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ABSTRACT

QUANTUM VACUUM ENERGY FOR
MASSLESS CONFORMAL SCALAR FIELD
IN EINSTEIN AND CLOSED FRIEDMANN UNIVERSES
OZCAN, Mustafa
M.S. in Physics
Supervisor: Assoc. Prof. Dr. Selguk §. Bayin
August 1991, 35 pages

The quantum vacuum energy of the massless conformal scalar field
in Einstein and closed Friedmann universes are discussed. Ford’s results for
the massless conformal scalar field in an Einstein universe are reproduced by
considering mode sums and by renormalizing the divergent vacuum energy by
introducing a cutoff function. Adiabatic regularization is applied to the mass-
less conformal scalar field in a closed Friedmann universe. Explicit expressions
for the vacuum expectation values of the components of the energy momentum

tensor are obtained.

Key Words: Vacuum energy, Regularization, Renormalization, Cutoff, Mode

sum, Adiabatic regularization, Energy momentum tensor.
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OZET

EINSTEIN VE FRIEDMANN EVRENINDE KUTLESiZ KONFORMAL
| SAYISAL ALANIN TANECIK SIFIR NOKTASI ENERJisi
OZCAN, Mustafa
Yiiksek Lisans Tezi, Fizik Bolimi
Tez Yoneticisi: Assoc. Prof. Dr. Selguk $. Bayin

Agustos 1991, 35 sahife

Bu tezde; Einstein ve Friedmann evreninde kiitlesiz, konformal
sayisal alanin, tanecik sifir noktas: enerjisi tartigildi. Mod toplamlar: goz oniine
alinarak ve kesilim fonksiyonuyla yeniden normalize edilmig iraksak sifir noktasi
enerjisi kullanilarak Ford’un Einstein evreni igin daha 6nce hesapladig: kiitlesiz
konformal sayisal alan i¢in tanecik sifir noktas: enerjisi yeniden elde edildi. Ka-
pali, genigleyen Friedmann evreninde kiitlesiz konformal sayisal alan igin 1sisiz
diizenleyici yaklagimu uygulandi. Enerji momentum tansor bilegenlerinin sifir

noktasindaki beklenti degerleri i¢in acik ifadeler elde edildi.

Anahtar Kelimeler: Sifir nokta.s"{/enerjisi, Diizenleyici, Yeniden normallegtirme,

Kesilim , Modlar: toplami, Isisiz diizenleyici, Energy momefitum tansdri.

Bilim Dal1 Sayisal Kodu: 404. 06. 01
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Chapter 1

INTRODUCTION

One of the basic questions concerning the relationship of quantum
field theory and gravitation is the zero-point or vacuum energy. Does the zero-
point energy of a quantized field act as a source of the gravitatonal field? In
other areas of physics the zero-point energy represents a real property of the
ground state, and the divergent zero-point energy is usually dispensed on the
grounds that only differences in energy are observable. Hence, the origin of
the energy scale could be made to start wherever we wish. On the other hand,
in gravitational physics this luxury does not exist i.e. the actual value of the
energy- momentum tensor determines the geometry of spacetime, and the law
of conservation of energy is violated unless this energy is included in the source
of the gravitational field.

In this thesis we are going to study quantum vacuum energy in
curved spacetime and we will concentrate on a useful object; the energy mo-
mentum tensor T** . This quantitity has the advantage of being defined locally
and also in field theories on curved background spacetime we will substitute its
expectation value as the source term to the right hand side of the Einstein field
equation.

First let us briefly review the case of a real scalar field ®(Z,t) in a

four dimensional Minkowski spacetime which satisfies the field equation [1]

1



(O +m?)® =0. (1.1)
Where O = 5*¥9,0, and n** is the Minkowski metric tensor (We take the
signature as + - - -.). The quantity m is defined as the mass of the field quanta

when the theory is quantized. The Lagrangian density leading to the equation
(1.1) is;

L= %(nwa,,@a,,@ — m28?), (1.2)
We construct the action
S = / Ld'z, (1.3)
and we take the variation of equation (1.3) with respect to ® to get
é6S
— =0, .
55 (1.4)

This leads us to the field equation (1.1). We have a set of solutions of the
equation (1.1) which could be given as

UE = A, eil?.i'—iwt’ (1_5)
where ‘A, is the a normalization constant , and
w=(k*+ mz)‘}. (1.6)

U;; are the positive frequency mode functions and they form an orthonormal

set with respect to the scalar product which is defined as [1]

(21,82) = —4 / [21(2) 0, ®5(z) — [0:2:(z)] ®5(2)] d’ (L.7)
hence
(Vs Us) = 6(k — ). (1.8)

In canonical quantization scheme the scalar field ® behaves like an

operator and we impose the following equal-time commutation rules:



[2(t,2),8(6,7)] = (19
[Ti(t, z), I1(¢, Z')] =0, (1'10)

[‘I’(t,ij,n(t,f)] =i63(5'—f)’ (1'11)
where II is the canonically conjugate momentum which is defined by

ar

= 3(8,2)

8,8. (L12)

The field modes given in equation (1.5) and their res}ective complex conjugate
form a complete and orthonormal basis with the scalar product (1.7). Hence,

® may be expanded as

8(t, %) = ) [azU; + alU3]. (1.13)
4

(t denotes Hermitian conjugate , * denotes complex conjugate.) The equal time

commutation relations for ® and II are now equivalent to

[a,;, a,;.] =0, (1.14)
lal,al] =0, (1.15)
lag, a}] = &z (1.16)

Where, aj is referred to as an annihilation operator and a;:, as a creation operator
for quanta in the mode k. Now we discuss the Hamiltonian for the scalar field.

The Hamiltonian is obtained from the energy momentum tensor T,,. This



tensor for a scalar field in curved spacetime could be obtained from variation

of the action with respect to the metric as

2 &S

v == H&g"u’

where g is the determinant of the metric tensor.For our case g** = n*¥ and

T. (1.17)

using equations (1.2) and (1.3) one obtains
1 af 1 2x/2
T, =8,83,% — 3wl 3,89,® + 2™ °n,.. (1.18)

The Hamiltonian density becomes

T, = %{(a,«p)z + i(@@)ﬁ + m?e7), (1.19)

where i=1,2,3 in terms of the Minkowski space coordinates. Substituting ®

from (1.13) into (1.19), and integrating over all space, yields
1
H= /;Tudaa: =iz Z:(a,,f;a,; + azal)w;. (1.20)
5

By using the commutation relations (1.14),(1.15),and (1.16), equation (1.20)

becomes
t 1
H =) (afeg + 3)ws,
E
1
H= Zw,;(n,; + 5) (1.21)
E
Where a;%a,,; = n; is called the number operator that has eigenvalues
ng=0,1,2,3,......, (1.22)

and k is the mode number.
An important point is that even the ground state, which has the
lowest energy (n; = 0) has a non-zero energy. To understand the vacuum

energy we can construct the vacuum state from the normalized basis ket vectors



denoted by | 0 >. Where, | 0 > is called the vacuum or no particle state. The

state | 0 > has the property that it is annihilated by all the a; operators:

a; | 0>=0, for all £

<0|al =0,
™~
<0]agal |0 >=@,. E (1.23)

i

By taking the vacuum expectation value of the Hamiltonian we find that
1
<O0|H|0> = <0|0>Z§w,;,
E

Eq

=

1
Xk: V" (1.24)

We have used the normalization condition < 0| 0 >=1.

Since there are infinite number of normal modes of increasingly high
frequency E, is infinite. The basic problem occurs at the vacuum energy. The
fact that Eq. (1.24) is divergent apparently indicates that the vacuum contains
an infinite density of energy. As w; has no upper bound the zero-point energy
can be arbitrarily large.On flat spacetime the problem of infinite vacuum en-
ergy is usually bypassed by introducing normal ordering. Defining a normal
ordering operator ::,which demands that destruction operator a; should always

be written on the right hand side of a,’; wherever they appear in pairs.Hence,

: agal == alag, (1.25)
and
: alag := ala;. (1.26)

Now the normal ordered Hamiltonian becomes

:H =) alazu. (1.27)
E



By using Eq.(1.24) one obtains
(H=):H:=H-<0|H|0>. (1.28)

One observes that replacing the original Hamiltonian H by the normal-ordered
Hamiltonian H' is equivalent to a formal subtraction of the infinite zero-point
energy. This has the effect that the energy of the corresponding free vacuum
state becomes zero [2]. However, the presence of boundaries for the field induces
a change in the energy spectrum and therefore also modifies the zero-point
energy. When fields are confined to a finite volume which can change, the zero-
point energy cannot be removed by the simple normal-ordering prescription
used in conventional field theories.

The first zero-point energy calculation in the presence of boundaries
was done by Casimir in (1948) [3]. Casimir evaluated the quantum vacuum
energy for the electromagnetic field bounded by two parallel plates. Casimir
showed that this energy is finite, independent of any cutoff, and depends only
on the distance between the plates. Since the finite quantum vacuum energy
he found was negative he concluded that there must exist an atractive force
between the plates. Later in 1958 existence of this force was verified by exper-
iments [4,5]. Hence, it became clear that Casimir effect is real and has to be
taken seriously. Encouraged by the existence of this atractive force, Casimir
conjectured that one may even construct an electron model where the repulsive
electric forces will be balanced by the atractive Casimir effect. Later the vac-
uum energy inside a spherical shell was calculated by T. Boyer [6], and B.Davies
[7]). They found it to be positive and depending only on the radius of the shell.
This result did not confirm Casimir’s suggestion. The fact that the vacuum
energy in a spherical shell is positive means that the force on the shell is repul-

sive. This being quite different from the case of two parellel plates violates the



Casimir’s idea, at least in its original form.

We may take the Casimir’s beautiful calculation [3] of the quantum
vacuum energy as a model for the calculations in the case of a quantized field
in a curved background spacetime. Ford [8,9] discussed the vacuum energy
of a massless conformal scalar field in an Einstein universe by the mode sum
method. He emphasized the analogy between this energy and the quantum
vacuum energy of the massless scalar field in the presence of a pair of parallel
plates. Ford showed that the renormalized energy of the vacuum state of the

quantized scalar field in a one-dimensional box of length L is equal to

E= —61L—. (1.29)

Renormalization is a method where the infinities are absorbed into

the physical constants, such as charge and mass, or are canceled by a suit-
able counterterm in the Lagrangian. A massless, conformal scalar field in an
Einstein universe also possesses a non-zero vacuum energy.Ford obtained the

renormalized vacuum energy density in this case as

1

P = 180n7at”

(1.30)

Where, a, is the radius of the universe and the pressure is given by P = 3p.
Thus the energy momentum tensor is in the same form as that for the
classical radiation. In Ford’s work on the Casimir effect in an Einstein universe,
he showed that the energy is associated with the closed spatial topology. Ford’s
approach consisted of removing the divergences of the energy-momentum tensor
by a suitable cutoff in the mode sum and then isolating and subtracting the
cutoff dependent terms.In section 1l we will discuss details of Ford’s paper [8].
In section 1l we will discuss the energy-momentum tensor for the

closed Friedmann universe. In theories involving quantized fields the formal



formal expressions for the observables of the theory often possess infinite expec-
tation values. Method for obtaining suitable finite observables from the formally
divergent expressions is called regularization[10]. Where, the divergent quan-
tities are replaced by well-defined expressions in a manner consistent with the
physical basis of the theory. The expectation values of the energy-momentum
tensor of the quantized scalar field are formally divergent. Adiabatic regular-
ization is a method of finding the finite parts of expectation values of the com-
ponents of the energy momentum tensor for the scalar field in homogeneous
cosmological spacetimes [10-14].The essential point of adiabatic regularization
is the identification of the infinite cotributions to the vacuum, which are later
subtracted to obtain a finite result.

P.R.Anderson and L.Parker [14] showed that among the possible
ways to apply adiabatic regularization in a closed Robertson-Walker universe,
only one yields the accepted trace anamoly and the vacuum energy for the
massless conformal scalar field. Anderson and Parker calculation yielded the
terms which are to be subtracted from the divergent mode-sum expressions
for the expectation value of the energy-momentum tensor to obtain the finite
renormalized energy-momentum tensor.They also mentioned that in calculating
the vacuum subtraction, one should use the flat space measure in the mode sum.

Our sign conventions are such that the metric signature is (+ - - - ),

Ry ;=T s—..,and B, = R The usual summation convetion is in effect

pav*
over Greek (spacetime) indices. Summations over Latin (three-space) indices
are indicated explicitly , but an index may be omitted from the summation sign

when there is no chance of confusion. The units are such that A = ¢ = 1. We

abbreviate the spacetime point (¢, %) = (z°, £) as z.



Chapter 2

RENORMALIZED VACUUM ENERGY OF
THE MASSLESS CONFORMAL SCALAR
FIELD IN AN EINSTEIN UNIVERSE

We begin with the basic properties of a massless conformal scalar field
considered on curved background Einstein geometry, where the metric is given

by

ds® = g,,dz*dz” = dt* — RI[dx* + sin®x(d6® + sin®0d¢?)). (2.1)

Here, x and 6 run from 0 to , while ¢ runs from 0 to 27, and R, represent the
radius of the universe, and it is a constant.

The conformally invariant Klein-Gordon equation for a massless scalar field is

[1];

1
aowv - ER\I’ =0. (2.2)
Here [0 is the D’Alembertian operator, which is given by
1
O¥ = ——(v/—=99""¥,,.)... 2.3
r—_g (\/_59 u) ( )

Where, g is the determinant of the metric tensor.

In equation(2.2) R = 6R;? is the scalar curvature corresponding to the metric

9



(2.1).

Solution of equation (2.2) could be easily found as [8]
U(z) = coX(x) P (cosh)e™ e, (2.4)

where P is the associated Legendre function, ¢, is an appropriate normaliza-

tion constant, and

!l = 0,1,2,...,and

m = —l,-l1+1,..,0,..,(-1),1 (2.5)
X(x) satisfies the following differential equation;
d, ., dX Y 4
—(stn®’x——) + (N? — 1) sin® xX(x) = (I + 1) X(x) = 0, (2.6)
dx dx
where N? = RZw?. Making the following substitution:
X (x) o sin’xC(cosx), (2.7)

the equation to be solved for C(cosy) becomes

(1-2?) fg —z(2l + 3)%% +[(N?-1) -I(l +2)]C =0, (2.8)

where, £ = cosy , and z € [-1,1].
This differential equation could be solved by the method of Frobe-
nius [15). Hence, we express the function C(z) by a power series as
C(z) = ) a,z"*". (2.9)
n=0
The coefficients a,, are chosen so that equation (2.8) is formally satisfied. Sub-

stituting equation (2.9) into equation(2.8) one finds that

00

Y {ln+a+l)(n+a+t2)a:—[(n+a)(n+a—1)

n=0

+(n + &)(2l +3) — ((N? — 1) = (I + 2))]a,}z"t* =0. (2.10)

10



For this equation to be satisfied for all z, the coefficient of each power of z must
vanish. The lowest power of z is (o — 2) and the corresponding coefficient is

a(a — 1)ae; hence setting this coefficient to zero gives us the indical equation
a(a—1)a; =0 (a0 # 0). (2.11)

Therefore, the constant a could be 0 or 1. If & = 0 is chosen the above Eq.(2.10)
becomes [15]
Y {(n+1)(n+2)ans2a — [(n+ 1)+ 2(n+ 1) — (N? - 1)]a,}z" = 0. (2.12)
n=0
This leads us to the following recursion relation:

Gniz _ (n+1)2+2(n+1) — (N*-1)
a, (n+1)(n+2) ’

(2.13)

which could be simplified as

a,,+2_(n+l+1)2-—N2
a, (n+1)(n+2) °

(2.14)

The above recursion relation gives us the following series solution for C(z) :

C(z) =) agz® + > Ggn T, (2.15)

n=0 n=0

(1+1°-N°,

C(z) = a{l+ o1 e }
3 _
+a,{z + (l—-l-%r—szs R ST }. (2.16)
This is in the form
C(z) = ayCy(z) + 0,Cy(2), (2.17)

where C,(z) and C,(z) are linearly independent. Convergence of the series at
the end points of our interval could be checked easily by using the Raabe test
which says that if 122, u, is a series of positive terms and if the

lim,, o0 n(;"‘::: — 1) = A the series is divergent for A < 1, convergent for A > 1

11



and the test fails for A=1 [16]. At the end points we apply this test to the series

with even powers i.e. C,(z) .We write

lim n(—2% —1) = 4, (2.18)

and using
a2 (2n41)(2n +2)
agn_l,.g - (2n+l + 1)2 - NZ,
1

one obtains A as 3 —! (I > 0). Hence, the infinite series C;(z) diverges at

(2.19)

the end points. One could similarly check that C,(z) is also divergent at the
end points of our interval. To obtain a regular solution in the entire interval
z € [~1,1] we terminate the infinite series after a finite number of terms by

restricting N to have integer values given as

N=(n+l)+1, (2.20)

where n =0,1,2,3, ..ccceee0ns andl =0,1,2,3,......... . Redefining a new index n’
as (n + 1) we write

N=n'+1, (2.21)

where n' =0,1,2,3, ..... ,and [/ =0,1,2,3,...... , n' . Dropping primes one now

obtains the eigenfrequencies as

_(n+1)
wo = p= (2.22)

The polynomial solutions obtained this way are the well known Gegenbauer
polynomials, hence we could write C(z) in terms of the Gegenbauer polynomials
as [8]

C(z) = Citi(=). (2.23)
For fixed n,! takes on the values 0,1,....,n. Thus, the degeneracy of each eigen-

frequency is

(9. =)Y (2 +1) = (n+1)% (2.24)

=0

12



Formal quantization may be carried out in the usual way by defining

the creation and annihilation operators af and a, as [8]

U(z) =) (arFy + ol Fy). (2.25)

A
where A stands for n,! and m. Here Fy = fye~*~* is a solution of equation
(2.2).

Hrmam) (X, 0, ¢) = COC:Ltll (cos x) ™ (cos f)e™?. (2.26)
The operators a, and a! satisfy the usual commutation relations and may be
used to define a Fock space [1]. The existence of a global timelike killing vector

leads us naturally to a unique choice for the vacuum state, which is defined as
a, | 0>=0, for all A (n,l,m). (2.27)
The energy momentum tensor is given as [8]
B A 1 B oo o 1 2).8
Ta =] —-\I”a‘I" +§5agp \I’,p\If’ + -6-(‘1’ );a (2.28)
1 1
—55 (V%)) — 2 GoP,

where G2 = R? — 16°R is the Einstein tensor. Now setting o = 0 and 8 = 0,
we obtain T as

IO =

DO | -

(T% — OV o). (2.29)
The Hamiltonian is

H= [ Tovhd's. (2.30)
The spatial functions f, may be normalized so that

[ inbVh &z = by, (2.31)

h is the determinant of h.:. where the line element (2.1) is written as



The Hamiltonian now takes the familiar form

1
H= 3 > w(aral +ala)), (2.33)
A

and vacuum energy is given as

1
By =3 S Wagn: (2.34)

This divergent expression must now be regularized by the insertion of a cutoff
function. Even though the result is going to be cutoff independent [8,9,17] a

convenient choice for the cutoff function is;
(o, w,) = e *"n, (2.35)

Where « is a cutoff parameter and w, is given in equation (2.22). Hence, the

cutoff zero-point energy is defined as
E, = Z &w”e'“"’",

=3 Ro z_:o(n + 1)%e~(n+5; (2.36)
where « is a cutoff parameter which will be set to zero at the end.

Before we proceed, we recall the Euler-Maclaurin sum formula, which

could be given as [9,18]
A 1 1
IROE [ Fle)dz + 3F(0) + 5 F(n)
+ 3 B (e (n) - FOI(0))

s=1

+/ Bz,,, Bzm(“’ [z])F(Zm)( )dz

=  F(0)+ F(l) ......... + F(n). (2.37)

where ;m and n are integers such that n>0 and m>0 and

d*™ F(z)

FGm) (z) = dz2m

(2.38)

14



is absolutely integrable over the interval (O,n). Also [x] denotes the integer in
the interval (x-1,x]; in consequence, as a function of x, B,,,(z — [z]) is periodic
and continuous, with period 1. B,,, are the Bernoulli numbers. Significance of
the Euler-Maclaurin sum formula is that it could be used to evaluate a given
sum interms of the integral of a continuous and differentiable function, plus

some correction terms.
Using the Euler-Maclaurin sum formula (2.37) the vacuum energy

given in equation (2.36) becomes
1 % 1
= oo /0 F(n)dn + 3F(0)

+%F(oo) + %(F(l) (00) — F(0))
B, 3

+DH(FO (o) ~ FO(0)
B &

+6—;‘(F( }(00) = FO(0)) + ceovrrerne }. (2.39)

one could easily check that as m— oo the remainder term — 0. In equation

(2.39) F(n) is given as
F(n) = (n+ 1)%("tI%, (2.40)

The continuous and differentiable function F(n) and its derivatives

up to the fifth order are given as

F0)=0 i F(o0) =

F®(0)=0 1 FW(o0) =0
F@() =0 ; FP(00) =0
FO(0) =6 s F®(00) =0
F®(0) = —24% s F®¥(00) =0
F®(0) = 60%% F®)(c0) =0

(2.41)

15



and

/0 * Fla)ds = S5 (2.42)

ol

The vacuum energy given in equation (2.36) becomes

E, = 3£§ + 1 + 1707 + { terms in positive powers of a} (2.43)
©= Y% " 240R, ' 360R? P P - =

If one divides E, by the spatial volume of the universe 272R3 one gets the
divergent vacuum energy density in an Einstein universe. It is appearent that
the cutoff zero-point enegy density in an equal volume of Minkowski space is
just

3

fo =5 (2.44)

This quantity is independent of the physical properties of the system and di-
verges in the limit as @ — 0. Hence, we define the physical vacuum energy

density in an Einstein universe as

p= }}}g(ﬂo - po)- (2.45)
1

The corresponding pressure may be obtained from the requirements
that the conformally invariant energy-momentum tensor be traceless. Since
our renormalization procedure consists in substracting the Minkowski-space
energy-momentum tensor from the Einstein universe energy-momentum ten-
sor, and since both are traceless, the renormalized energy-momentum tensor is
also traceless.

Hence the pressure is [8]

P = %p. (2.47)




Chapter 3

RENORMALIZED QUANTUM
VACUUM ENERGY MOMENTUM
TENSOR OF THE MASSLESS
CONFORMAL SCALAR FIELD IN A
CLOSED FRIEDMANN UNIVERSE

In this section we will write the Robertson-Walker metric as
ds® = a*(n)[dn?® — h;;dz'dz], (s = 1,2,3) (3.1)

where
hi;deidz? = (1 — r?)~'dr? + r*(d6? + sin®0d¢?). (3.2)
Defining a new variable
r = siny. (3.3)
Equation (3.2) becomes
h;;dzfdz’ = dx® + sin®x(d0? + sin?0d¢?). (3.4)
Here x and 6 run from O to 7, while ¢ runs from 0 to 27 , while a(n) is the

scale factor.

17



The Lagrangian density is given as [1]

L(E) = 3V 30" B0 B () - mPW(z) - 27().  (35)

We construct the action
s = [ L(zd'=. (3.6)

Varying S with respect to ®, we obtain the scalar field equation,

0= ﬁ—g = /[—g(®" + (%R + m?)®). (3.7)

where £ s indicates functional differentiation, g is the determinant of the back-

ground metric g,,. Hence, the equation of motion is given as
2 R
0@ +m?® + =& =0. (3.8)

Where @ is the scalar field, m is the scalar field’s mass, and R is the scalar

curvature , which is given as

R= 6(“ +1). (3.9)

a?
We will let m — 0 in equation (3.8) for the massless conformal scalar field. The

solution of equation (3.8) could be obtained by separation of variables as

Ux (ﬂaXaa ¢) ( )yk(Xaa ¢) (3'10)

()

The general solution of the field equation could be written as a sum over these

modes in the form
8(2) = [ d i ()(ogs + afT5). (3.11)

The measure d & (k) for closed Friedmann models is given as
[ai@ =3 . (3.12)
kM
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The functionY; is written as

Ye(x, 8, ) = TP (x) Yine (6, 8), (3.13)

where

k=1,2,3,..
1=1,2,3,.,(k—1)

M=—l,~l+1,...,0,....,1 (3.14)

Here, the Y;y/ (0, ¢)’s are the standart spherical harmonics, and H,(c'f)(x) satisfies

the following differential equation:

d, ., dnl(;) < 2. (1.2 (+)
E;(szn XW) + {sin®x(k* — 1) — I(l + 1) }IL” (x) = 0. (3.15)

We have seen that the solution of the above differential equation is given as [15]
I (x) = Cosin'x Cy¥i_,(cosx), (3.16)

where C, is a constant and C;t]_,(cosy) are the Gegenbauer polynomials:

dl+1

Citi_.(cosx) o y coskx. (3.17)

(cOsx)l-i-l
The functions Yg(x,0,¢) are the eigenfunctions of the three-space
Laplacian A® such that

A(a)yl}'(x, 0’ ¢) = _(k2 - 1)y::(x, 03 ¢)' (3'18)
The time-dependent mode functions W, (n) satisfy
%—2@ + (K + m2a®)¥,(n) = 0. (3.19)

The energy-momentum tensor is defined by functional differentia-
tion of the action with respect to the metric tensor g~ :
_ 2 &5
Y Vg g’
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where
65 = [6Ldtz. (3.21)

Using the relation [1,19]
(3.22)

1
by/—g = —Ex/—ggu.ﬁy“",

we obtain 6L :(with respect to g#)as
1, 1
6L = _2_(_5 V—=99,,9" 9,,9,,6¢" + /—9®,9,6¢"

1 1 1
+ gV 99u RE6g™ — =\/=g6R®® + Sm®/=gg,, 8%6g"). (3.23)

Using the following relations [1,19]

6R = —R*6g,, + ¢°° 9" (69 poiuv + 69ppav)> (3.24)

6g™ = —g"g"°6g,,,

gwsguu = "guuag,w’
(3.25)

we obtain
1
_V 69""(3 2@ — Eg,‘.,g'”@;pﬁ;,

1
lp,024 S0wR + g, ). (3.26)

6L

—<I><I>
g 6

Inserting (3.26) into (3.20) and rearranging, we obtain T}, [11,14]

1 1
T., = EQ,M(}‘, - .ég“ygl”@w{)w - ':';"I’;w‘I>
1

36

as

1
gyuR¢2 + _ngﬂy @2. (3.27)

— - 2
6R’“’¢ + 6

Using the equation of motion (3.8), one rewrites this as

1
T. = 3(1)’"‘1)'"—8

1 1
12g,“,<I>|:I<I> - —R 2 +5 Rg,‘,,(I>2 + i 29,, 9%,

9,97, — 3<I>',w'1>

+ (3.28)
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The trace of T, is defined as
(T =)T) = ¢"T,..

Also using
R= g‘wRuua

one obtains

2
T = Eg‘u’é;”@;
1

1
v gg‘wé;p@;a

3
Using the following relations [1,19];

1 2 1 1 ,.,
12R¢I> = 2<I>D(I>+2m<I>,

¢®,,0 = 909,

and

72,2, = (¢"2,9), -2

We find that
T = m282,

1 1 1
—Zg* - — —R®% + —md*?
e, o+ 3(I>EItI> 12R<I> + 2m<I) .

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

Taking the vacuum expectation value < T' > and using the fact that the renor-

malized energy-momentum tensor should also reflect the symmetries of the un-

derlying space-time one could write <0 |T | 0 > [1,12] as

<olT|o>=(/daz\/ﬁ)-1<o|/dszﬁr|o>.

Volume of the universe is given as
/dsmﬁ =2n%a®,
where h is the determinant of h;.
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We use the following mode decomposition for ®;

&= Y (agUz+all3). (3.36)

Ak, M)
where Uy are given in equation (3.10), and we shall take the functions to be

normalized so that

/ dxdbdpsin®ysind | Y(x,0,) = 1. (3.37)

Also, we use the canonical commutation relations

[az, ax] =0, (3.38)
and
lag, al,] = &g (3.39)

We denote by | 0 > a normalized vector, which is annihilated by all the a.
A basis for a Fock space may be built up by operating on | 0 > with af.
.The a; do not depend on time. In general, no choice of the a, corresponds
to the annihilation operators of physical particles, since the particle number
is not constant in time-dependent gravitational fields [1]. Taking the vacuum
expectation value of the trace of T}, (3.33) one obtains

1

— 2.2 2
<0|T|0>—-27r2a4k§lma | O, |2, (3.40)
where
Yo =K. (3.41)
kM k=1
Thus
1 o 2,.,2
<0|T|0>=2ﬂ2a22km | @ | . (3.42)

For the massless conformal scalar field m = 0, hence the classical expression
for < 0| T' | 0 > becomes exactly zero. However, it is composed of formally

divergent expressions i.e. it contains ultraviolet divergences.
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In adiabatic regularization one subtracts off these divergences leav-
ing a finite result. In identifying the divergences one considers slowly varying
spacetimes, where the particle number is an adiabatic invariant [1,10-14], and
remains constant in the limit of infinitely slow change in a(#). In this method
one evaluates the adiabatic approximations to the mode functions and evaluates
the vacuum energy for slowly changing a(n). Since the ultraviolet divergences
are included in this unobservable vacuum, its substraction from the formally
divergent expression (obtained by using exact modes) gives the finite observable
result.

Following Parker and Fulling [10] if we introduce a slowness param-
eter such that each time derivative of a(n) brings out one more factor of this
parameter, then the particle number will be constant to any finite power of
the adiabatic parameter. Hence, the vacuum contribution that needs to be
substracted could be obtained to any desired order in this slowness parameter.

Let us now consider the time-dependent mode function ¥, (n) which

satisfies,
v,
dn?

where w? = k% + m?a® . a(n) varies slowly under this condition, the time-

+w?¥, =0, (3.43)

dependent mode functions ¥ (n) can be approximated by
U, = (2W,)"2e~ " Waln)an (3.44)

This is the basis for the WKB method (The adiabatic approximation is a gene-
ralized WKB approximation [10,14]) and then expanding to fourth order in the
adiabatic parameter. The equation satisfied by W, is obtained by substituting
(3.44) into (3.43) which gives:

wr 3 W,;’] (3.45)



where w? = k? + m2a®. Here, primes denote derivatives with respect to . The
WKB solution is obtained by solving (3.45) iteratively, taking the zeroth-order
WKB solution to be

WISO) = w,

= (K + m?a®)"2. (3.46)

The first iterated WKB solution is

) 1 (W 3w
v _,2_ = —_
W, = 3 [Wéo) 2 Wor (3.47)
Now we calculate the above first iterated WKB solution:
WISO) — (kz + mzaz)x/z = w,
' m2aa’
W = =,
" m? mta? ao’
W = —J(a” + aa") — B (3.48)
Hence, the first iterated solution becomes;
2,1 " 4,2,
O _ 2 m?(a” +aa") 5m'a’a
W = w1 - — e+ = ). (3.49)
This could also be written as
W = wi(1+), (3.50)
where
m?(a” +aa") 5m*a®a”
€=— ot Ly (3.51)
Using the binomial expansion to get
) 1 1,
W'l =w(l+ 5€ T gE T ). (3.52)

Where, ¢ is small compared with 1. Since all the divergences are contained in

terms up to fourth order we do not consider higher order terms.
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Thus, Eq. (3.52) becomes

1y _ 5m“a2a” m? 3
W' = w+ P (a" + aa")
25mBata’
128wit
777'4 4 2 2
_32 7(al +2aal all+azall)
10 2
64m° (a%a" + a*a” a"). (3.53)
The second iterated WKB solution is
1 wo aw”
W =w? -2 sk (3.54
w 2w )

Taking the Eq. (3.53) first and second derivative with respect to 7 and neglect-
ing terms than fourth order , ones obtain

W(l)‘ _ m2ada’
w

' n m

3 0 M ma'a'

————_ and (3.55)

4,2 13

W(l)u — Tj(alz + aa") y mia’ad

w3

(aann _|_4al m+3an’)

+—(8a + 49aa” a" + 8a%a" + 11a%a'a™)
155m?®

gy (e 1?5_2:2_‘:1 (3.56)
Let us now consider W(l) W(l) , WY, and W,Sl)’ for the second iterated WKB
solution.
W = m2aad’ (1+7) (3.57)
where
T=- 4w§aa' (3d'a" + aa™) + 13:2:, (aa” + a?a'a") — 25maa’

o > (3:58)
Again using the binomial expansion, one obtains '

W' =T ). (3.59)
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Thus,

? 4 4 84,14
w? _ mid’a 3 2 4m®, ., 0 4 50ma‘a
e B W (3aa" a" + a’a’a") + e (a’a’” + a®a" a") - B
(3.60)
Now, let us turn to Eq.(3.50) for the calculation of W;fl“’ and W:f” , and again
use the binomial expansion to obtain
1 1
W_,Elj? = F(l el B ),
1 1 1 3
— = —(l-ze+ =€+ ). (3.61)
wt) w' 2 8
Thus,
1 1 m?(a” +aa") 5m'a’a” '
W T wr T T swe 4w (3-62)
1 1 m?(a” +aa") B5mta’a”
WO w T G sw (8.63)

Subsitute Eqgs. (3.56), (3.60),(3.62) and (3.63) into Eq.(3.54), obtaining second

iterated WKB solution as

2 5mta2 ” 2
WIEZ)’ = w?— %(aﬂ + aa") + ";;’40‘ + 8’:’)4 (aallll +4d'a" + 3(1"’)
4
_gmﬁ(ga" +60aa” a" + 9a%a" + 14a%a’a™)
+216m6 540mia‘a’
16w? 32w10

than fourth order terms]. (3.64)

(a®a" + a%a”a") + [contain higher

Having determined W{" to fourth order from (3.53), a second iteration yields
W,Sz) to fourth order. Further iterations only yield terms of higher adiabatic
order so one obtains the following result (which could also have been obtained

by using binomial expansion) {10,14].
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5mia’a”

(2 _ RN VL "
W — w_ (al +a ™ 16 s(aa,"'+4a.'a’"+3a.")

a") +

T 32w 1(19“ +1220a" " + 190%a"" + 284a%a'a"™)

221ms8 . 2 1105m2ata’
+ 32w° (aza’ +0:30.' a.") —Wl——. (3.65)

Now we return to Eq. (3.42), and calculate | ¥, |?, which is given as

l \Ilk |2= ‘I’k‘I’;. (3.66)

Here, star denotes complex conjugate. Using the Eq. (3.44), one obtains
| W, = . (3.67)
2w
We rewrite Eq.(3.64) as

W = w1+ p), (3.68)

where

u = 277;; 2 57":0':@' + 8’::; ( aa™ + 4a'a"™ +3 an’)

(9a + 60aa” a" + 9a%a" + 14a%d’a™)
216m . 2 540mfa‘a’’
+ow (e®a” + a®a"a") — o (3.69)

and use the binomial expansion in Eq. (3.68) ,we obtain

1 1
W 2 s (L= Sp gl s ). (3.70)

Thus using Eq. (3.69) in Eq. (3.70), we obtain



1 2 . 5m4a2al’
2 __
I‘I’kl = T-I— (a,' +aa.")—m,,—
32 - (aallll + 4a'a™ + 301"2)
64 9(210, +126aa” a" + 21a%a" + 280%d'a™)
231m* A a 1155m2a‘a”
— e (a2al +dd’ an) + W (3.71)

The sum in equation (3.42) is replaced by an integral over k is given

<O0|T|0>,=

222[ K*m? | U, |* dk. (3.72)

Substitution of the fourth-order expression Eq. (3.71) into Eq. (3.72) gives the

following adiabatic vacuum contributions:

00 2,2 4.4 " 2
0|T|0>, = 4“'1[ [ I LA
<OIT|0>4 = (trat) [T Rakl T2 | &
5mSa® al’ miat o 4a' g™ 3a'"?
T 8w’a? 16w’ (_ a? a? )
mﬂaﬁ 28 7] l 126 (] ¢2 210,"2 210,'4
t 32w°( a? + a’ + a? + a* )
231 8,8 "2 14 1155 10,10 ¢
_ ma ,a'a gl__) maa ]. (3.73)
32wt a® at 128w3qt

where w? = k? + m?a?, and | 0 >, denotes adiabatic vacuum state. In equation

(3.73) all of the integrals, except the first one, could be taken by using the

formula

/°° = k?dk _ 1 1‘(3/2)1‘(!59)., (3.74)

Fmiai)h ~ 2map=  T(p/2)
In the limit as m — 0 they all contribute as finite terms. On the other hand,
the first integral in Eq. (3.73) diverges as m — 0, which we could get rid of by a
cosmological constant renormalization [11] hence will not be discussed further.

Hence, Eq. (3.73) becomes
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6 aml 4 am al 3 an2

0 0 - —_—
<O|T|0>, 288072 @b as as
8a"a”? 2a™
- T + s (3.75)

Now the complete renormalized trace of the massless conformal scalar field in

an expanding closed Friedmann universe is given as

<0|Tl0>ren = 0—<0|T|0>A

6 a”l' 4 a"l al 3 aIIZ

= 288072 [F T a8 a8
8a"a? 20"
-+ o - ? . (3.76)

where "ren” denotes renormalized. This is identical to the result obtained by
Anderson and Parker and is known as the trace anamoly [14]. As we have men-
tioned the trace anamoly vanishes for static models. As far as the other com-
ponents of the renormalized energy-momentum tensor is concerned, in general,

the renormalized energy-momentum tensor will have the following components
[1]:
< T} >ren=< T7 >ren=< T} >ren,

< T* >ren=0, where u#v (3.77)

Because of the symmetry of the Robertson-Walker universes, the energy-mo-
mentum tensor will have only two independent components, the 00 component,
Too a.ﬁd 11 component T;,. The nonzero components of the renormalized energy-
momentum tensor could be obtained from the trace anomoly by using the fact

that the renormalized energy-momentum tensor is conserved [13] i.e.
<0 | T: l 0 >ren..= 0, (378)

The conservation condition may be written as

a a

Too + ;Tg - 3;1‘3 = 0. (3.79)
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But
TS =T, + 3T}. (3.80)

Substituting Eq. (3.80) into Eq. (3.79) , one obtains

a a
Too + 2-;T(? = -;T:. (3.81)
Using
Té’ = ¢g%Ty,
Too = 9°To00, (3.82)
we find
’
Tooo + 2%T00 = d'aT?, (3.83)
or
d 2 1,.3Ta
-a-r—’(a Too) = a'a*Te, (3.84)
and so [13]
L '3
%(a <0IT8|0>ren)=aa <0|T|0>ren. (3.85)

We may bring Eq. (3.76) into the form

6 d 0,"' al allz 2 an a:z am
— —_—— -t ). 3.86
288072a’'a’ dn( a? 2a? ad® + 2at ( )

<0|T|0>ren=

Inserting (3.86) into (3.85) and rearranging, we obtain

6 d a"d a? 2d"a? ot
28807r22;,'( @  2a® a8 + 5&;). (3.87)

d
%(G‘ <0|Tg |0>ren) =

Now we can determine the complete renormalized energy-momentum tensor for

the massless conformal scalar field in an expanding closed Friedmann model
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(valid up to adiabatic order four). Equation (3.87) could be integrated to yield
[13,14,18]

8 am al allz 2 (l" al2 al4
— +—+C). (3.88)

0| T°]|0>ren= —
<0|Ty|0>ren 28807r2a4( a?  2q? a3 2a4

Where, C, is an integration constant to be determined from the static case.
Using the result of section II ( 2.46) we see that for closed Friedmann models
C, is actually 1. These expressions (2.46) and (3.88) are in complete agreement
with the results obtained by using dimensional regularization and point splitting
[1]. Thus one obtains both the trace anomaly and the Casimir energy. The

remaining nonzero component of T}, is given as

1
<0 I Tl1 I 0 >ren= §(<0 | T I 0>ren — <0 I Tg I 0 >ren), (3.89)
hence
1 aml 5 al aul 5 all2 10 all a:z 5 0.'4
0 T1 0> = —— [ — —_— -— —'1. 3.90
<OIT |0 >ren= o (T~ 2a v 2as 1) (3:90)
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Chapter 4

DISCUSSION

In this thesis we considered quantum vacuum energy of the mass-
less conformal scalar field in curved background Einstein and closed Friedmann
geometries. Calculations we have presented are based on the approximate meth-
ods of quantum field theory on curved background geometry i.e. gravity is still
considered as a classical field [1]. However, in the early days of the development
of quantum electrodynamics we have experienced that some of the results that
emerge from such an approximate theory may still survive and remain to be
valid even in the exact theory. We preferred to work with the massless conformal
scalar field since it is the simplest yet closest analogy we have to electromagnetic
theory [20]. We concentrated on the renormalization of the vacuum expectation
value of the energy momentum tensor < 0 | T}, | 0 > . This expression contains
divergences and we discussed how to extract finite meaningfull quantities from
these divergent expressions.

In section II we reproduced Ford’s result for the massless conformal
scalar field in an Einstein universe by considering mode sums and renormalized
the divergent vacuum energy by introducing a cutoff function. This result is in
agreement with the results obtained by dimensional regularization, zeta function
renormalization and covariant point splitting method [1].

In section III following Anderson and Parker [14] we considered
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slowly expanding Einstein geometries (closed Friedmann models) and by us-
ing Adiabatic regularization we reproduced the trace anomaly. By using the
renormalized trace and the fact that the renormalized < 0 | T}, | 0 >ren be
conserved we obtained all the other nonzero components of < 0 | T,,, | 0 >ren.
Again, these results agree with those obtained by dimensional regularization

and covariant point splitting.
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