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Abstract. This study presents a modular sparse grad-div stabilization method for solving
the Boussinesq equations. Unlike the usual grad-div stabilization which produces fully coupled
block matrices, the proposed stabilization method produces block upper triangular matrices.
Thus, the proposed method is more attractive in terms of both its computational cost and
solution accuracy. We provide unconditional stability results for velocity and temperature.
Two numerical experiments are performed to demonstrate the efficiency and accuracy of the
method.

1. Introduction
The natural convection flow occurs due to the buoyancy force arising from the temperature. It
has a wide range of variety both in nature and engineering applications such as oceanography,
geology, free air cooling fluid flows around heat-dissipations fins, etc. [1, 2, 3]. There are
numerous studies approximating solutions to Boussinesq equations [4, 5]. Among them, the most
popular stabilization method is the grad-div stabilization since they can easily be included into
any existing conforming finite element code [8]. Although the grad-div stabilization significantly
effects problem accuracy [6, 7], it is inefficient in terms of computational effort. While commonly
used discretization methods creates block diagonal matrices, the grad-div method creates fully
coupled matrices for velocity which makes the resulting lineer system difficult to solve. To handle
this problem, we propose analyze and test a modular sparse grad-div stabilization method for
Boussinesq equations by introducing a new stabilization operator [10] based on the ideas of [9].
We aimed to obtain high solution quality with less computational effort.

2. Scheme
Let X � �H1

0 �Ω��
d, Q � L2

0�Ω� be the velocity and pressure spaces and W � H1
0 �Ω� be the

temperature space. Let Xh � X,W h � W,Qh � Q be finite element spaces where the velocity
and pressure spaces fulfil the inf-sup condition. We use the usual L2�Ω� norm and the inner
product denoted by ��� and ��, ��, respectively. The skew symmetric trilinear forms are defined
by

b��u,v,w� �
1

2
�u �∇v,w� �

1

2
�u �∇w,v� (1)

c��u, T, S� �
1

2
�u �∇T, S� �

1

2
�u �∇S, T � (2)
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Algorithm: Divide �0, T � time interval into N equal subintervals and set time step size
Δt � T �N . Let the initial conditions u0 and T 0, the forcing function f and the heat source γ
be given. Define u0

h and T 0
h be the nodal interpolants of u0�x� and T 0, respectively.

Step 1 : Given �un
h, T

n
h � � �Xh,Wh�, find �ûn�1

h , Tn�1
h , pn�1

h � � �Xh,Wh, Qh�

�
ûn�1
h � un

h

Δt
,vh

�
	 b��un

h, û
n�1
h ,vh� 	 Pr�∇ûn�1

h ,∇vh� � �pn�1
h ,∇ 
 vh� � PrRa��0, T h

n �,v
h� 	 �fn�1,vh� (3)

�∇ 
 ûn�1
h , qh� � 0 (4)

�
Tn�1
h � Tn

h

Δt
,φh

�
	 c��ûn�1

h , Tn�1
h ,φh� 	 κ�∇Tn�1

h ,∇φh� � �γn�1,φh� (5)

Step 2 : Given ûn�1
h n � Xh, find un�1

h � Xh

�un�1
h ,θh� 	 γΔtg�un�1

h ,θh� � �ûn�1
h ,θh� (6)

for all �vh,φh,θh, qh� � �Xh,Wh,Xh, Qh�.

3. Numerical Experiments
In this section, we perform two numerical tests to show tje performance of the method (3)-(6).
In the first one, we show an optimal convergence rates with a known solution. In the second
one, we present the well-known buoyancy driven cavity example. All computations are carried
out by using the software FreeFem++ [11]. In both examples, we use conforming Taylor-Hood
pairs on uniform triangular grids.

3.1. Chorin’s Problem
In this subsection, we test the optimal convergence rates of the scheme (3)-(6) for a known
solution:

u � �cos�π�y � t��, sin�π�x	 t���T �exp�t��, (7)

p � sin�π�x	 y���1	 t2�, (8)

T � sin�πx� 	 y exp�t�. (9)

on the unit square domain Ω � �0, 1�2. We choose the parameters Pr � Ra � κ � 1 and
γ � 0.001. To test the spatial convergence, we fixed the time step Δt � T

8 with end time

T � 10�4 and calculate the errors for varying h. Results are shown in Table 1. We observe
the optimal rate of convergence for velocity and temperature for the Taylor-Hood finite element
space. To test the temporal errors, we fix mesh size h � 1

64 with final time T � 0.1 and calculate
errors for varying Δt. Errors and rates are presented in Table 2. As expected, we observe first
order convergence in time.
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Table 1. Spatial errors and rates of convergence.

h �u� uh�2,1 Rate �T � Th�2,1 Rate

1�4 0.0007140 - 0.0005045 -
1�8 0.0001780 2.004 0.0001256 2.005
1�16 4.356e-5 2.032 3.069e-5 2.037
1�32 1.063e-5 2.034 7.458e-6 2.042
1�64 2.751e-6 1.950 1.844e-6 2.015

Table 2. Temporal errors and rates of convergence.

Δt �u� uh�2,1 Rate �T � Th�2,1 Rate

Δt 0.0246 - 0.0012 -
Δt�2 0.0124 0.987 0.0005 1.263
Δt�4 0.0063 0.976 0.0002 1.321
Δt�8 0.0032 0.976 0.0001 1.000
Δt�16 0.0017 0.912 7.427e-5 0.919
Δt�32 0.0008 1.087 3.922e-5 0.920
Δt�64 0.0004 1.000 2.331e-56 0.750

3.2. Thermal Distribution in Buoyancy Driven Cavity
Calculation of the physical parameter called the Nusselt number (Nu) at a buoyancy driven cavity test
example has been widely used in order to verify and validate proposed numerical schemes. Local and
avarege Nusselt numbers are given with the formulas

Nuloc � �

�
�T

�x

�
wall

(10)

Nuav �

�
Ω

Nulocdy. (11)

The domain is a unit square cavity different temperatures at vertical walls, one of them is taken as cold
TC � 0 at x � 1 and the other one is hot TH � 1 at x � 0. The other walls are insulated and assumed allow
no heat transfer through. The boundary conditions are no-slip for the velocity at all the boundary and
Dirichlet for the temperature at vertical walls as well. The horizontal walls accept the boundary conditions
�T
�n � 0. We take flow parameters as Pr � 1, γ � 1 in this test. In Figure 1, we see temperature contors
and velocity streamlines for Ra � 103, 104, 105 for the chosen time step Δt � 0.1, 0.01, 0.01, respectively.
Also, we calculate the average Nusselt numbers of the proposed algorithm for Ra � 103, 104, 105. As seen
in Table 3, acceptable results are obtained for Nu when compared with the literature on much coarser
mesh.

Table 3. Comparison of average Nusselt number on hot wall for varying Rayleigh Numbers.

Ra Proposed Method Ref [12] Ref [13] Ref [14]

103 1.118 (11� 11) 1.117 1.117 1.12
104 2.257 (32� 32) 2.254 2.243 2.243
105 4.602 (64� 64) 4.598 4.521 4.52
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IsoValue
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0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

Figure 1. Temperature contours (up) and streamlines (down) for Ra � 103, 104, 105 (left to
right).

4. Conclusion
In this paper, we proposed and analyzed a modular sparse grad div stabilization method for the solution
of Boussinesq equations. Optimal convergece rates are obtained for Chorin’s problem. In addition, we
demonstrate the accuracy and efficiency of the method on a well known numerical test called buoyancy
driven cavity which revealed that the proposed method gives similar accuracy and error advanteges along
with a less computational effort when compared with the literature.
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[10] Çıbık A 2016 The effect of a sparse graddiv stabilization on control ofstationary NavierStokes equations J.
Math.Anal.Appl. 437 613-28

[11] Hecht F A 2012 New development in FreeFem++ J. Numer. Math. 20 251-65
[12] Wan D. C Patnaik B. S. V and Wei G. W 2001 A new benchmark quality solution for the buoyancy driven-

cavity by discrete singular convolution Numerical Heat Transfer, Part B 40 199-228
[13] Massarotti N Nithiarasu P and Zienkiewicz O. C 1998 Characteristic-based-split (cbs) algorithm for

incompressible flow problems with heat transfer Int. J. Numer. Meth. Heat Fluid Flow 8 968-90
[14] Vahl Davis D 1983 Natural convection of air in a square cavity: a benchmark solution Int. J. Numer. Meth.

Fluids 3 249-64


