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1 Introduction

Rare B meson decays are one of the most promising research area in particle physics and lie

on the focus of theoretical and experimental physicists. In the Standard Model (SM), they are

induced by flavor changing neutral currents (FCNC) at loop level and therefore sensitive to the

gauge structure of the theory. From the experimental point of view, they play an outstanding

role in the precise determination of the fundamental parameters of the SM, such as Cabbibo-

Kobayashi-Maskawa (CKM) matrix elements, leptonic decay constants, etc. Furthermore, these

decays provide a sensitive test to the new physics beyond the SM, such as two Higgs Doublet

model (2HDM), Minimal Supersymmetric extension of the SM (MSSM) [1], etc. Among the

rare B decays, b → sγ has received considerable interest since the branching ratios (Br) of the

inclusive B → Xsγ [2] and exclusive B → K∗γ [3] have been already measured experimentally.

Recently, the new experimental results for the inclusive b → sγ decay are announced by CLEO

and ALEPH Collaborations [4]. Therefore, the b → sγ decay is under an extensive investigation

in the framework of various extensions of the SM, in order to get information about the model

parameters or improve the existing restrictions.

It is well known that the FCNC are forbidden at the tree level in the SM. This restriction

is achieved in the extended model with the additional conditions. 2HDM is one of the simplest

extensions of the SM, obtained by the addition of a new scalar SU(2) doublet. The Yukawa

lagrangian causes that the model possesses phenemologicaly dangerous FCNC’s at the tree

level. To protect the model from such terms, the ad hoc discrete symmetry [5] on the 2HDM

scalar potential and the Yukawa interaction is proposed and there appear two different versions

of the 2HDM depending on whether up and down quarks couple to the same or different scalar

doublets. In model I, the up and down quarks get mass via vacuum expectation value (v.e.v.)

of only one Higgs field. In model II, which coincides with the MSSM in the Higgs sector, the up

and down quarks get mass via v.e.v. of the Higgs fields H1 and H2 respectively where H1(H2)

corresponds to first (second) Higgs doublet of 2HDM [6]. In the absence of the mentioned

discrete symmetry, FCNC appears at the tree level and this model is called as model III in

current literature [7, 8, 9]. A comprehensive phenemological analysis of the model III was done

in series of works [7, 8, 10]. In particular, from a purely phenomenological point of view, low

energy experiments involving K0 − K̄0, B0 − B̄0, KL → µµ̄, etc, place strong constraints on

the existence of tree level flavor changing (FC) transitions, existing in the model III.

In the present work, we examine the b → sγ decay in the model III, taking the next to

leading (NLO) QCD corrections into account, in a more detailed analysis compared to one
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existing in literature (see [7, 10]). Further, we obtain the constraints for the neutral couplings

ξUNtt, ξ
D
Nbb and ξUNtc with the assumption that ξUNcc, ξ

D
Nsb, ξ

D
Nss and the other couplings which

include the first generation indices are negligible compared to former ones (for the definition of

ξN,ij see section 2). Our predictions are based on the CLEO measurement B → Xsγ and the

restrictions coming from the ∆F = 2 (F = K,D,B) mixing and the ρ parameter [10]. Note

that NLO QCD corrections to the b → sγ decay in 2HDM (for model I and II) were calculated

in [11, 12].

The paper is organized as follows: In Section 2, we present the NLO QCD corrected Hamil-

tonian responsible for the b → sγ decay in the model III and discuss the effects of the additional

Left−Right flipped operators to the decay rate. Section 3 is devoted to the constraint analysis,

more precisely to the the ratios
ξU
Ntt

ξD
Nbb

,
ξU
Ntc

ξU
Ntt

and our conclusions.

2 Next to leading improved short-distance contributions

in the model III for the decay b → sγ

Before presenting the NLO QCD corrections to the b → sγ decay amplitude in the 2HDM

(model III), we would like to remind briefly the main features of the 2HDM. The Yukawa

interaction for the general case is

LY = ηUijQ̄iLφ̃1UjR + ηDij Q̄iLφ1DjR + ξUijQ̄iLφ̃2UjR + ξDij Q̄iLφ2DjR + h.c. (1)

where L and R denote chiral projections L(R) = 1/2(1∓ γ5), φi for i = 1, 2, are the two scalar

doublets, ηU,Dij and ξU,Dij are the matrices of the Yukawa couplings. For convenience we choose

φ1 and φ2 in the following basis:

φ1 =
1√
2

[(

0
v +H0

)

+

( √
2χ+

iχ0

)]

;φ2 =
1√
2

( √
2H+

H1 + iH2

)

, (2)

where the vacuum expectation values are,

< φ1 >=
1√
2

(

0
v

)

;< φ2 >= 0 . (3)

This choice permits us to write the FC part of the interaction as

LY,FC = ξUijQ̄iLφ̃2UjR + ξDij Q̄iLφ2DjR + h.c. , (4)

with the following advantages:
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• doublet φ1 corresponds to the scalar doublet of the SM and H0 to the SM Higgs field. This

part of the Yukawa Lagrangian is responsible for the generation of the fermion masses

with the couplings ηU,D.

• all new scalar fields belong to the φ2 scalar doublet.

The couplings ξU,D are the open window for the tree level FCNC’s and can be expressed for

the FC charged interactions as

ξUch = ξneutral VCKM ,

ξDch = VCKM ξneutral , (5)

where ξU,Dneutral
1 is defined by the expression

ξU,DN = (V U,D
L )−1ξU,DV U,D

R . (6)

Here the charged couplings appear as a linear combinations of neutral couplings multiplied by

VCKM matrix elements. This gives an important distinction between model III and model II

(I).

After this preliminary remark, let us discuss the NLO QCD corrections to the b → sγ

decay in the 2HDM for the general case. The appropriate framework is that of an effective

theory obtained by integrating out the heavy degrees of freedom, which are, in this context,

t quark, W±, H±, H1, and H2 bosons, where H± denote charged ,H1 and H2 denote neutral

Higgs bosons. The LLog QCD corrections are done through matching the full theory with the

effective low energy theory at the high scale µ = mW and evaluating the Wilson coefficients

from mW down to the lower scale µ ∼ O(mb). Note that we choose the higher scale as µ = mW

since the evaluation from the scale µ = mH± to µ = mW gives negligible contribution to the

Wilson coefficients. Here we assume that the charged Higgs boson is heavy due to theoretical

analysis of the b → sγ decay (see [11, 13]).

The effective Hamiltonian relevant for b → sγ decay is

Heff = −4
GF√
2
VtbV

∗
ts

∑

i

Ci(µ)Oi(µ) , (7)

where the Oi are operators given in eq. (8) and the Ci are Wilson coefficients renormalized at

the scale µ. The coefficients are calculated perturbatively and expressed as functions of the

heavy particle masses in the theory.

1In all next discussion we denote ξ
U,D

neutral as ξ
U,D

N .
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The operator basis depends on the model used and the conventional choice in the case of

SM, 2HDM model II (I) and MSSM is

O1 = (s̄LαγµcLβ)(c̄Lβγ
µbLα),

O2 = (s̄LαγµcLα)(c̄Lβγ
µbLβ),

O3 = (s̄LαγµbLα)
∑

q=u,d,s,c,b

(q̄Lβγ
µqLβ),

O4 = (s̄LαγµbLβ)
∑

q=u,d,s,c,b

(q̄Lβγ
µqLα),

O5 = (s̄LαγµbLα)
∑

q=u,d,s,c,b

(q̄Rβγ
µqRβ),

O6 = (s̄LαγµbLβ)
∑

q=u,d,s,c,b

(q̄Rβγ
µqRα),

O7 =
e

16π2
s̄ασµν(mbR +msL)bαFµν ,

O8 =
g

16π2
s̄αT

a
αβσµν(mbR +msL)bβGaµν , (8)

where α and β are SU(3) colour indices and Fµν and Gµν are the field strength tensors of the

electromagnetic and strong interactions, respectively.

In our case, however, new operators with different chirality structures can arise since the

general Yukawa lagrangian includes both L and R chiral interactions. The conventional operator

set is extended first adding two new operators which are left-right analogues of O1 and O2,

namely

O9 = (s̄LαγµcLβ)(c̄Rβγ
µbRα),

O10 = (s̄LαγµcLα)(c̄Rβγ
µbRβ), (9)

Further we need the second operator set O′
1−O′

10 which are flipped chirality partners ofO1−O10:

O′
1 = (s̄RαγµcRβ)(c̄Rβγ

µbRα),

O′
2 = (s̄RαγµcRα)(c̄Rβγ

µbRβ),

O′
3 = (s̄RαγµbRα)

∑

q=u,d,s,c,b

(q̄Rβγ
µqRβ),

O′
4 = (s̄RαγµbRβ)

∑

q=u,d,s,c,b

(q̄Rβγ
µqRα),

O′
5 = (s̄RαγµbRα)

∑

q=u,d,s,c,b

(q̄Lβγ
µqLβ),

O′
6 = (s̄RαγµbRβ)

∑

q=u,d,s,c,b

(q̄Lβγ
µqLα),

O′
7 =

e

16π2
s̄ασµν(mbL+msR)bαFµν ,
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O′
8 =

g

16π2
s̄αT

a
αβσµν(mbL+msR)bβGaµν ,

O′
9 = (s̄RαγµcRβ)(c̄Lβγ

µbLα) ,

O′
10 = (s̄RαγµcRα)(c̄Lβγ

µbLβ) . (10)

This extended basis is the same as the basis for SU(2)L × SU(2)R × U(1) extensions of SM

[14]. Note that in the SM, model II (I) 2HDM and the MSSM, the absence of O′
7 and O′

8 are a

consequence of assumption ms/mb ∼ 0.

In the calculations, we take only the charged Higgs contributions into account and neglect

the effects of neutral Higgs bosons for the reasons given below: The neutral bosons H0, H1 and

H2 are defined in terms of the mass eigenstates H̄0 ,h0 and A0 as

H0 = (H̄0cosα− h0sinα) + v ,

H1 = (h0cosα + H̄0sinα) ,

H2 = A0 , (11)

where α is the mixing angle and v is proportional to the vacuum expectation value of the

doublet φ1 (eq. (3)). Here we assume that the massess of neutral Higgs bosons h0 and A0 are

heavy compared to the b-quark mass. The neutral Higgs scalar h0 and pseduscalar A0 give

contribution only to C7 for b → sγ decay. With the choice of α = 0, Ch0

7 and CA0

7 can be

expressed at mW level as

Ch0

7 (mW ) = (VtbV
∗
ts)

−1
∑

i=d,s,b

ξ̄DN,bi ξ̄
D
N,is

Qi

8mi mb

,

CA0

7 (mW ) = (VtbV
∗
ts)

−1
∑

i=d,s,b

ξ̄DN,bi ξ̄
D
N,is

Qi

8mi mb
, (12)

where mi and Qi are the masses and charges of the down quarks (i = d, s, b) respectively. Here

we used the redefinition

ξU,D =

√

4GF√
2

ξ̄U,D . (13)

Eq. (12) shows that neutral Higgs bosons can give a large contribution to C7, which does not

respect the CLEO and ALEPH data [4]. At this stage we make an assumption that the couplings

ξ̄DN,is(i = d, s, b) and ξ̄DN,db are negligible to be able to reach the conditions ξ̄DN,bb ξ̄
D
N,is << 1 and

ξ̄DN,db ξ̄
D
N,ds << 1. These choices permit us to neglect the neutral Higgs effects.

Now, for the evaluation of Wilson coefficients, we need their initial values with standard

matching computations. Denoting the Wilson coefficients for the additional charged Higgs
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contribution with CH
i (mW ), we have the initial values of the Wilson coefficients for the first set

of operators (eqs.(8), (9))

CH
1,...6,9,10(mW ) = 0 ,

CH
7 (mW ) =

1

m2
t

(ξ̄UN,tt + ξ̄UN,tc

V ∗
cs

V ∗
ts

) (ξ̄UN,tt + ξ̄UN,tc

Vcb

Vtb
)F1(y) ,

+
1

mtmb
(ξ̄UN,tt + ξ̄UN,tc

V ∗
cs

V ∗
ts

) (ξ̄DN,bb + ξ̄DN,sb

Vts

Vtb
)F2(y) ,

CH
8 (mW ) =

1

m2
t

(ξ̄UN,tt + ξ̄UN,tc

V ∗
cs

V ∗
ts

) (ξ̄UN,tt + ξ̄UN,tc

Vcb

Vtb
)G1(y) ,

+
1

mtmb
(ξ̄UN,tt + ξ̄UN,tc

V ∗
cs

V ∗
ts

) (ξ̄DN,bb + ξ̄UN,sb

Vts

Vtb
)G2(y) . (14)

The explicit forms of the Wilson coefficients in the SM (CSM
i (mW )) is presented in the literature

[15]. For the primed Wison coefficients we get,

C ′SM
1,...6,9,10(mW ) = 0 ,

(15)

C ′H
1,...6,9,10(mW ) = 0 ,

C ′H
7 (mW ) =

1

m2
t

(ξ̄DN,bs

Vtb

V ∗
ts

+ ξ̄DN,ss) (ξ̄
D
N,bb + ξ̄DN,sb

Vts

Vtb
)F1(y) ,

+
1

mtmb
(ξ̄DN,bs

Vtb

V ∗
ts

+ ξ̄DN,ss) (ξ̄
U
N,tt + ξ̄UN,tc

Vcb

Vtb
)F2(y) ,

C ′H
8 (mW ) =

1

m2
t

(ξ̄DN,bs

Vtb

V ∗
ts

+ ξ̄DN,ss) (ξ̄
D
N,bb + ξ̄DN,sb

Vts

Vtb
)G1(y) ,

+
1

mtmb
(ξ̄DN,bs

Vtb

V ∗
ts

+ ξ̄DN,ss) (ξ̄
U
N,tt + ξ̄UN,tc

Vcb

Vtb
)G2(y) , (16)

where x = m2
t/m

2
W and y = m2

t/m
2
H± . The functions F1(y), F2(y), G1(y) and G2(y) are given

as

F1(y) =
y(7− 5y − 8y2)

72(y − 1)3
+

y2(3y − 2)

12(y − 1)4
lny ,

F2(y) =
y(5y − 3)

12(y − 1)2
+

y(−3y + 2)

6(y − 1)3
lny ,

G1(y) =
y(−y2 + 5y + 2)

24(y − 1)3
+

−y2

4(y − 1)4
lny ,

G2(y) =
y(y − 3)

4(y − 1)2
+

y

2(y − 1)3
lny . (17)
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In calculations we neglect the small contributions of the internal u and c quarks compared to

one due to the internal t quark.

For the initial values of the mentioned Wilson coefficients in the model III (eqs. (14), (15)

and (16)), we have

C
(′)2HDM
i (mW ) = C

(′)SM
i (mW ) + C

(′)H
i (mW ) . (18)

Using these initial values, we can calculate the coefficients C2HDM
i and C ′2HDM

i at any lower

scale with five quark effective theory where large logarithims can be summed using the renor-

malization group. Since the strong interactions preserve chirality, the operators in eqs. (8, 9)

can not mix with their chirality flipped counterparts eq. (10) and the anomalous dimension

matrices of two separate set of operators are the same and do not overlap. With the above

choosen initial values of Wilson coefficients, their evaluations are similar to the SM case.

For completeness, note that, the operators O5,O6,O9 and O10 (O′
5,O

′
6, O

′
9 and O′

10) give

contributions to the matrix element of b → sγ and in the NDR scheme which we use here, the

effective magnetic moment type Wilson coefficients are redefined as

Ceff
7 (µ) = C2HDM

7 (µ) +Qd (C
2HDM
5 (µ) +Nc C

2HDM
6 (µ)) ,

+ Qu (
mc

mb
C2HDM

10 (µ) +Nc
mc

mb
C2HDM

9 (µ)) ,

C ′eff
7 (µ) = C ′2HDM

7 (µ) +Qd (C
′2HDM
5 (µ) +NcC

′2HDM
6 (µ))

+ Qu(
mc

mb
C ′2HDM

10 (µ) +Nc
mc

mb
C ′2HDM

9 (µ)) , (19)

where Nc is the color factor and Qu (Qd) is the charge of up (down) quarks. There is still

another mixing in the operator set O7, O8, O9, O10 (O′
7, O

′
8, O

′
9, O

′
10) [14] and we do not take

into account since the initial values of the Wilson coefficients C10 and C ′
10 are zero in our case.

The NLO corrected coefficients C2HDM
7 (µ) and C ′2HDM

7 (µ) are given as

C2HDM
7 (µ) = CLO,2HDM

7 (µ) +
αs(µ)

4π
C

(1) 2HDM
7 (µ) ,

C ′2HDM
7 (µ) = C ′LO,2HDM

7 (µ) +
αs(µ)

4π
C

′(1) 2HDM
7 (µ) . (20)

Here η = αs(mW )/αs(µ), hi and ai are the numbers which appear during the evaluation [16].

The functions CLO,2HDM
7 (µ) [17] and C ′LO,2HDM

7 (µ)are the leading order QCD corrected Wilson

coefficients:

C ′LO,2HDM
7 (µ) = η16/23C ′2HDM

7 (mW ) + (8/3)(η14/23 − η16/23)C ′2HDM
8 (mW ) (21)
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and C
(1) 2HDM
7 (µ) is the αs correction to the leading order result that its explicit form can

be found in [11, 12]. C
′(1) 2HDM
7 (µ) can be obtained by replacing the Wilson coefficients in

C
(1) 2HDM
7 (µ) with their primed counterparts. The NLO corrected coefficients C2HDM

5 (µ),

C2HDM
6 (µ) and C ′2HDM

5 (µ), C ′2HDM
6 (µ) are numerically small at mb scale therefore we neglect

them in our calculations.

Finally, the NLO QCD corrected b → sγ decay rate in model III is obtained as

Γ(b → sγ) =
G2

Fm
5
b

32π4
αem|V ∗

tsVtb|2(|Ceff
7 (mb)|2 + |C ′eff

7 (mb)|2) , (22)

where αem is the fine structure constant, and mb is b-quark mass. |Ceff
7 (mb)|2 is given in [11]

|Ceff
7 (mb)|2 = |D|2 + A+

δNP
γ

m2
b

|CLO,2HDM
7 (mb)|2

+
δNP
c

m2
b

Re{
(

CLO,2HDM
7 (mb)

)∗(

CLO,2HDM
2 (mb)−

1

6
CLO,2HDM

1 (mb)
)

} . (23)

The functions D and A are [11]

D = CLO,2HDM
7 (mb) +

αs

4π

(

C
(1) 2HDM
7 (µ) +

8
∑

i

CLO,2HDM
i (mb)ri −

16

3
CLO,2HDM

7 (mb)
)

,

A =
αs(mb)

π

8
∑

i,j=1,i≤j

Re{CLO,2HDM
i (mb)

(

CLO,2HDM
j (mb)

)∗

fij} . (24)

The explicite expressions for fij, ri, δ
NP
γ and δNP

c can be found in [11]. At this point we would

like to note that the expressions for unprimed Wilson coefficients in our case can be obtained

from the results in [11] by the following replacements:

|Y |2 → 1

m2
t

(ξ̄UN,tt + ξ̄UN,tc

V ∗
cs

V ∗
ts

) (ξ̄UN,tt + ξ̄UN,tc

Vcb

Vtb

) ,

XY → 1

mtmb
(ξ̄UN,tt + ξ̄UN,tc

V ∗
cs

V ∗
ts

) (ξ̄DN,bb + ξ̄DN,sb

Vts

Vtb
) (25)

To obtain |C ′eff
7 (mb)|2, it is enough to use the primed Wilson coefficients at mW level

(eq. 16) since the evaluation of C ′eff
7 (µ) from µ = mW to µ = mb is the same as that of Ceff

7 (µ).

Note that, for model II (model I) Y and XY are

Y = 1/tanβ (1/tanβ) ,

XY = 1 (−1/tan2β) . (26)

3 Constraint analysis

Now let us turn our attention to the constraint analysis. Restrictions to the free parameters,

namely, the masses of the charged and neutral Higgs bosons and the ratio of the v.e.v. of the
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two Higgs fields, denoted by tan β in the framework of model I and II, have been predicted in

series of works [18]. Recently the constraint which connects masses of the charged Higgs bosons,

mH± and tanβ, is obtained by using the QCD corrected values in the LLO approximation and

it is shown that the constraint region is sensitive to the renormalization scale, µ [13].

Usually, the stronger restrictions to the new couplings are obtained from the analysis of the

∆F = 2 (here F = K,Bd, D) decays, the ρ parameter and the B → Xsγ decay. In [10], all these

processes have been analysed and two possible scenarios are obtained depending on the choice

whether the constraint from Rexp
b is enforced or not. Although the new experimental results

are near the SM result, RSM
b = 0.2156, the world average value for Rb(= 0.21656± 0.00074) is

still almost one standard deviations higher than the SM one. This brings the possibility that

an enhancement to the SM value is still necessary to get the correct experimental one. Such an

enhancement is reached under the conditions ξDbb >> 1 and mH± ∼ 400GeV [10], where ξDbb is

a model III parameter (see section 2) and v is the vacuum expectation value of the Higgs field

responsible for the generation of fermion masses.

First, the constraints for the FC couplings from ∆F = 2 processes for the model III were

investigated withouth QCD corrections, under the following assumptions [10]

1. λij ∼ λ ,

2. λuj = λdj << 1 , i, j = 1, 2, 3 ,

where u(d) is up (down) quark and i, j are the generation numbers.

3. case 2 and further assumption

λbb , λsb >> 1 and λtt , λct << 1 . (27)

In the analysis, the ansatz

ξUD
ij = λij

√

mimj

v
, (28)

is used. Note that this ansatz coincides with the one proposed by Cheng and Sher.

Using the constraint coming from Rexp
b , the measurement Br(B → Xsγ), ∆F = 2 mixing

and the result coming from the analysis of the ρ parameter, the following restrictions are

obtained [10]:

150GeV ≤ mH± ≤ 200GeV ,

λbb >> 1 , λtt << 1 ,

λsb >> 1 , λct << 1 . (29)
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Since the experimental results for Rexp
b are still unclear, we disregard the constraint coming

from Rexp
b and we analyse the restrictions for the couplings ξ̄UNtt, ξ̄

D
Nbb and ξ̄UNtc in the NLO

aproximation, respecting the constraints due to the ∆F = 2 mixing, the ρ parameter and using

the measurement by the CLEO [4] Collaboration:

Br(B → Xsγ) = (3.15± 0.35± 0.32) · 10−4 .

Here, we explain why we use only the CLEO data in our analysis but not ALEPH one (Br(B →
Xsγ) = (3.11 ± 0.80 ± 0.72) · 10−4). The ALEPH data has a larger error compared to CLEO

data and it leads to a wide restriction region for |Ceff
7 |, which includes the one coming from

the CLEO data. Therefore, the CLEO data allows us to get more stringest constraints on the

model parameters.

The idea in this calculation is to take ξ̄Ntc << ξ̄UNtt, ξ̄
D
Nbb and ξ̄DNib ∼ 0 , ξ̄DNij ∼ 0, where

the indices i, j denote d and s quarks. This choice permit us to neglect the neutral Higgs

contributions because the Yukawa vertices are the combinations of ξ̄DNib and ξ̄DNij.

To reduce the b-quark mass dependence let us consider the ratio

R =
Br(B → Xsγ)

Br(B → Xceν̄e)

=
|V ∗

tsVtb|2
|Vcb|2

6αem

πg(z)κ(z)
|Ceff

7 |2 , (30)

where g(z) is the phase space factor in semileptonic b-decay, κ(z) is the QCD correction to the

semileptonic decay width [19],

g(z) = 1− 8z2 + 8z6 − z8 − 24z4ln z ,

κ(z) = 1− 2αs(mb)

3π
{(π2 − 31

4
)(1− z) +

3

2
} − (0.25− 0.18(1− 4

(1− z2)4

g(z)
) , (31)

and z = mc/mb.

Using the CLEO data and following the same procedure as given in [13], we reach the

possible range for |Ceff
7 | as

0.257 ≤ |Ceff
7 | ≤ 0.439 . (32)

In fig. (1), we plot the parameter ξ̄UN,tt with respect to ξ̄DN,bb at µ = 4.8 GeV and mH± =

400GeV . We see, that there are two different restriction regions, where the upper one corre-

sponds to the positive Ceff
7 value, however the lower one to the negative Ceff

7 value. Increasing

ξ̄DN,bb causes |ξ̄UN,tt| to decrease in both regions. With the given value of ξ̄DN,bb >> 1, the con-

dition |rtb| = | ξ̄
U
N,tt

ξ̄D
N,bb

| < 1 is obtained. In the lower region it is possible that the ratio becomes

10



negative, i.e. rtb =
ξ̄U
N,tt

ξ̄D
N,bb

< 0. Further, increasing mH± causes to increase |rtb| and the area of

the restriction region.

Fig. (2) is devoted the same dependence as in fig. (1) and shows that the third region, which

is almost a straight line, appears. In this region the ratio rtb >> 1 and increases with increasing

mH± similar to the previous regions.

Finally, we consider ξ̄UN,tt dependence of ξ̄UN,tc, which is a neutral FC coupling. In fig. (3) we

plot the ξ̄UN,tt dependence of ξ̄UN,tc for fixed ξ̄DN,bb = 60mb, at µ = 4.8GeV , and charged Higgs

mass mH± = 400GeV . Here the selected region for ξ̄UN,tt is 40 ≤ ξ̄UN,tt ≤ 48. Increasing ξ̄UN,tt

forces the ratio rtc =
ξ̄U
N,tc

ξ̄U
N,tt

to be negative. It is realized that the ratio |rtc| becomes smaller

when mH± is larger.

Still there is a region in which ξ̄UN,tc is constrained for the possible large value of ξ̄UN,tt, namely

ξ̄UN,tt = 8.0 104 for mH± = 400GeV :

− 0.24 < ξ̄UN,tc < 0.24 , or

−3.26 < ξ̄UN,tc < −3.19 , (33)

In conclusion, we find the constraints for the Yukawa couplings ξ̄UN,tt, ξ̄
D
N,bb and ξ̄UN,tc using

the CLEO measurement Br(B → Xsγ) and respecting the restrictions due to the ∆F = 2

mixing and the ρ parameter (see [10] for details). The constraints for the other parameters of

the model III from the existing experimental results require more detailed new analysis.
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Figure 1: ξ̄UNtt as a function of ξ̄DNbb for the fixed value of the charged Higgs boson mass mH± =
400GeV at µ = 4.8GeV . Here the constraint region is lying in between solid (dashed) curves.
The solid (dashed) curves are the boundaries of the constraint region corresponding to Ceff

7 > 0
(Ceff

7 < 0)

13



200 400 600 800

50000

100000

150000

200000

ξ̄DNbb

ξ̄UNtt

Figure 2: Same as fig 1, but the third possible constraint region.
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Figure 3: ξ̄UNtt dependence of ξ̄UNct for the fixed ξ̄UNbb = 60mb, at µ = 4.8GeV and mH± =
400GeV . Here the constraint region is lying in between solid curves (dashed curves). The
solid (dashed) curves are the boundaries of the constraint region corresponding to Ceff

7 > 0
(Ceff

7 < 0)
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