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Abstract 

 In the present work, genetic algorithm method (GA) is applied to the problem of 

impurity at the center of a spherical quantum dot for infinite confining potential case. For this 

purpose, any trial variational wave function is considered for the ground state and energy 

values are calculated. In applying the GA to the problem under investigation, two different 

approaches were followed. Furthermore, a standard variational procedure is also performed to 

determine the energy eigenvalues. The results obtained by all methods are found in 

satisfactory agreement with each other and also with the exact values in literature. But, it is 

found that the values obtained by genetic algorithm based upon wavefunction optimization 

are closer to the exact values than standard variational and also than genetic algorithm based 

on parameter optimization methods. 
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1. Introduction 

 The studies performed so far to determine the electronic properties of semiconductor 

quantum nanostructures are based generally either on variational or on numerical procedures 

[1-3]. However, recently a somewhat different optimization technique, the so-called 

evolutionary genetic algorithm (GA), has appeared to be used more frequently in the 

optimization and minimization problems for the quantum mechanical systems [5-7]. This 

method, since firstly proposed by Holland [8], has been applied to many scientific areas, for 

instance, in engineering optimization and improvement problems, for energy calculations in 

atomic and molecular physics, in nonlinear fitting problems and at the crystal growth studies 

in condensed matter [9-13]. It relies essentially on variational procedure. But GA exhibits 

some important differences from other traditional variational optimization procedures. These 
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differences can be summarized as follows: (i) GA employs the coding of any parameter (or 

parameter set), not parameters themselves, (ii) it starts from any initial population of possible 

solution, not from a single value or analytical expression, (iii) it uses some fitness (or 

objective) information in procedure, not any derivative or auxiliary knowledge, and (iv) it 

follows the probabilistic rules, instead of the deterministic ones. 

 Although the operations performed in any GA procedure may differ in practice, the 

main purpose is always the same, namely to select the fittest member(s) of any chosen initial 

population of possible solutions. In other words, a genetic algorithm allows any initial 

population consisting of many individuals to evolve, under some pre-specified selection rules, 

toward a state that maximizes the fitness. To this end, GA keeps on reproducing good 

member(s) while killing the bad ones. Therefore, any selection process is implemented to 

eliminate the low-fitness individuals from the population with more probability and then to let 

survive the good-fitness ones and copy them to the next generations. This selection procedure 

is performed regarding to the fitness values of individuals. 

 In the actual application of the GA procedure to any quantum-mechanical system, an 

initial trial ground state wave function set is firstly chosen according to the specific problem 

and then, energy values are calculated by using this function set. Next, GA begins with these 

initial eigenvalues and performs some genetic operations over them. These operations and 

flow course of algorithm are very different than other traditional optimization methods.  

 In this paper, we apply the evolutionary GA procedure to the problem of impurity 

located at the center of a spherical dot with infinite confining potential. In addition to GA 

method, we have also performed the standard variational calculations. Energy values are 

calculated only for the ground state. In applying the GA procedure to the problem, we have 

followed two different approaches. In one of them, we have optimized the variational 

parameter in minimization process. But, in the other, the wave function itself has been 

selected as the parameter to be optimized.  

The main purpose of this work is to check the efficiency of GA against the standard 

variational method, and also to compare two different GA based optimization methods in 

according to their applicability and performance in attainment the accurate results in such a 

problem.  

 

2. Theory 

 It is well known that the Hamiltonian for an on-center impurity in a spherical quantum 

dot can be written, for the ground state, as 
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is the Laplacian in the spherical coordinates, V(r) is the confining potential, e is the electronic 

charge and m is the electron mass. The solution of Schrödinger equation for a single 

hydrogenic impurity would then require the solution of an energy eigenvalue problem 

analytically or numerically. Different approaches may be made to solve the Schrödinger 

equation, e.g. variational methods [1,2], perturbative approximations [3] or numerical 

procedures [4]. In every approach, it is desired to find a suitable ψn wave function describing 

the system adequately well and next to obtain scalar En eigenenergies which are the solutions 

of the following set of homogeneous differential equations under appropriate boundary 

conditions 

 

 ( ) 0EH nn =ψ−          (3) 

 

 In this work, our aim is to determine the eigenenergies for an on-center impurity in a 

spherical quantum dot confined by an infinite potential well. Here we consider only the 

ground state case. Therefore, we have chosen the wave function describing the system as, 
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which should satisfy the boundary conditions, e.g. must vanish at the spherical dot boundary, 

r=R, R is being the dot radius.  Here k is π/R and λ is variational parameter. The amplitude A 

is then calculated by the normalization procedure, 
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for each value of the λ parameter. The V(r) confining potential can be defined as 
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3. Method 

In this study, we follow three different approaches to determine the ground state 

energy of hydrogenic impurity. One of them is the standard variational method and two others 

are based on evolutionary genetic algorithm.  

 

3.1 Standard variational procedure 

As known, the standard variational procedures are based essentially on the energy 

minimization requirement. In this method, any trial wave function describing the system is 

chosen, including one (or more) variational parameter(s). Next, using this wave function, 

energy eigenvalues are calculated numerically from energy minimization condition stated as  
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The wave function (and therefore the λ variational parameter) corresponding to the minimum 

energy value represents the solution to the problem.  

 

3.2 Genetic Algorithm procedure 

 Genetic algorithms (GA) are general search and numerical optimization algorithms 

inspired by natural selection processes. As the first step, any initial population for solution is 

created using the equations describing the system. For each individual at this initial 

population, employing some systematical requirements (e.g. energy minimization), their 

fitness values are determined. Next, starting from this initial possible solution population, it is 

aimed to obtain the optimum solution. For this purpose, some genetic operations are 

performed.  

 There are three main operations in GA, which has been employed in many practical 

applications and yielded satisfactory results. These are, (i) reproduction (or copy), (ii) 

crossover and  (iii) mutation. 
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 Reproduction is a process in which the individuals of any population are copied to 

next generations, according to their fitness values. Therefore, in performing reproduction 

process, any selection procedure is necessary to choose the individuals to be copied to the 

next generations. In implementing the selection, generally both the statistical considerations 

and the optimization (minimization or maximization) requirements should be regarded.  

 The crossover operation is performed between two individuals. Two random members 

are selected from present population. Each member of selected pair is cut at any random 

crossing site. Next, the components of two individuals are interchanged and so two new 

individuals are created. 

 Another operation in GA, the mutation process plays a less important role and is 

implemented at lower probabilities than other operations. In this process, the genetic 

information is changed randomly.  

 Mutation is especially important in cases where to fall into undesired local minima, 

during the search of global one, has become more probable. But, the mutation rates are 

usually chosen very small. The selection of high mutation probabilities would destroy the 

convergence behavior of the numerical minimization process.  

 At each step of genetic procedure, reproduction, crossover and mutation processes are 

randomly performed and whole procedure is repeated until a satisfactory convergence is 

achieved and the optimum solution is found. 

 In applying genetic algorithm procedure to any physical problem, it is necessary to 

decide which parameters would be optimized. In this work, we apply the GA procedure in 

two different ways to the problem of hydrogenic impurity.  

 

I. GA based on parameter-optimization (GAPO) 

In this method, the λ variational parameter at Eq.(4) is selected as an individual upon 

which genetic operations will be performed. So, we have converted λ parameter into the 

binary code as usual way in most genetic algorithm processes. We have chosen the population 

number (npop) as 100. Thus, an initial population has been created from Eq.(4) for randomly 

selected values of λ. By using this initial generation, expectation values of energy are 

determined from Eq.(7). Then, the fitness values for each member of population are created 

from these energy values by means of 

 

 [ ] ( )[ ]avii EEexpFitness −β−=ψ ,       (8) 
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where β is a constant and Eav is the average of energy eigenvalues. Using this fitness values, a 

rulet wheel [9] is constituted and a selection procedure has been performed. In this selection 

procedure, generally, better individuals are selected, however sometimes less fit individuals 

can also be selected and then new generation is created from this set of chosen individuals. 

This process is called as reproduction or copy. 

 In the crossover, two random individuals (or λ parameters here) are selected from the 

population. Each member of selected strings is cut at any random crossing site. After this 

process, the components of the strings of two individuals interchanged and two new strings 

are created as illustrated in the following example: 

 

λ1: 10101111 = 0.68359375   λ′
1: 10101010 =0.66406250 

λ2: 10010010 = 0.57031250   λ′
2: 10010111 =0.58984375 

 

In the mutation process, the genetic information (i.e. a bit of any selected individual) is 

changed randomly. A simple mutation operation can be illustrated as follows: 

 

λ1: 10101111 = 0.68359375   λ′
1: 10111111 =0.74609375 

 

Mutation process is especially important in cases where to fall into undesired local minima 

during the search of global one has become more probable. But the mutation rates are usually 

chosen very small. Because, the selection of high mutation probabilities would destroy the 

convergence behavior of numerical minimization process and therefore give rise to 

ambiguities. 

 

II. GA based on wavefunction-optimization (GAWO) 

In this method, we select the ψ(r) wave function (not variational parameter) as the 

genetic code, since all information necessary for specifying the system has been stored it, and 

all calculations are performed numerically by employing this wave function. Firstly, the initial 

population has been created numerically from Eq.(4) for randomly values of λk (k=1…npop) 

and assigned to two dimensional vector arrays. This population has been normalized 

numerically by using Eq.(5). Thus, a normalized random population of wave functions 
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(individuals) is created as an initial generation. Eigenenergy values are determined from this 

generation by means of 
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Fitness values are created from these energy values again by using Eq.(8). Rulet wheel is 

constituted and the selection procedure has been performed. 

 In the crossover, we take two randomly chosen individuals (or wave functions). Two 

new functions are produced by using these individuals as 
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here S(r) is a smooth step-function, which can be defined as follows, 

 

 ( ) ( )( )[ ]2
0 w/rrtanh1

2

1
rS −+=        (11) 

 

with r0 is again any random parameter chosen at interval (0,R), R being the dot radius, and w 

is a parameter which defines the sharpness of crossover process [7].  Once these two new 

functions are created, then the fitness values corresponding to them are determined. The 

probability for crossover operation in each GA step was chosen as Pc=0.95. 

 In performing the mutation operation, we have randomly selected from initial 

population any ψM(r) sample mutation function as corresponding to any random λ parameter 

and added this function to any other randomly chosen ψ(r) function to create a new parent 

function as follows, 

 

 )r()r()r(' Mψ+ψ=ψ .         (12) 

 

We have selected the mutation probability as small as possible, e.g. Pm=0.05. 

 In each step of GA procedure, the population sizes are kept constant and equal 

npop=100, and any selection operation among individuals are performed to reproduce (or 
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copy) those with high fitness values to next generations, while to eliminate the bad-fitness 

ones. 

  

4. Results and Discussion 

The results obtained are listed in Table 1 together with the exact values [3,14]. We 

have used atomic units at all calculations, where � =1, the electronic charge e=1 and the 

electron mass m=1. It can be seen from Table 1 that the results obtained by GAWO are 

generally closer to the exact values than both the variational and also the GAPO results. For 

both positive and negative energy values, same good accuracy is achieved. 

In Table 2, the values for variational parameter λ obtained by standard variational and 

GAPO methods are listed. As seen from results, the variational and GAPO values are very 

close to each other at almost each dot radii. Therefore, the applying genetic algorithm for 

optimization the parameter has not given any significantly different results than the 

variational procedure.  

In figure 1, we have plotted two normalized wave functions ψ(r) as a function of r, one 

of them (dashed curve) is obtained variationally and the other (solid line) is by GAWO 

procedure after all iterations. As shown from the figure, the both wave functions vanish at the 

spherical dot boundary. But, at r=0 a marked difference has been appeared between two wave 

functions. The curve obtained by GAWO is starting from larger values than the variational 

wave function (and also than one obtained by GAPO). The wave function used in variational 

(and also in GAPO) method remains in nearly same form during all the calculation procedure, 

only variational parameter has been changed. Therefore, at near r=0, the value of 

wavefunction has been approached to the normalization constant as expected. However, in the 

genetic algorithm method based-wavefunction optimization, the wavefunction in its analytical 

form is used only for construction the initial population, and then, all processes have been 

performed on the numerical values of function, not on its analytical form. Thus, in the 

applying the procedure, the analytical form of initial wavefunction has not any significant 

effect on the later numerical calculations, instead the energy minimization requirement has 

become dominant factor at the rest of procedure. Therefore, it is not meaningless result that 

the wavefunction approaches toward a somewhat different value from its starting analytical 

form. 

 It is seen in all calculations that genetic algorithm procedure is very efficient in 

obtaining the minimum value of energy. It reaches this minimum in a surprisingly short time 

in comparison to the direct variational method. For example, the convergence here is achieved 
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only after a couple of ten iterations, and it is seen also that these results obtained have been 

found very reproducible in many several times trials. In figure 2, it is given the evolution of 

energy eigenvalue for the dot radius R=1 with the number of iterations. As seen from figure, 

the energy eigenvalue converges to a constant value after nearly 20 iterations. 

 

5. Conclusion 

 The standard variational procedure has been used over many years in obtaining 

acceptable solutions to the scientific problems, especially if any analytical solution can not be 

derived easily. However, if the number of variational parameters is more than one, then it 

would be more difficult to perform direct variational procedure with the same accuracy and 

easiness. This method is very sensitive to the starting value and the range of the selected 

variational parameter. But, these kinds of restrictions are less important in GA process. This 

advantage gives rise to an increase in the popularity of GA over other techniques. 

GA works with the fitness values which are based mainly on the predetermined initial 

population for solutions and employs some random probabilistic transition procedure, not 

deterministic rules, in attaining to the desired optimal point, and therefore the procedure is 

less sensitive to the starting point or the complexity of the problem comparison to the other 

traditional variational methods. But, in some problems, which contain more complexity, this 

method can also get stuck. 

Here, we apply the GA in two different ways as explained in the above. The one in 

which we optimized the variational parameter by genetic algorithm has not given 

considerably different values than the standard variational calculations. But, the wavefunction 

optimization procedure has provided more accurate results. So, it can be concluded that it is 

more convenient to perform the GA for optimization the wavefunction itself, not the 

variational parameter in such a problem.  

As far as the quantum dot problem is concerned, we believe the GA method to be a 

powerful alternative to other computational tools. This has been recently demonstrated for the 

case of a few electrons in a quantum box [15].   
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Table 1.  

The ground state energy values as a function of radius R of a spherical dot, obtained by three 

different methods. The agreement between the exact and GAWO results is quite good. 

Energies are expressed in Rydbergs and radii in Bohr units. 

 

R Energy 
(Exact) 

Energy 
(Variational) 

Energy 
(GAPO) 

Energy 
(GAWO) 

0.5 29.4959 29.5241 29.5241 29.4984 

1.0 4.7480 4.7768 4.7767 4.7517 

1.2 2.5386 2.5675 2.5674 2.5401 

1.6 0.5426 0.5715 0.5714 0.5445 

1.8 0.0651 0.0938 0.0938 0.0662 

2.0 -0.2500 -0.2216 -0.2216 -0.2489 

2.4 -0.6128 -0.5854 -0.5854 -0.6116 

2.8 -0.7933 -0.7675 -0.7676 -0.7915 

3.0 -0.8479 -0.8231 -0.8231 -0.8446 

3.2 -0.8878 -0.8641 -0.8640 -0.8855 

3.6 -0.9387 -0.9175 -0.9175 -0.9361 

3.8 -0.9547 -0.9349 0.9348 -0.9540 

4.0 -0.9665 -0.9481 -0.9481 -0.9641 

5.0 -0.9928 -0.9811 -0.9811 -0.9922 

6.0 -0.9985 -0.9918 -0.9917 -0.9966 

7.0 -0.9997 -0.9958 -0.9958 -0.9992 
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Table 2. 

The values for variational parameter λ obtained by standard variational and GAPO methods. 

As seen from table, the values are very close to each other at almost each dot radii. 

 

R λ 
(Variational) 

λ 
(GAPO) 

0.5 0.4660 0.4648 

1.0 0.4960 0.4961 

2.0 0.5740 0.5742 

3.0 0.6610 0.6602 

4.0 0.7510 0.7500 

5.0 0.8200 0.8203 

6.0 0.8680 0.8670 

7.0 0.9010 0.9023 
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Figure Caption 

 

Figure 1: The variation of wave functions, obtained by standard variational and GAWO 

methods, as a function of dot radii. Dashed curve corresponds to the variational and solid line 

to one obtained by GAWO. 

 

Figure 2: The evolution of energy eigenvalue for R=1 dot radius with the number of iteration.  
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Figure 2 
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