

The differential decay rate of the Λb → Λℓ+ℓ− decay for any spin direction ~ξ along the
Λ baryon can be written as

dΓ(~ξ)

ds
=

1

2

(
dΓ

ds

)

0

[
1 +

(
PL~eL + PN~eN + PT~eT

)
· ~ξ
]
, (17)

where (dΓ/ds)0 corresponds to the unpolarized differential decay rate, s = q2/m2
Λb

and
PL, PN and PT represent the longitudinal, normal and transversal polarizations of the Λ
baryon, respectively. The unpolarized decay width in Eq. (17) can be written as

(
dΓ

ds

)

0

=
G2α2

8192π5
|VtbV ∗

ts|2 λ1/2(1, r, s)v
[
T0(s) +

1

3
T2(s)

]
, (18)

where λ(1, r, s) = 1 + r2 + s2 − 2r − 2s − 2rs is the triangle function, r = m2
Λ/m

2
Λb

and

v =
√
1− 4m2

ℓ/q
2 is the lepton velocity. The explicit expressions for T0 and T2 can be found

in [35].
The polarizations PL, PN and PT are defined as:

Pi(q
2) =

dΓ

ds
(~ξ = ~ei)−

dΓ

ds
(~ξ = −~ei)

dΓ

ds
(~ξ = ~ei) +

dΓ

ds
(~ξ = −~ei)

, (19)

where i = L,N, T . PL and PN are P–odd, T–even, while PT is P–even, T–odd and CP–odd.
Note that transversal polarization of the Λ baryon has already been studied in [36].
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In the massless lepton limit the explicit expressions of the PL and PN for the Λ baryon
are:

PL =
16m4

Λb

√
λ

T0(s) +
1
3
T2(s)

{
− 4mΛb

sRe[A∗
1B2 − A∗

2B1]

− s
(
v2Re[F ∗

1H1] + Re[F ∗
2H2]

)

− 4

3
mΛb

sv2
(√

rRe[A∗
1A2 − B∗

1B2] + 3Re[D∗
1E2 −D∗

2E1] +
√
rRe[D∗

1D2 − E∗
1E2]

)

+
1

3

{
[3(1− r + s)− v2(1− r − s)](|A1|2 − |B1|2 + |D1|2 − |E1|2)

}

− 1

3
m2

Λb
s[3(1− r + s) + v2(1− r − s)](|A2|2 − |B2|2)

− 2

3
m2

Λb
sv2(2− 2r + s) (|D2|2 − |E2|2)

− 256

3
m2

Λb
sv2[(1 +

√
r)2 − s] Re[C∗

TCTE ]Re[f
∗
Tf

S
T ]

− 256

3
mΛb

s[3−
√
r(3− 2v2)] Re[C∗

TCTE ]Re[f
∗
Tf

V
T ]

+
256

3
[3− 3r − (1− r − s)v2] Re[C∗

TCTE] |fT |2
}
, (20)

PN =
8πm4

Λb
v
√
s

T0(s) +
1
3
T2(s)

{
− 2(1− r + s)

√
rRe[A∗

1D1 +B∗
1E1]

+ 4(1 +
√
r)[(1−

√
r)2 − s]

(
Re[(CTfT )

∗H1]− 2Re[(CTEfT )
∗H2]

)

+ 4(1−
√
r)[(1 +

√
r)2 − s]

(
2Re[(CTEfT )

∗F1]− Re[(CTfT )
∗F2]

)

+ 4mΛb
s
√
rRe[A∗

1E2 + A∗
2E1 +B∗

1D2 +B∗
2D1]

− 2m2
Λb
s
√
r(1− r + s) Re[A∗

2D2 +B∗
2E

∗
2 ]

− 4mΛb
[(1−

√
r)2 − s]s

(
Re[(CTf

V
T )

∗H1]− 2Re[(CTEf
V
T )

∗H2]
)

+ 2(1− r − s)
(
Re[A∗

1E1 +B∗
1D1] +m2

Λb
sRe[A∗

2E2 +B∗
2D2]

)

− mΛb
[(1− r)2 − s2] Re[A∗

1D2 + A∗
2D1 +B∗

1E2 +B∗
2E1]

}
, (21)

respectively. For the massive lepton case, expressions for the longitudinal and normal
polarizations are quite lengthy, and for this reason, they are not presented in the text. The
explicit form of these expressions can be found in [38].

3 Numerical analysis

In this section we will study the dependence of the lepton polarizations, as well as combined
lepton polarization to the new Wilson coefficients. The main input parameters in the
calculations are the form factors. Since the literature lacks exact calculations for the form
factors of the Λb → Λ transition, we will use the results from QCD sum rules approach in
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combination with HQET [37, 39], which reduces the number of quite many form factors
into two. The s dependence of these form factors can be represented in the following way

F (q2) =
F (0)

1− aF s+ bF s
2 ,

where parameters Fi(0), a and b are listed in table 1.

F (0) aF bF

F1 0.462 −0.0182 −0.000176

F2 −0.077 −0.0685 0.00146

Table 1: Transition form factors for Λb → Λℓ+ℓ− decay in the QCD sum rules method.

We use the next–to–leading order logarithmic approximation for the resulting values of
the Wilson coefficients Ceff

9 , C7 and C10 in the SM [40, 41] at the renormalization point
µ = mb. It should be noted that, in addition to short distance short distance contribution,
Ceff

9 receives also long distance contributions from the real c̄c resonant states of the J/ψ
family. The Wilson coefficient Ceff

9 is given by

Ceff
9 = C9(µ) + Ypert +

3π

α2
C̃(0)

∑

V=J/ψ,ψ′,···

κi
Γ(Vi → ℓ+ℓ−)mVi

m2
Vi
− q2 − imViΓVi

, (22)

where C9(µ = mb) = 4.214 in the next to leading logarithmic order (NLL) [40], Ypert(q
2/m2

b)
arises from the one–loop matrix elements of the four–quark operators and its explicit ex-
pression can be found in [41], and C̃(0) = 3C̃1 + C̃2 + 3C̃3 + C̃4 + 3C̃5 + C̃6. The values
of these Wilson coefficients in NLL order can be found in [42]. In Eq. (22), mVi and ΓVi
are the masses and widths of the J/ψ family. The fudge factor κi for the lowest resonances
are chosen as κJ/ψ = 1.65 and κψ′ = 2.36 [43], and for higher resonances the average of
κJ/ψ and κψ′ is used. In the present work we neglect the long distance contributions to the

Ceff
9 , i.e., we restrict ourselves by considering only short distance effects. We will discuss

the influence of the long distance effects in one of our future works.
It follows from Eq. (18) that in performing the numerical analysis of the Λ baryon

polarizations, the values of the new Wilson coefficients, which are responsible for the new
physics beyond the SM, are needed. In further numerical analysis we vary all new Wilson
coefficients in the range − |C10| ≤ CX ≤ |C10|. The experimental bound on the branching
ratio of the B → K∗µ+µ− [27, 28] and B → µ+µ− [44] decays suggest that this is the
right order of magnitude for the vector and scalar interaction coefficients. As has been
mentioned in the introduction section, BaBar and BELLE Collaborations have presented
their preliminary results on the branching ratios of the B → K∗ℓ+ℓ− and B → Kℓ+ℓ−

decays. when one uses the results of both Collaborations on these branching ratios, stronger
restrictions are imposed on some of the new Wilson coefficients. For example, −2 ≤ CLL ≤
0, 0 ≤ CRL ≤ 2.3, −1.5 ≤ CT ≤ 1.5 and −3.3 ≤ CTE ≤ 2.6, and all of the remaining
coefficients vary in the region −4 ≤ CX ≤ 4. The experimental results on the B → K∗ℓ+ℓ−
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and B → Kℓ+ℓ− decays are preliminary and for this reason we did not take into account
the above–mentioned restrictions. Moreover, we assume that all new Wilson coefficients
are real, as well as all of the form factors that we use in the present work. As a result the
normal polarization of Λ is equal to zero, since it is proportional to the imaginary parts of
the combinations of the new Wilson coefficients and of the form factors.

Before proceeding further with the numerical analysis, few words about lepton polar-
izations are in order. It follows from explicit expressions of the Λ baryon polarizations that
they depend on both s and the new Wilson coefficients. Therefore it may experimentally
be difficult to study their dependence on both of these variables simultaneously. For this
reason it is better if we eliminate the dependence of the Λ baryon polarization on one of
the variables. We choose to eliminate the variable s by performing integration over s in the
allowed kinematical region, so that Λ baryon polarizations are averaged over. The averaged
Λ baryon polarizations are defined as

〈Pi〉 =

∫
Pi
dB
ds
ds

∫
dB
ds
ds

. (23)

The dependence of the averaged lepton polarizations 〈PL〉 and 〈PN〉 on the new Wilson
coefficients are shown in Figs (1)–(2). From these figures we obtain the following results.

• 〈PL〉 is strongly dependent to the tensor interaction and quite sensitive to the Wilson
coefficients CRR and CRL, for both Λb → Λµ+µ− and Λb → Λτ+τ− channels. We
observe from Fig. (1) that the value of 〈PL〉 is negative for all values of the new
Wilson coefficients for Λb → Λµ+µ− decay, while, as can easily be seen from Fig. (2),
it is positive when CT ≤ −1.7 and CTE ≥ 0.5 for the Λb → Λτ+τ− channel. The
CX = 0 point corresponds to the SM case. It follows from Figs. (1) and (2) that the
departure from the SM becomes substantial when CX 6= 0. This result confirms that
the measurement of the longitudinal Λ baryon polarization can be a very decisive tool
in looking for new physics beyond the SM.

• The situation for 〈PN〉 is drastically different compared to that for 〈PL〉. 〈PN〉 is
strongly dependent to the vector interaction coefficient CRL for both channels. The
τ channel is also sensitive to the tensor interaction coefficient CTE when CTE > 0.
It follows from Figs. (3) and (4) that 〈PN〉 is positive (negative) when CRL < 0
(CRL > 0). In the τ channel 〈PN〉 is negative when CTE positive.

From these discussions we can conclude that change in sign and magnitude of the Λ
baryon polarization is an indication of the new physics beyond the SM. Determining the
sign of the Λ baryon polarization determines the sign of the new Wilson coefficients and
type of the new interactions.

Finally we would like to mention about the branching ratio, whose measurement is
easier compared to that of the measurement of the Λ baryon polarization, as well as being an
efficient tool in establishing the new physics beyond the SM. In this connection, there follows
the question: can one establish new physics by concentrating on the lepton polarization only.
In other words, are there are certain regions of the newWilson coefficients in which the value
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of the branching ratio coincides with that of the SM prediction, while Λ baryon polarization
does not? In order to answer this we study the correlation between the branching ratio
and the averaged Λ baryon polarizations by varying the new Wilson coefficients. In further
analysis the values of the branching ratio ranges between 10−6 ≤ B(Λb → Λµ+µ−) ≤
6×10−6 and 10−7 ≤ B(Λb → Λτ+τ−) ≤ 6×10−7, which are of the same order of magnitude
with the SM predictions. A first glance to the analysis depicted in Figs. (5)–(9) yields the
following results.

• The numerical analysis for the Λb → Λµ+µ− decay for the longitudinal Λ baryon
polarization yields that such regions of CX , in which branching ratio does agree with
the SM prediction while the averaged longitudinal Λ baryon polarization does not,
are absent. However, as can easily be seen from Figs. (5) and (6), such regions of CX
exist (CLR and CRL) for the averaged normal polarization of the Λ baryon.

• For the Λb → Λτ+τ− decay, we observe the existence of a very narrow region for the
vector interaction coefficient CRL, in which the branching ratio coincides with the SM
prediction but the averaged longitudinal polarization does not. However, a study of
the correlation between the averaged normal polarization of the Λ baryon and branch-
ing ratio, depicted in Figs. (7), (8) and (9), leads to more promising expectations.
In other words, for the new Wilson coefficients CLR, CRLLR and CRLRL there indeed
exist such regions where branching ratio coincides with the SM prediction, but 〈PN〉
deviates substantially from that of the SM prediction.

In conclusion, we have studied the sensitivity of the Λ baryon polarizations to the new
Wilson coefficients. It is shown that there exist certain regions of various new Wilson
coefficients for which the branching ratio of the Λb → Λℓ+ℓ− decays coincide with the
SM prediction, while Λ baryon polarizations deviate substantially from its counterparts
predicted by the SM.
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[22] F. Krüger and L. M. Sehgal Phys. Rev. D56, 5452 (1997).
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Figure captions

Fig. (1) The dependence of the averaged longitudinal Λ baryon polarization 〈PL〉 on the
new Wilson coefficients for the Λb → Λµ+µ− decay.

Fig. (2) The same as in Fig. (1), but for the Λb → Λτ+τ− decay.

Fig. (3) The same as in Fig. (1), but for the averaged normal Λ baryon polarization
〈PN〉.

Fig. (4) The same as in Fig. (3), but for the Λb → Λτ+τ− decay.

Fig. (5) Parametric plot of the correlation between the branching ratio B and the av-
eraged normal polarization 〈PN〉 as a function of the new vector CLL and CLR Wilson
coefficients for the Λb → Λµ+µ− decay.

Fig. (6) The same as in Fig. (5), but for the new vector CRR and CRL Wilson coeffi-
cients.

Fig. (7) The same as in Fig. (5), but for the Λb → Λτ+τ− decay.

Fig. (8) The same as in Fig. (6), but for the Λb → Λτ+τ− decay.

Fig. (9) Parametric plot of the correlation between the branching ratio B and the av-
eraged normal polarization 〈PN 〉 as a function of the new scalar CLRRL, CLRLR, CRLLR
and CRLRL and CLR Wilson coefficients for the Λb → Λτ+τ− decay.

12



C

LRRL

C

RLLR

C

LRLR

C

LRRL

C

LR

C

RL

C

RR

C

LL

C

TE

C

T

C

X

h

P

L

i

(

�

b

!

�

�

�

�

+

)

4.02.00.0-2.0-4.0

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Figure 1:

C

LRRL

C

RLLR

C

LRLR

C

LRRL

C

LR

C

RL

C

RR

C

LL

C

TE

C

T

C

X

h

P

L

i

(

�

b

!

�

�

�

�

+

)

4.02.00.0-2.0-4.0

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Figure 2:

13



C

LRRL

C

RLLR

C

LRLR

C

LRRL

C

LR

C

RL

C

RR

C

LL

C

TE

C

T

C

X

h

P

N

i

(

�

b

!

�

�

�

�

+

)

4.02.00.0-2.0-4.0

0.40

0.20

0.00

-0.20

-0.40

Figure 3:

C

LRRL

C

RLLR

C

LRLR

C

LRRL

C

LR

C

RL

C

RR

C

LL

C

TE

C

T

C

X

h

P

N

i

(

�

b

!

�

�

�

�

+

)

4.02.00.0-2.0-4.0

0.3

0.2

0.1

0.0

-0.1

-0.2

Figure 4:

14



C

LR

C

LL

10

6

�B(�

b

! ��

�

�

+

)

h

P

N

i

(

�

b

!

�

�

�

�

+

)

10.08.06.04.02.0

0.040

0.036

0.032

0.028

Figure 5:

C

RL

C

RR

10

6

�B(�

b

! ��

�

�

+

)

h

P

N

i

(

�

b

!

�

�

�

�

+

)

6.05.85.65.45.25.04.8

0.4

0.2

0.0

-0.2

-0.4

Figure 6:

15



C

LR

C

LL

10

7

�B(�

b

! ��

�

�

+

)

h

P

N

i

(

�

b

!

�

�

�

�

+

)

8.07.06.05.04.03.02.01.0

0.07

0.06

0.05

0.04

Figure 7:

C

RL

C

RR

10

7

�B(�

b

! ��

�

�

+

)

h

P

N

i

(

�

b

!

�

�

�

�

+

)

5.25.04.84.64.44.24.03.8

0.3

0.2

0.1

0.0

-0.1

-0.2

Figure 8:

16



C

RLLR

C

RLRL

C

LRLR

C

LRRL

10

7

�B(�

b

! ��

�

�

+

)

h

P

N

i

(

�

b

!

�

�

�

�

+

)

5.04.54.03.53.0

0.12

0.10

0.08

0.06

0.04

0.02

Figure 9:

17


