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Tensor form factors of the octet hyperons in QCD
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Abstract

Light-cone QCD sum rules to leading order in QCD are used to investigate the tensor form factors of the

Σ−Σ, Ξ−Ξ and Σ−Λ transitions in the range 1 GeV 2
≤ Q2

≤ 10 GeV 2. The DAs of Σ, Ξ and Λ baryon have

been calculated without higher-order terms. Then, studies including higher-order corrections have been done for

the Σ and Λ baryon. The resulting form factors are obtained using these two DAs. We make a comparison with

the predictions of the chiral quark soliton model.
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1 Introduction

How the hadrons are built from quarks and gluons, the fundamental degrees of freedom of QCD, is one of the
main open questions in the theory of strong interactions. An efficient way to probe the hadron structure is to study
the hadron form factors as these quantities include direct information about the hadron structure. Therefore, the
form factors have recently received considerable attention both in theory and experiment. Like other form factors,
the tensor form factors encode the important information about the quark-gluon structure of baryons.

The quark distributions in the leading twist are given by the unpolarized distribution f1(x), helicty distribution
g1(x) and transversity distribution h1(x) function of the quark. One of these functions, the transversity distribution
-which describes the probability of finding a transversely polarized quark with longitudinal momentum fraction x in
a transversely polarized baryons [1] by its chiral-odd nature- is not easy to measure. The strong interactions have
approximate chiral symmetry and electroweak interactions conserve the chirality, so the transversity distributions
cannot be extracted in inclusive deep inelastic scattering (DIS). It needs to couple to another chiral-odd quantity
in the cross-section. It can be obtained Drell-Yan processes and semi-inclusive deep inelastic scattering (SIDIS),
because distributions of transversity do come out at leading twist in the cross-section. In Ref.[2], it was extracted
using the experimental data on azimuthal asymmetries in SIDIS, from BELLE [3] as well as data for the nucleon
from the HERMES [4] and COMPASS [5] collaborations. Subsequently, in Ref.[6], isovector nucleon tensor charge
obtained HT (0) = 0.65+0.30

−0.23 at a renormalization scale µ2 = 0.4 GeV 2. In Ref.[7] Anselmino et al. updated their

nucleon isovector tensor charge result HT (0) = 0.77+0.18
−0.38 at renormalization scale of µ2 = 0.8 GeV 2. On the

theoretical side, isovector tensor charge of the nucleon has been studied in the framework of lattice QCD [8, 9, 10],
the chiral quark soliton model (χQSM) [11, 12], quark model [13, 14], Skyrme model [15], axial vector dominance
model [16] and dihadron production [17] QCD sum rules and light cone QCD sum rules [18, 19, 20, 21]. For octet
hyperon isovector tensor transition form factors have been studied chiral quark soliton model (χQSM) [12].

The hyperon sector is interesting because it provides for an ideal system in which to study SU(3) flavor symmetry
breaking by replacing up or down quarks in nucleons with strange ones [22]. Tensor form factors play an important
role in our understanding of the tomography of baryons. The hyperon tensor form factors a missing part of the
this tomography. In the present work, we calculate the isovector tensor transition form factors of the Ξ−Ξ, Σ−Σ
and Σ−Λ. In order to study the tensor form factors, one needs to use a nonperturbative method. One of the most
powerful nonperturbative methods is traditional QCD sum rules (QCDSR), which is more reliable and predictive
in calculating the properties of hadrons [23, 24, 25, 26]. An alternative to the traditional QCD sum rules is the
light cone QCD sum rules (LCSR) [27, 28, 29]. In this method, the hadronic properties are expressed with regards
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to the properties of the vacuum and the light cone distribution amplitudes of the hadrons in the process. Since the
form factors are expressed with regards to the properties of the QCD vacuum and the distribution amplitudes, any
uncertainty in these parameters reflects to the uncertainty of the predictions of the form factors.

Our aim in this work is to study the tensor form factors in the framework of light-cone QCD sum rules for the
octet hyperon. We give the formulation of the hyperon form factors on the light cone and derive our sum rules. In
the last section, we present our numerical analysis and discussion.

2 Formalism

The matrix element of the tensor current between two hyperon states is parametrized by three form factors as
presented [30, 9]

〈H(p′)|jµν |H(p)〉 = ū(p′)

[

iσµνHT (q
2) +

γµqν − γνqµ
2mH

ET (q
2) +

P̃µqν − P̃νqµ
2m2

H

H̃T (q
2)

]

u(p), (1)

where H = Σ, Ξ and Λ baryons and jµν = ūiσµνu − d̄iσµνd is the tensor current, P̃ = p′ + p, q = p′ − p and
σµν = i

2 [γµ, γν ] are the spin operator, and u(p) is the spinor of the hyperon with mass mH and momentum p.
In order to calculate three tensor form factors within LCSR, we start our analysis with the following correlation

function:

Πµν(p, q) = i

∫

d4xeiqx〈0|T [jH(0)jµν(x)]|H(p)〉, (2)

where JH(0) are the hyperon interpolating fields for the Σ and Ξ. In this work, we choose the general form of the
interpolating fields for Σ and Ξ as

jΣ = 2ǫabc
2

∑

ℓ=1

(uaT (x)CJℓ
1s

b(x))Jℓ
2u

c(x)

JΞ = JΣ(u ↔ s) (3)

where J1
1 = I, J2

1 = J1
2 = γ5 and J2

2 = t, which is an arbitrary parameter. Choosing t = −1 makes the interpolating
fields, which are known as Ioffe currents. a, b, c are the color indices and C is the charge conjugation operator.
Besides, the u, d, s-quark fields are presented as u(x), d(x) and s(x), respectively.

In order to calculate sum rules for the tensor form factors, we need to represent the correlation function in
two different forms, the first one is calculated in terms of quark and gluon degrees of freedom, and the second
one is obtained using hadrons and the related correlation function that is written in terms of a dispersion relation.
Then, these two forms of correlation functions are equated. In order to suppress the higher states and continuum
contributions, we also apply the Borel transformation.

The hadronic side of the correlation function can be determined as follows,

Πµν(p, q) =
∑

p′

〈0|JH |H(p′)〉〈H(p′)|Jµν |H(p)〉

m2
H − p′2

+ ... (4)

where mH are the Σ, Ξ and Λ baryon mass and dots represents contributions from higher states and continuum.
The matrix element of the interpolating current is between the vacuum and hyperon states, defined as

〈0|JH(0)|H(p′)〉 = λHu(p′, s′) (5)

where λH is the hyperon overlap amplitude. Inserting the matrix element of the tensor current in Eq. (1) and the
matrix element of the interpolating current in Eq. (5) into the correlation function in Eq. (4), we get

Πµν(p, q) =
λH

m2
H − p′2

(p/′ +mH)

[

iσµνHT (q
2) +

γµqν − γνqµ
2mH

ET (q
2) +

P̃µqν − P̃νqµ
2m2

H

H̃T (q
2)

]

. (6)
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Also, the correlation function is determined in terms of the quark and gluon on the QCD side. The interpolating
fields in Eq. (3) are inserted into the correlation function in Eq. (2).
We obtain for Σ− Σ, Λ− Σ and Ξ− Ξ transitions,

Πµν =
i

2

∫

d4xeiqx
2

∑

ℓ=1

(CJℓ
1)αβ(J

ℓ
2)γδ(σµν)ωρ[δ

δ
σδ

ρ
θδ

β
φS(−x)αω + δασ δ

ρ
θδ

β
φS(−x)δω ]

4ǫabc〈0|qa1σ(0)q
b
2θ(x)q

c
3φ(0)|H(p)〉 (7)

where qi (i = 1, 2, 3) denotes the quark fields, and S(x) represents the quark propagator which is given as

Sq(x) =
ix/

2π2x4
−

〈qq̄〉

12

(

1 +
m2

0x
2

16

)

− igs

∫ 1

0

dυ

[

x/

16π2x4
Gµνσ

µν − υxµGµνγ
ν i

4π2x2

]

, (8)

In this expression, 〈qq̄〉 is the quark condensate, m0 is defined in terms of the mixed quark gluon condensate as
〈q̄gsG

µνσµνq〉 ≡ m2
0〈q̄q〉 and gs is the strong coupling constant. Gµν is the gluon field strength tensor. The terms

proportional to Gµν are expected to give negligibly small contributions as they are related to four and five-particle
distribution amplitudes [31], and hence we will get neglect these terms in further analysis. Moreover, the terms
proportional to 〈qq̄〉 are removed by Borel transformations and, finally only the first term, which gives the hard-
quark propagator, will be considered for our discussion. Then, we need to know matrix elements of the local
three-quark operator,

4ǫabc〈0|qa1σ(a1x)q
b
2θ(a2x)q

c
3φ(a3x)|H(p)〉

where a1, a2 and a3 are real numbers. This matrix element can be written in terms of distribution amplitudes
(DAs) using the Lorentz covariance, the spin and the parity of the baryon [32]

4ǫabc〈0|qa1σ(a1x)q
b
2θ(a2x)q

c
3φ(a3x)|H(p)〉

= S1MCσθ (γ5H)φ + S2M
2Cσθ (6xγ5H)φ + P1M (γ5C)σθ Hφ + P2M

2 (γ5C)σθ (6xH)φ
+V1 (6PC)σθ (γ5H)φ + V2M (6PC)σθ (6xγ5H)φ + V3M (γµC)σθ (γ

µγ5H)φ

+V4M
2 (6xC)σθ (γ5H)φ + V5M

2 (γµC)σθ (iσ
µνxνγ5H)φ + V6M

3 (6xC)σθ (6xγ5H)φ
+A1 (6Pγ5C)σθ Hφ +A2M (6Pγ5C)σθ (6xH)φ +A3M (γµγ5C)σθ (γ

µH)φ

+A4M
2 (6xγ5C)σθ Hφ +A5M

2 (γµγ5C)σθ (iσ
µνxνH)φ +A6M

3 (6xγ5C)σθ (6xH)φ
+T1 (P

νiσµνC)σθ (γ
µγ5H)φ + T2M (xµP νiσµνC)σθ (γ5H)φ

+T3M (σµνC)σθ (σ
µνγ5H)φ + T4M (P νσµνC)σθ (σ

µ̺x̺γ5H)φ

+T5M
2 (xν iσµνC)σθ (γ

µγ5H)φ + T6M
2 (xµP ν iσµνC)σθ (6xγ5H)φ

+T7M
2 (σµνC)σθ (σ

µν 6xγ5H)φ + T8M
3 (xνσµνC)σθ (σ

µ̺x̺γ5H)φ , (9)

where Hφ is the spinor of the baryon, M is the mass of the baryon, C is the charge conjugation matrix, and
σµν = i

2 [γµ, γν ]. The “calligraphic” expressions can be expressed in terms of functions of the definite twist:

S1 =S1, 2pxS2 = S1 − S2,

P1 =P1, 2pxP2 = P1 − P2

V1 =V1, 2pxV2 = V1 − V2 − V3,

2V3 =V3, 4pxV4 = −2V1 + V3 + V4 + 2V5,

4pxV5 =V4 − V3, 4(px)2V6 = −V1 + V2 + V3 + V4 + V5 − V6

A1 =A1, 2pxA2 = −A1 +A2 −A3,

2A3 =A3, 4pxA4 = −2A1 −A3 −A4 + 2A5,

4pxA5 =A3 −A4, 4(px)2A6 = A1 −A2 +A3 +A4 −A5 +A6

T1 =T1, 2pxT2 = T1 + T2 − 2T3,

2T3 =T7, 2pxT4 = T1 − T2 − 2T7,

2pxT5 =− T1 + T5 + 2T8, 4(px)2T6 = 2T2 − 2T3 − 2T4 + 2T5 + 2T7 + 2T8,

4pxT7 =T7 − T8, 4(px)2T8 = −T1 + T2 + T5 − T6 + 2T7 + 2T8
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where Si, Pi, Vi, Ai and Ti are scalar, pesudoscalar, vector, axialvector and tensor DAs, respectively. The expansion
of the matrix element is basically an expansion in increasing twists of the DAs. The twist of a DA is defined as the
dimension minus the spin of the operators contributing to a given DA. The DAs A1, T1 and V1 have twist three,
V2, V3, A2, A3, T2, T3, T7, S1 and P1 have twist 4, S2, P2, V4, V5, A4, A5, T4, T5 and T8 are of twist 5, and V6, A6

and T6 have twist 6. The DAs F = Si, Pi, Vi, Ai, Ti can be written as

F (aipx) =

∫

dx1dx2dx3 δ(x1 + x2 + x3 − 1) exp

(

− ipx
∑

i

xiai

)

F (xi) (10)

where xi with i = 1, 2, 3 corresponds to longitudinal momentum fractions carried by the quarks inside the baryon.
The explicit form of the hyperon DAs (Si, Pi, Vi, Ai, Ti) is studied in detail in Refs. [33, 34, 35, 36]. The DAs of
the octet hyperons up to twist-6 are investigated the basis of the QCD conformal partial wave expansion approach.
For the Σ and Λ baryons calculations are carried out to the next-to-leading order [34, 35, 36] and for the Ξ baryon
this calculation is carried out to the leading order of conformal spin accuracy [33]. The nonperturbative parameters
(e.g. shape parameters of DAs) are obtained using the QCD sum rules [33, 34, 35, 36].

Note that the hadronic representation, Eq. (6), and the QCD representation are obtained in different kinematical
regions. The two expression can be related to each other by using the spectral representation of the correlation
functions. Quite generally, the coefficients of various structures in the correlation function can be written as:

Π(p2, p′
2
;Q2) =

∫

∞

0

ds1ds2
ρ(s1, s2;Q

2)

(s1 − p2)(s2 − p′2)
+ polynomials in p2 or p′

2
(11)

where ρ is called the spectral density. The spectral density can be calculated both using the hadronic represen-
tation of the correlation function, ρh, or using the QCD representation, ρQCD. Once ρ is obtained, the spectral
representation allows one to evaluate the correlation function in all kinematical regions for p2 and p′

2
.

The LCSR are obtained by matching the expression of the correlation function in terms of QCD parameters
to its expression in terms of the hadronic properties, using their spectral representation. In order to do this, we
choose the structures proportional to structures q/σµν , qµγν − γµqν and qµpνq/ for the form factors HT , ET and H̃T ,
respectively. Choosing the coefficients of these structures and applying the Borel transformation with respect to
the variable p′2 = (p+ q)2 we obtain tensor form factors for Σ− Σ transition,

HT (q
2)

λΣ

M2
Σ − p′2

=

∫ 1

0

dx2
MΣ

(q − px2)2

∫ 1−x2

0

dx1

[

P1 + T1 − T2 + T7

]

(x1, x2, 1− x1 − x2)

−2

∫ 1

0

dβ
M3

Σ

(q − pβ)4

∫ β

0

dα

∫ 1

α

dx2

∫ 1−x2

0

dx1

[

T1 − T2 − T5 + T6 − 2T7 − 2T8

]

(x1, x2, 1− x1 − x2)

ET (q
2)

λΣ

M2
Σ − p′2

= 2

∫ 1

0

dx2
MΣ

(q − px2)2

∫ 1−x2

0

dx1

[

− S1 + P1 + 2T1 − T3 − T7

]

(x1, x2, 1− x1 − x2)

−2

∫ 1

0

dβ
M3

Σ

(q − pβ)4

∫ β

0

dα

∫ 1

α

dx2

∫ 1−x2

0

dx1

[

T1 − T2 − T5 + T6 − 2T7 − 2T8

]

(x1, x2, 1− x1 − x2)

H̃T (q
2)

λΣ

M2
Σ − p′2

= −4M3
Σ

∫ 1

0

dα
1− α

(q − pα)4

∫ 1

α

dx2

∫ 1−x2

0

dx1

[

T1 − T3 − T7

]

(x1, x2, 1− x1 − x2) (12)

for Σ− Λ transition
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HT (q
2)

λΣ

M2
Λ − p′2

=

∫ 1

0

dx2
MΛ

(q − px2)2

∫ 1−x2

0

dx1

[

P1 + T1 − T2 + T7

]

(x1, x2, 1− x1 − x2)

−2

∫ 1

0

dβ
M3

Λ

(q − pβ)4

∫ β

0

dα

∫ 1

α

dx2

∫ 1−x2

0

dx1

[

T1 − T2 − T5 + T6 − 2T7 − 2T8

]

(x1, x2, 1− x1 − x2)

ET (q
2)

λΣ

M2
Λ − p′2

= 2

∫ 1

0

dx2
MΛ

(q − px2)2

∫ 1−x2

0

dx1

[

− S1 + P1 + 2T1 − T3 − T7

]

(x1, x2, 1− x1 − x2)

−2

∫ 1

0

dβ
M3

Λ

(q − pβ)4

∫ β

0

dα

∫ 1

α

dx2

∫ 1−x2

0

dx1

[

T1 − T2 − T5 + T6 − 2T7 − 2T8

]

(x1, x2, 1− x1 − x2)

H̃T (q
2)

λΣ

M2
Λ − p′2

= −4M3
Λ

∫ 1

0

dα
1− α

(q − pα)4

∫ 1

α

dx2

∫ 1−x2

0

dx1

[

T1 − T3 − T7

]

(x1, x2, 1− x1 − x2) (13)

for Ξ− Ξ transition,

HT (q
2)

λΞ

m2
Ξ − p′2

=

∫ 1

0

dx2
MΞ

(q − px2)2

∫ 1−x2

0

dx1

[

− V1 − V3 +A1 −A3

]

(x1, x2, 1− x1 − x2)

+2

∫ 1

0

dβ
M3

Ξ

(q − pβ)4

∫ β

0

dα

∫ 1

α

dx2

∫ 1−x2

0

dx1

[

V1 − V2 − V3 − V4 − V5 + V6 −A1 +A2

−A3 −A4 +A5 −A6

]

(x1, x2, 1− x1 − x2)

ET (q
2)

λΞ

m2
Ξ − p′2

= 4MΞ

∫ 1

0

dx2
1− x2

(q − px2)2

∫ 1−x2

0

dx1

[

A1 −A2 − V1 + V2

]

(x1, x2, 1− x1 − x2)

+

∫ 1

0

dβ
M3

Ξ

(q − pβ)4

∫ β

0

dα

∫ 1

α

dx2

∫ 1−x2

0

dx1

[

V1 − V2 − V3 − V4 − V5 + V6 −A1

+A2 −A3 −A4 +A5 −A6

]

(x1, x2, 1− x1 − x2)

H̃T (q
2)

λΞ

M2
Ξ − p′2

= 4M3
Ξ

∫ 1

0

dα
1− α

(q − pα)4

∫ 1

α

dx2

∫ 1−x2

0

dx1

[

V1 − V2 − V3 −A1 +A2 −A3

]

(x1, x2, 1− x1 − x2) (14)

In order to eliminate the subtraction terms in the spectral representation of the correlation function, we perform to
the Borel transformation. After the transformation, contributions coming from excited and continuum states are
also exponentially suppressed. Clearly, the Borel transformation and the subtraction of higher states are achieved
by using the following substitution rules (see e.g. [32, 37]):

∫

dx
ρ(x)

(q − xp)2
→ −

∫ 1

x0

dx

x
ρ(x)e−s(x)/M2

,

∫

dx
ρ(x)

(q − xp)4
→

1

M2

∫ 1

x0

dx

x2
ρ(x)e−s(x)/M2

+
ρ(x0)

Q2 + x2
0m

2
H

e−s0/M
2

,

(15)

where,

s(x) = (1 − x)m2
H +

1− x

x
Q2, (16)
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DAs Parameters

Σ Λ Ξ

f = (9.4± 0.4)× 10−3 GeV2 f = (6.0± 0.3)× 10−3 GeV 2 f = (9.9± 0.4)× 10−3 GeV 2

λ1 = (−2.5± 0.1)× 10−2 GeV2 λ1 = (1.0± 0.3)× 10−2 GeV 2 λ1 = (−2.8± 0.1)× 10−2 GeV 2

λ2 = (4.4± 0.1)× 10−2 GeV2 λ2 = (0.83± 0.05)× 10−2 GeV 2 λ2 = (5.2± 0.2)10−2 × GeV 2

λ3 = (2.0± 0.1)× 10−2 GeV2 λ3 = (0.83± 0.05)× 10−2 GeV 2 λ3 = (01.7± 0.1)× 10−2 GeV 2

V s
1 = 0.39± 0.01 As

1 = 0.31± 0.01
Au

1 = 0.29± 0.12 Aq
1 = 0.032± 0.006

f s
1 = −0.15± 0.12 f s

1 = 0.23± 0.01
f s
2 = 9.9± 2.5 f q

1 = −0.23± 0.03
f s
3 = 1.6± 0.2 f q

3 = 0.43± 0.07
fu
1 = −0.11± 0.01 f q

4 = 1.07± 0.12
P 0
2 = 0.004± 0.0004

Su
1 = −0.0014± 0.0002

Table 1: The values of the parameters are used in the DAs of Σ, Λ and Ξ.

M is the Borel mass and x0 is the solution of the quadratic equation for s = s0:

x0 =

√

(Q2 + s0 −m2
H)2 + 4m2

HQ2 − (Q2 + s0 −m2
H)

2m2
H

, (17)

where s0 is the continuum threshold.

3 Results and Discussion

In this section, we present the numerical results of the octet-octet hyperon isovector tensor transition form
factors. In this work, we use the hyperon DAs which depend on various nonperturbative parameters such as, fΣ,
fΞ and fΛ [33, 34, 35, 36]. The DAs of the Σ, Ξ and Λ baryons have been calculated by employing the QCD sum
rules without higher-order terms in Ref. [33, 34]. Then the study including higher-order corrections have been done
for Σ and Λ baryon in Ref. [35, 36]. In Table 1, we present the values of the input parameters using the DAs of Σ,
Ξ and Λ baryons. For the numerical analysis, we use the values of the hyperon masses as follow; MΛ = 1.11 GeV ,
MΣ = 1.2 GeV , MΞ = 1.3 GeV [38]. Besides, we need also specify the values of the residues of , Σ and Ξ baryon.
The residues can be determined from the mass sum rules as λΣ = 0.039 GeV 3 and λΞ = 0.040 GeV 3 for Σ and Ξ,
respectively [39].

In the traditional analysis of sum rules, the spectral density of the higher states and the continuum are param-
eterized using quark hadron duality. In this approach, the spectral density corresponding to the contributions of
the higher states and continuum is parameterized as

ρh(s) = ρQCD(s)θ(s − s0).

The predictions for the form factors depend on two auxiliary parameters: the squared of Borel mass M2, and the
continuum threshold s0. The continuum threshold signals the scale at which, the excited states and continuum
start to contribute to the correlation function. Hence it is expected that s0 ≃ (mΣ + 0.3)2 GeV 2 = 2.25 GeV 2,
s0 ≃ (mΛ + 0.3)2 GeV 2 ≃ 1.99 GeV 2 and s0 ≃ (mΞ + 0.3)2 GeV 2 = 2.56 GeV 2. One approach to determine the
continuum threshold and the working region of the Borel parameter M2 is to plot the dependence of the predictions
on M2 for a range of values of the continuum threshold and determine the values of s0 for which there is a stable
region with respect to variations of the Borel parameter M2. For this reason, in Figs.(1)-(3), we plot the dependence
of the form factors on M2 for fixed values of Q2 and various values of s0 in the region 2 GeV 2 ≤ s0 ≤ 4 GeV 2. As
can be seen from figures (in the case of old DAs and new DAs), for s0 = 2.5± 0.5 GeV 2, the results are practically
independent of the value of M2 for the shown range. The uncertainty due to variations of s0 in this range is much
larger than the uncertainty due to variations with respect to M2. Note that the determined range of s0 is in the
range that one would expect from the physical interpretation of s0.

In Figs. (4)-(6), we present the Q2 dependence of the form factors obtained using two DAs. Our observations
can be summarized as follows;

6



1. Σ− Σ case:

We show the behaviour of the form factors that agree well with our expectations. The values of the tensor
form factors decrease quickly as we increase the momentum transfer. In Fig. (4-a, c and e) are represent
the results of the new DAs and Fig. (4-b, d and f) are represent the results of old DAs. In both case, the
Q2 dependence of the form factors are similar but the values of the new DAs results are larger than old DAs
results. We see that higher-order terms gives dominant contribution.

2. Σ− Λ case:

In Fig. (5-a, c and e) are represent the results of the new DAs and Fig. (5-b, d and f) are represent the
results of old DAs. In the case of old DAs, the results of the form factors EΣΛ

T in negatif region but new DAs
result change the behaviour this form factor. In the case of HΣΛ

T , the Q2 dependence of the form factor is
similar behaviour and stable but the values of the new DAs results are larger than old one. In the case of old
DAs, the results of the form factor H̃ΣΛ

T in positive region but new DAs result change the behaviour this form
factor.

3. Ξ− Ξ case

The higher-order terms of DAs of Ξ baryon have not yet been calculated. So there is only one DAs result
showing the behavior of the form factors that agree well with our expectations. The values of the tensor form
factors decrease quickly as we increase the momentum transfers.

Unlike other form factors the tensor form factors are renormalization-scale dependent [18]. The numerical values
of DAs are used at the scale µ2 = 1 GeV 2 in Ref. [40], therefore, in present work our predictions correspond to this
scale. In order to compare our results, we use the following expressions [41]:

F (µ2) =

(

αs(µ
2)

αs(µ2
i )

)

4

33−2nf

[

1−
337

468π
[αs(µ

2
i )− αs(µ

2)]

]

F (µ2
i ), (18)

where nf is the number of flavors, µi is the initial renormalization scale and

αs(µ
2) =

4π

9 ln(µ2/Λ2)

[

1−
64

81

ln(ln(µ2/Λ2))

ln(µ2/Λ2)

]

. (19)

The values of the form factors at zero momentum transfer, Q2 = 0, defines the corresponding charges. However,
in our case, the working region of the LCSR cannot extrapolate to the Q2 = 0 directly. LCSR results more reliable
at Q2 > 1 GeV 2. The tensor form factor is parameterized in terms of an exponential form

FT (Q
2) = FT (0) exp[−Q2/m2

T ] (20)

which makes a reasonable description of data with a two-parameter fit. Our predictions are presented in Table 2.
As seen in Table 2, predictions of old DAs are more reliable and reasonable than the new DA result. The results of
new DAs are very large and quite suspicious. When one takes the nonrelativistic limit, the isovector tensor charge
becomes identical with the isovector axial vector charge [1], which is of order similar to the hyperon isovector axial
vector charges [ gΣA ≃ 1, gΞA ≃ 0.3 [42, 43]]. Therefore obtained by using new DAs results unreliable. Some of the
results obtained using the old DAs are consistent but some of them are not consistent with this prediction.

We give the results for the HΣ
T = 1.10 and HΞ

T = −0.30 obtained from chiral quark soliton model [12], which
have been calculated at a renormalization scale µ = 0.36 GeV 2. In order to compare our results, we use the Eq.
(16) to the relate this results of form factors to those at µ = 1 GeV 2, and we obtained these result; HΣ

T (0) = 1.00
and HΞ

T (0) = −0.27. As seen from Table 2, our results are different from the results obtained in the chiral quark
soliton model.

In conclusion, we have evaluated the isovector tensor form factors of octet-octet hyperons by applying the LCSR.
These form factors are related to the transverse polarization which gives an important piece of information on the
internal structure of baryons (e.g. the transverse spin structure of the baryons). The Q2 dependency of form factors
are obtained using the old and new DA results. The new DA results shows that our predictions of the form factors
are very large. Our predictions on the isovector tensor charges can be summarized in Table 2. The old DA results
seems to be more reliable. Our results on these form factors are compared with the chiral quark soliton model
predictions. The chiral quark soliton model results only exist for the HT form factor so we cannot compare results
of other form factors.
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Results of old DAs Results of new DAs
Transition FT (0)(GeV −2) mT (GeV ) FT (0)(GeV −2) mT (GeV )

ET (0) = −0.38± 0.04 1.31 ET (0) = −115.39± 15.44 1.28
Σ− Σ HT (0) = −0.59± 0.11 1.30 HT (0) = −137.72± 30.74 0.96

H̃T (0) = −0.10± 0.01 1.10 H̃T (0) = −19.28± 2.50 1.48
ET (0) = −0.6± 0.08 1.93 ET (0) = 2160.45± 120.44 1.26

Σ− Λ HT (0) = 0.65± 0.1 1.74 HT (0) = 135.14± 30.144 1.26

H̃T (0) = −0.001± 0.0001 1.65 H̃T (0) = −14.76± 0.50 1.28
ET (0) = 1.09± 0.2 1.32 − −

Ξ− Ξ HT (0) = −3.00± 0.6 1.23 − −

H̃T (0) = −0.10± 0.01 1.22 − −

Table 2: The values of exponential fit parameters, FT (0) and mT for tensor form factor obtained from the old and
new DAs analysis of sum rules.
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Figure 1: The dependence of the form factors; on the Borel parameter squared M2 for the values of the continuum
threshold s0 = 2 GeV 2, s0 = 2.5 GeV 2, s0 = 3 GeV 2, s0 = 3.5 GeV 2 and s0 = 4 GeV 2 and Q2 = 2 GeV 2, (a) and
(b) for EΣ

T tensor form factor, (c) and (d) for HΣ
T tensor form factor, (e) and (f) for H̃Σ

T tensor form factor. In here
(a), (c) and (e) are represent results of new DAs and (b), (d) and (f) are represent result of old DAs.
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Figure 2: The dependence of the form factors; on the Borel parameter squared M2 for the values of the continuum
threshold s0 = 2 GeV 2, s0 = 2.5 GeV 2, s0 = 3 GeV 2, s0 = 3.5 GeV 2 and s0 = 4 GeV 2 and Q2 = 2 GeV 2, (a) and
(b) for EΣΛ

T tensor form factor, (c) and (d) for HΣΛ
T tensor form factor, (e) and (f) for H̃ΣΛ

T tensor form factor. In
here (a), (c) and (e) are represent results of new DAs and (b), (d) and (f) are represent result of old DAs.
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Figure 3: The dependence of the form factors; on the Borel parameter squared M2 for the values of the continuum
threshold s0 = 2 GeV 2, s0 = 2.5 GeV 2, s0 = 3 GeV 2, s0 = 3.5 GeV 2 and s0 = 4 GeV 2 and Q2 = 2 GeV 2, (a) for
EΞ

T tensor form factor, (b) for HΞ
T tensor form factor, (c) for H̃Ξ

T tensor form factor.
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Figure 4: The dependence of the form factors on the values of the continuum threshold s0 = 2 GeV 2, s0 = 2.5 GeV 2,
s0 = 3 GeV 2 and M2 = 3 GeV 2, (a) and (b) for EΣ

T tensor form factor, (c) and (d) for HΣ
T tensor form factor, (e)

and (f) for H̃Σ
T tensor form factor. In here (a), (c) and (e) are represent results of new DAs and (b), (d) and (f)

are represent result of old DAs.
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Figure 5: The dependence of the form factors on the values of the continuum threshold s0 = 2 GeV 2, s0 = 2.5 GeV 2,
s0 = 3 GeV 2 and M2 = 3 GeV 2, (a) and (b) for EΣΛ

T form factor, (c) and (d) for HΣΛ
T tensor form factor, (e) and

(f) for H̃ΣΛ
T tensor form factor. In here (a), (c) and (e) are represent results of new DAs and (b), (d) and (f) are

represent result of old DAs.
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Figure 6: The dependence of the form factors on the values of the continuum threshold s0 = 2 GeV 2, s0 = 2.5 GeV 2,
s0 = 3 GeV 2 and M2 = 3 GeV 2, (a) for EΞ

T tensor form factor, (b) for HΞ
T tensor form factor, (c) for H̃Ξ

T tensor
form factor.
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