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Markov chain Monte Carlo methods (MCMC) are iterative algorithms that are used in many Bayesian simu-
lation studies, where the inference cannot be easily obtained directly through the defined model. Reversible jump
MCMC methods belong to a special type of MCMC methods, in which the dimension of parameters can change
in each iteration. In this study, we suggest Gibbs sampling in place of RJMCMC, to decrease the computational
demand of the calculation of high dimensional systems. We evaluate the performance of the suggested algorithm
in three real benchmark datasets, by comparing the accuracy and the computational demand with its strong alter-
natives, namely, birth-death MCMC, RJMCMC and QUIC algorithms. From the comparative analyses, we detect
that Gibbs sampling improves the computational cost of RJMCMC without losing the accuracy.
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1. Introduction

The conditional dependence between variables is one
of the most important issues that has been investigated
within last twenty years through the Bayesian approach.
The major challenge in this field is that, in some cases,
the number of parameters resulting in the true model is
unknown. In order to solve the underlying uncertainty,
the Bayesian approach is used and Markov chain Monte
Carlo (MCMC) methods are the most popular approa-
ches to infer the associated parameter estimation.

In general, MCMC methods are iterative algorithms
which generate, at each iteration, a random variable
from the posteriors of the parameters, yielding a Markov
chain, from which an estimator is computed [1]. There
are several ways to overcome the problem of the model
selection and to infer associated model parameters si-
multaneously, if these methods are implemented in the
construction of the biological networks, modelled by the
Gaussian copula graphical model.

The reversible jump Markov chain Monte Carlo (RJ-
MCMC) method is one of the well-known approaches to
unravel both challenges at the same time [2]. RJMCMC
is the modified version of the Metropolis-Hasting met-
hod, which provides jumps between spaces of different
dimensionality. In this algorithm, the move from (k, θk)

to (k′, θk
′
) is not always possible because of the moda-

lity of the Metropolis-Hasting calculation. Here, k and
k′ refer to the number of edges, i.e., the dimension of
the precision matrix, and the proposal number of edges,
respectively, and θk and θk

′
indicate the associated pre-

cision matrix under the k and proposal k′ edges, in order.
Thereby, the acceptance probability for this movement is
computed as
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Rk,k′ =
P (k′, θk

′ |y)q̃(k, θk|k′, θk′)
P (k, θk|y)q̃(k′, θk′ |k, θk)

, (1)

where y refers to the normal random variables of the cur-
rent position. Finally, P shows the likelihood function
and q̃ presents the kernel density. Under the “dimension
matching” condition, i.e., dim(θk

′
, x) = dim(θk, y), where

x and y are variables drawn from the proposal distribu-
tion q̃1, the acceptance probability is equivalent to

Rk,k′ =
P (k′, θk

′ |x)

P (k, θk|y)
× q̃1(k|k′)q̃2(x)

q̃1(k′|k)q̃2(y)
×

∣∣∣∣∣∂(θk
′
, x)

∂(θk, y)

∣∣∣∣∣ . (2)

In Eq. (2), q̃2(.) refers to the kernel for the given random

variable and
∣∣∣∣∂(θk′ ,x)∂(θk,y)

∣∣∣∣ represents the determinant of the

Jacobian matrix. In the study of Dobra and Len [3],
this method is used to infer the parameters of the copula
Gaussian graphical model (CGGM). In the application
of CGGM for the construction of biological networks, it
is found that RJMCMC has a long burn-in period [3, 4]
and additionally, it needs to calculate the Jacobian term
for each associated iteration, as in Eq. (2).

In order to decrease the computational demand and op-
timize the calculation, Mohammadi and Wit [4] suggest
the birth-and-death method. RJMCM with the split-
merge approach have been also intensively studied in the
work of Richardson and Green [5]. On the other hand,
there are other alternatives of this method which have not
been proposed for the biological networks. For instance,
Carlin and Chib algorithm [6] and the Gibbs algorithm [7]
are in this group. Hereby, in this study, we propose the
Gibbs sampling to improve the computational demand of
the estimates, without losing the accuracy. We compare
the performance of all listed approaches in three bench-
mark real datasets and compare their outputs, based on
both accuracy and computational efficiency.

Hence, in the following part, we initially describe
CGGM and RJMCMC. Then, in Section 3, we explain
their alternatives, together with the Gibbs sampling,
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which we introduce first time, and present our compa-
rative analysis with its strong alternatives. In Section 4,
we conclude our findings and discuss the future works.

2. Methods

2.1. Copula Gaussian graphical model

Let we have a data matrix with p variables and n sam-
ples and we are interested in obtaining the relationship
between these variables. In this kind of networks, which
is common in social surveys and biological aspects, each
variable is shown by a node in the graph and the con-
ditional dependence between two nodes is shown by an
undirected edge. Now, assume that the vector Y fol-
lows a p-dimensional multivariate normal distribution
Np(0,K

−1), where K is the inverse of covariance matrix.
With n samples, the likelihood function is proportional
to

p
(
Y 1:n |K

)
∝ |K|

n
2 exp

{
−1

2
tr
(
KTU

)}
, (3)

where |.| shows the determinant of the given matrix and
U is the trace of the Y

′′
matrix. So a graphical model

with V having E number of edges, i.e., (V,E), and p num-
ber of nodes from a p-dimensional multivariate normal
distribution with a zero mean vector and K−1 variance-
covariance matrix, i.e., Np

(
0,K−1

)
, is called the Gaus-

sian graphical model (GGM).
This model can be also seen as the probabilistic al-

ternative of the ordinary differential equation model [8],
the extended version of the probabilistic Boolean mo-
del [9] and the lasso-type of the generalized additive mo-
del [10]. In GGM, if the normality assumption does not
hold for the data matrix, the copula can solve the pro-
blem by combining data in a way that their joint distri-
bution is Gaussian with the same covariance matrix. For
binary and ordinal categorical data, Muthen [11] intro-
duces a continuous latent variable Z, by defining some
thresholds τυ = (τυ,0, τυ,1, . . . ,τυ,ωυ ) with −∞ = τυ,0 <
τυ,1< . . . <τυ,ωυ = ∞. So, the state of the node under
the jth model can be described by

yjυ =

ωυ∑
l=1

l×1τυ,l−1<z
j
υ≤τυ,l , j = 1, 2, . . . , n. (4)

For an n-dimensional system, the relationship between
Yij and Zij under the ith and jth node satisfies the con-
straint yij < yik → zij < zik, zij < zik → yij ≤ yik.
Thus, the correlation matrix between the ith and the jth
node is defined as

Yi,j (K) =
(k−1)i,j√

(k−1)i,i(k
−1)j,j

, (5)

and ZV∼Np
(
0,K−1

)
, which has a one-to-one correspon-

dence with observed data.

2.2. RJMCMC with birth-and-death steps

In this kind of RJMCMC, the change in the dimension
of the model parameters, resulting in the model itself,
is done by births and deaths steps, which are proposed

with probabilities PB and PD, respectively. Given Ys =
(k, θ1:k) showing the state of the system under the sth
iteration of the MCMC algorithm, when the system is
k-dimensional and has the precision matrix, Green [2]
suggests the following calculation:

• The birth step is computed with a probability PB
by drawing the graph G from the density G ∼ q
as θk+1. So the dimension of the state Y becomes
dim (Ys) : k → (k + 1).

• The death step is found with a probability PD by
selecting one of θj (j = 1, ..., k) and dropping the
corresponding parameter from θ1:k. So the dimen-
sion of Y becomes dim (Ys) : k → k − 1).

Hence, the acceptance probability for the birth move
in a k-component configuration is min(1, A) via

A =
π(k + 1, θk)

π(k, θk)
×

PD
(k+1)

PBq(θ)
, (6)

in which π is a stationary distribution, q presents the
proposal kernel. Thus, the acceptance probability for
the death is found from min(1, 1/A).

2.3. RJMCMC with split-merge steps

In this method, there is a deterministic invertible
transformation function t : R2 → R2, playing the main
role as below:

• The split step is calculated with a probability PS by
initially choosing one of the indices i, j = 1, . . . , k
and a rough G from the proposal kernel q, i.e.,
G∝q. Then, we put them into the t function
R2 → R2. The result has two components for-
med by the combination of j and G under t. So
dim(Ys) : k → (k + 1).

• The merge is obtained with a probability PM by ini-
tially selecting 2 indices i, j = 1, . . . , k, and then by
putting them into the invertible t function R2 →
R2. Finally, the first component of t−1(θi, θj) is
assigned in place of two parameters, so that the
dimension of the state Y under the sth MCMC ite-
ration moves form k to k + 1, i.e., dim(Ys) : k →
(k − 1).

Hence, the proposal probability density function de-
pends on both PSPM, q and the Jacobian of t.

3. RJMCMC alternatives

As discussed shortly in the introduction, there are also
some alternative approaches for RJMCMC. These are the
Carlin Chib algorithm [6], the birth-death MCMC (BD-
MCMC), a special case of the Gibbs sampling, and fi-
nally, the quadratic approximation for the sparse inverse
covariance estimation, shortly called as the (QUIC) met-
hod, which does not use the Bayesian approach. Below,
we present the mathematical details of each method.
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3.1. Birth-and-death MCMC
This method is based on the continuous time appro-

ach, where the dimension of the parameter is not fixed.
In this approach, new components are born according to
the Poisson process with a rate λB and the ith compo-
nent in a k-component configuration, which dies with a
rate λD (i) = π(k−1,θ1:i−1,θi+1:k)

π(k,θ1:k)
. In this expression, π(.)

is the density kernel, when θ1:k implies the first k para-
meters and q(θi) represents the proposal kernel for the
ith component of the parameter θ, as used beforehand.
The choice of the birth and death rates determines the
birth-death process and is made in such a way, that the
stationary distribution is precisely the posterior distribu-
tion of interest. Contrary to the RJMCMC approach, the
moves between models are always accepted, which makes
BDMCMC extremely efficient.

3.2. Carlin-Chib algorithm
In the application of the MCMC technology to any

problem involving a choice between K competing the
Bayesian model specification, M is defined an integer-
value parameter which indexes the model collection. The
Carlin-Chib algorithm [6] shows how the Gibbs sampling
methodology may be a special method to choose across
finite collections of models, without destroying the con-
vergence.

Suppose that f(y|θj , M = j) for j = 1, . . . , k is the cor-
responding likelihood of the model j and P (θj , |M = j)
is the prior distribution of the parameter under the mo-
del j. Here, y is independent on θi6=j , given that M = j.
As it is mentioned before, M is a model indicator and
for the given M , various θ′js are assumed to be comple-
tely independent. By defining πi = P (M = j), such that∑k
j=1 πj=1, the joint distribution of y and θ, whenM = j

is as below.
P (y, θ,M = j) =

f (y, θj ,M = j)× πj ×

{
k∏
i=1

P (θi |M = j)

}
. (7)

The following equation shows the full conditional inde-
pendence of each θj and M via

P (θj | θi6=j ,M, y)∝

{
f (y | θj ,M = j) for M = j,

P (θj |M 6= j) for M 6=j,
(8)

where P (θj |M 6= j) is called “pseudoprior”. When M =
j, we generate the graph from the usual model of the full
conditional distribution and when M 6= j, we generate it
from the linking density.

Hence for the model M , we have P (M = j | θ, y) =
f(y|θj ,M=j)

∏k
i=1 p(θi|M=j)πj∑k

n=1 f(y|θn,M=n)
∏k
i=1 p(θi|M=n)πn

.
In the usual condition, the algorithm produces samples

from the correct joint posterior distribution. In particu-
lar, the ratio is a simple estimate to compute the Bayes
factor between any two of models, while g denotes the
number of samples. Thus, M (g) = j means the jth mo-
del for the gth sample.

3.3. Gibbs sampling

By using the Bayes theorem, a complete model for a
joint density for j = 1, 2, . . . can be written as

p
(
y, θj , k

)
= p

(
y, θk, k

)
p
(
θ1 | θ2

)
. . .

p
(
θk−1 | θk

)
p
(
θk+1 | θk

)
p
(
θk+2 | θk+1

)
. . . (9)

If we denote πk as the prior distribution for the unknown
dimension of a parameter k and πk(θk) as the prior dis-
tribution for θk|k, we can represent the joint distribution
of the state y with a model parameter under the k di-
mension via p

(
y, θk, k

)
= p

(
y|θk, k

)
πk
(
θk
)
πk.

Here, to move between dimensions, we have infinity
choices that cause the precise probabilities, which cannot
be found. To solve the problem, Walker [7] introduces an
auxiliary variable u which helps us to have finite choices
in order to move between dimensions. On the other hand,
the latent variable u has a distribution in which u = k
with a probability q and u = k+1 with a probability 1−q.
Since u depends only on k, the complete model can be
stated as p

(
u, y, θj , k

)
= p (u | k) p

(
y, θj , k

)
Thereby, the

steps of the algorithm can be listed as below:
1. Sample θ(k) from πk

(
θk|y, k

)
, sample θ(k+1) from

p(θ(k+1)|θ(k)) and sample θ(k−1) from p(θ(k−1)|θ(k)).
2. Sample u from some kind of a binomial distribution

in which p(u = k + 1) = q and p (u = k) = 1− q.
3. For the given k, sample j, which will be the next k,

from the distribution below:
j = k|u = k + 1 ∝

(1− q)p
(
y, θ(k+1), k + 1

)
p
(
θ(k)|θ(k+1)

)
,

j = k + 1|u = k + 1 ∝ qp
(
y, θ(k), k

)
p
(
θ(k+1)|θ(k)

)
,

j = k|u = k ∝ (1− q)p
(
y, θ(k), k

)
p
(
θ(k−1)|θ(k)

)
,

j = k − 1|u = k ∝

qp
(
y, θ(k−1), k − 1

)
p
(
θ(k)|θ(k−1)

)
.

In these expressions, the sampling strategy is simplified
by the following equality.

P
(
θ(k) | θ(k+1)

)
×πk+1

(
θ(k+1)

)
=

P
(
θ(k+1)|θ(k)

)
× πk

(
θ(k)

)
. (10)

Thus we show its validity under the Gaussian Copula
graphical model (see Supplementary Material for the
proof). So the simplified version of the third step of the
algorithm can be described as follows.

j = k|u = k + 1 ∝

(1− q)p
(
y, θ(k+1), k + 1

)
π
(
θ(k+1)

)
,

j = k + 1|u = k + 1 ∝ qp
(
y, θ(k), k

)
π
(
θ(k)

)
,

j = k|u = k ∝ (1− q)p
(
y, θ(k), k

)
π
(
θ(k−1)|θ(k)

)
,
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j = k − 1|u = k ∝

qp
(
y, θ(k−1), k − 1

)
π
(
θ(k)|θ(k−1)

)
,

3.4. Quadratic approximation for sparse inverse
covariance estimation

This algorithm [12] is suggested to estimate the in-
verse of a sparse co-variance matrix, where the data are
Gaussian. In this calculation, there is a penalty term in
the general formula, related to the sparsity of the related
graph. By increasing the underlying term, the precision
matrix, which shows the structure of the conditional de-
pendence structure between nodes, becomes sparser.

Hereby, in the algorithm, let Y be a (n×p)-dimensional
data matrix and the sample covariance matrix is de-
noted by S = 1

n

∑n
k=1 (yk − µ̂) (yk − µ̂)

T , where µ̂ =
1
n

∑n
k=1 yk and (.)T refers to the transpose of the given

vector.
Given the regularization penalty term λ > 0,

the regularized log-determinate is defined as
arg min

{
− log |Y |+ tr (SY ) + λ

∑p
i,j=1 |Yij |

}
. Here, log

and tr shows the logarithm and the trace of the matrix,
respectively, and |.| denotes the determinant, as used
previously.

Then, the algorithm computes the optimal λ by ta-
king the (p×p-dimensional empirical covariance matrix
S, which is positive semi-definite, and the regularization
matrix Λ, whose components are λ′, as inputs, and initi-
alizes Y on the first iteration via Y0 > 0 in t = 1, 2, . . .,
until Yt converges to arg min |Y |.

4. Application
In order to evaluate the performance of the RJMCMC

alternatives, we compare the results of the three bench-
mark real networks data. The first dataset is the Rochale
dataset, shown in Table I. The second dataset is CellSig-
nal data and the third one is related to the simulated
MAPK-ERK dataset by Gillespie algorithm. In our ana-
lyses, we compare the F1−Score and the Matthew’s cor-
relation coefficient (MCC), whose expressions are given
below, for RJMCMC, BDMCMC, QUIC and Gibbs, via
the true network given in the study of Whittaker [13],
which is shown in Table II. In this table, 1 indicates the
existence of an edge between two related nodes and 0
shows the conditional independence between two nodes.

F1 − Score =
2TP

2TP + FP + FN
and

MCC = [(TP× TN)− (FP× FN)]

/
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN). (11)
In Eq. (12), TP is the number of truly found edges,

FP presents the number of falsely found edges and FN
denotes the number of edges that exist, but are not re-
cognized. Finally, the perfection level of F1 − Score is 1
and the range lies from 0 to 1.

On the other hand, the Matthew’s correlation coeffi-
cient is also known as phi coefficient and turns a value
between 0 and +1. A coefficient +1 represents a perfect
prediction, 0 implies no better than a random prediction
and 1 indicates the total disagreement between the pre-
diction and the observation.

4.1. The Rochale dataset

The Rochale data is a binary dataset collected from
665 samples to assess the relationship among eight factors
affecting the economical activities of women. The eight
variables are named as a to h and the cells appear in
the table row by row in a lexicographical order. The
true adjacency matrix of the data is presented in Table I.
For this dataset, the number of iterations for RJMCMC,
BDMCMC and Gibbs is taken as 106 and for QUIC it is
set to 1000 iterations.

Table II represents the results of accuracy measures for
each method. It is seen that after QUIC, Gibbs sampling
and RJMCMC have the same highest accuracy among
alternatives. Here, although QUIC is the most speedy
method, it is completely non-parametric and suggests a
numeric solution for the inference of the precision. On
the other hand, the remaining approaches are fully para-
metric and can be grouped in the same class. We further
record the computational time of each algorithm in terms
of the central processing unit (CPU) time, in the same
table. From the results, it is seen that the Gibbs sam-
pling has almost the same computational demand as RJ-
MCMC and BDMCMC has the same efficiency as other
methods, although the coding has been done in C and
the remaining were coded in R programming language.

TABLE I

The true adjacency matrix for the
networks of the Rochale data.

a b c d e f g h
b 0 0 0 1 1 0 0 1
a 0 0 1 1 1 0 1 0
c 1 0 0 0 1 1 1 0
d 1 1 0 0 0 0 1 1
e 1 1 1 0 0 1 0 0
f 0 0 1 0 1 0 1 0
g 1 0 1 1 0 1 0 0
h 0 1 0 1 0 0 0 0

TABLE II

The comparison of accuracy and CPU time of 100 itera-
tions of each inference for the Rochale data.

Methods TP FP FN TN F1 − Score MCC CPU
True graph 14 0 0 14 1 1 –
RJMCMC 13 1 1 13 0.93 0.86 0.00
BDMCMC 11 8 3 9 0.70 0.59 0.00

Gibbs (q = 0.5) 13 1 1 13 0.93 0.86 0.02
QUIC (λ = 0.12) 14 1 0 13 0.96 0.93 0.00
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4.2. The CellSignal data

This dataset is attached to the BDgraph package [14]
via 11672 samples, in which each independent measu-
rement consists of quantitative amounts of each of the
11 phosphorylated molecules, simultaneously measured
from single cells. Figure 1 shows the true structure of
these data via the Markov network. In Table III, we
represent the accuracy measures and the computational
time of each approach, similar to the previous dataset.
From Table III, it is detected that QUIC is the most
accurate method and the Gibbs sampling improves the
computational demand significantly, without losing accu-
racy, among the methods in the parametric class.

Fig. 1. The structure of the CellSignal data via an un-
directed graph.

TABLE III

The comparison of accuracy and CPU time of 100 itera-
tions of each inference method for the CellSignal data.

Methods TP FP FN TN F1 − Score MCC CPU
True graph 18 0 0 37 1 1 –
RJMCMC 13 27 5 10 0.45 0.00 0.13
BDMCMC 16 32 5 2 0.49 −0.26 0.12

Gibbs (q = 0.5) 13 27 5 10 0.45 0.00 0.05
QUIC (λ = 0.2) 10 22 8 31 0.40 0.12 0.00

4.3. Simulated MAPK-ERK data

The MAPK (mitogen-activated protein kinase) or its
synonymous ERK (extracellular signal regulated kinase)
pathway is one of the major signal transduction systems
which regulates the cellular growth control of all eukaryo-
tes from the reproduction to the death of the cell. For
this pathway, since the data have not been coverable for
all proteins in the system, we generate a dataset based
on the Bayesian inference of the reaction rates by using 5
proteins at 8 time points. The time course data is availa-
ble in [15]. Then, the system is simulated for a long time
via the exact Gillespie algorithm [16], until all proteins
reach their steady state positions.

In this simulation, we apply the reaction rate con-
stants listed in Table IV in the study of Purutçuoğlu and
Wit [15]. On the other hand, in inference of the system,
we eliminated the 27 proteins in 51 total proteins in the
systems due to the high correlation and conducted both

algorithm via 24 independent components, where each
protein has 1110 observations.

In both pathways, the number of iterations is set to
10 000 MCMC and the first 2 000 iterations are discar-
ded as the burn-in period. From the results in Table IV,
it is seen that RJMCMC, which takes into account the
structural dependency in the systems, are more accurate
than the findings of the BDMCMC, which cannot be ap-
plicable without eliminating those components, in terms
of F1 − score and MCC values.

On the other hand, if we compare the computational
demand of both approaches, we see that RJMCMC uses
more CPU time. But we think that the advantage of
BDMCMC is not due to the plausible high computational
demand of the improved RJMCMC. Further, it may be
caused by the programming language of each algorithm.
The RJMCMC approach is originally written in R, which
is an interpreted language, whereas BDMCMC is written
in C which is a compiled language.

TABLE IV

The comparison of accuracy and CPU time of each infe-
rence method for the simulated MAPK-ERK data.

Methods TP TN FP FN F1 − score MCC CPU
True graph 25 251 0 0 1 1 –
RJMCMC 25 213 38 0 0.56 0.58 0.14
BDMCMC 22 219 34 3 0.53 0.53 0.08

Gibbs (q = 0.5) 25 213 38 0 0.56 0.58 0.12
QUIC (λ = 0.20) 20 234 17 5 0.64 0.61 0.00

5. Conclusions

In this study, we have suggested to perform the Gibbs
sampling strategy in inference of CGGM, in order to de-
crease the computational demand and to increase the
accuracy of the RJMCMC algorithm.The results of three
benchmark datasets have shown, that the Gibbs sam-
pling is promising to improve the accuracy of the estima-
tes, without losing the computational time. Hereby, it
can optimize the modeling performance of GGM in time,
under different dimensional network.

As the extension of this study, we consider to develop a
more efficient algorithm, in particular, when the elements
of the network are highly dependent on each other, i.e.
they are structurally dependent from the description of
the network. Furthermore, we think to extent CGGM,
by applying C-D vine approaches [17] and to develop a
new update scheme for the MCMC algorithm in inference
of this new model.

Additionally, we consider that similar strategies, used
in RJMCMC and Gibbs sampling, can be adapted in
time series chain graphical model [18], correct inference of
which is conducted via the two-stage penalized maximum
likelihood method. Finally, different methods suggested
for different types of networks can be also adapted for
the complex biological systems [19, 20].
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Supplementary material

Under the GGM, the conditional probability computed for
the RJMCMC inference approach maintains the following
equality.

P
(
θ(k) | θ(k+1)

)
× πk+1

(
θ(k+1)

)
=

P
(
θ(k+1)|θ(k)

)
× πk

(
θ(k)

)
, (A1)

where P (.) denotes the conditional probability and the prior
density, respectively. Moreover, θ shows the precision matrix
and (k + 1) denotes the dimension of θ. Thus, Eq. (A1) is
equivalent to the following statement, due to the definition of
conditional probability and πk+1

(
θ(k+1)

)
.

P
(
θ(k), θ

(k+1)
)

θ(k+1)
× P

(
θ(k+1) | k + 1

)
=

P
(
θ(k), θ

(k+1)
)

θ(k)
× P

(
θ(k) | k

)
.

If we cancel similar expressions on both sides, then,

P
(
θ(k+1)|k + 1

)
p(θ(k+1))

=
P
(
θ(k)|k

)
p(θ(k))

.

In CGGM, P (θ(k)|k) is the G-Wishart distribution, if the di-
mension is given by k, and p

(
θ(k)

)
presents the Wishart dis-

tribution. So the ratio
P(θ(k)|k)
p(θ(k))

is constant and does not

depend on k anymore.
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