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T. M. Aliev ∗, İ Kanık †, M. Savcı ‡

Physics Department, Middle East Technical University, 06531 Ankara, Turkey

Abstract

The magnetic moment µ of the ρ meson is studied in QCD light cone sum rules,
and it is found that µ = (2.3 ± 0.5). A comparison of our result on the magnetic
moment of the ρ meson with the predictions of the other approaches, is presented.
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1 Introduction

QCD sum rules, which are based on the first principles of QCD [1], is a powerful tool
in investigation of the hadron physics. In this method, physically measurable quantities
of hadrons are connected with QCD parameters, where hadrons are represented by their
interpolating quark current taken at large virtualities, and following that, correlator of these
quark currents is introduced. The main idea of the method is to calculate the correlator
with the help of operator product expansion (OPE) in the framework of QCD (accounting
for both perturbative and nonperturbative contributions) and then connect them with the
phenomenological part. Physical quantities of interest are determined by matching these
two representations of the correlator.

QCD sum rule method is successfully applied to many problems of hadron physics
(about the method see, for example, review papers [2]–[5] and references therein).

One of the important static characteristic of hadrons is their magnetic moment. Mag-
netic moments of nucleons are calculated in the framework of the QCD sum rule method
in [6, 7], using the external field technique, and using the same approach magnetic moment
of the ρ meson is calculated in [8].

Furthermore, it should be mentioned here that, in [9] form factors of the ρ meson are
calculated at intermediate momentum transfer by using the three–point QCD sum rules
method, and then extrapolating these form factors to Q2 = 0 (this point lies outside the
applicability region of the method).

In this work, we present an independent calculation of the magnetic moment of the ρ
meson in the framework of an alternative approach to the traditional QCD sum rules, i.e.,
QCD light cone sum rules method (QLCSR).

Few words about this method are in order. The QLCSR method is based on Operator
Product Expansion (OPE) near light cone, which is an expansion over the twist of the
operators rather than dimensions as in the traditional QCD sum rules. The nonperturbative
dynamics encoded in the light cone wave functions, determines the matrix elements of the
nonlocal operators between the vacuum and the hadronic states (more about this method
and its applications can be found in [5, 10])

The QLCSR is successfully applied to a variety of problems in hadron physics. For
example, magnetic moments of the octet and decuplet baryons are calculated in [11] and
[12], respectively, and magnetic moment of the nucleon is first obtained in QLCSR in [13].

The paper is organized as follows. In section 2, QLCSR for the ρ meson magnetic
moment is obtained. In section 3, our numerical results and a comparison with the results
of the other approaches is presented.

2 QLCSR for the ρ meson magnetic moment

In this section we calculate the ρ meson magnetic moment in QLCSR. We consider the
following correlator of two vector currents in the external electromagnetic field

Πµν(p, q) = i
∫
d4xeipx

〈
0
∣∣∣T{jν(x)j†µ(0)}

∣∣∣ 0
〉

γ
, (1)
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where the subscript γ denotes the external electromagnetic field, jν(x) = ūγνd(x) is the
vector current with the ρ meson quantum number.

Firstly, let us calculate the phenomenological part of the correlator. By inserting a
complete set of states between the currents in Eq. (1) with quantum numbers of the ρ
meson, we obtain the following representation of the correlator

Πµν =
〈0|jν|ρ(p)〉〈ρ(p)|ρ(p

′)〉γ〈ρ(p
′)|j†µ|0〉

(p2 −m2
ρ)(p

′2 −m2
ρ)

+ · · · , (2)

where p′ = p+ q, q is the photon momentum and · · · describe higher states and continuum
contributions. The matrix element 〈0|jν |ρ(p)〉 is determined as

〈0|jν |ρ(p)〉 =
m2

ρ

gρ
εν(p) . (3)

Assuming parity and time–reversal invariance, the electromagnetic vertex of the ρmeson
can be written in terms of three form factors [14]

〈ρ(p, εr)|ρ(ρ′, εr
′

)〉γ = −ερ(εr)α(εr
′

)β
{
G1(Q

2)gαβ(p + p′)ρ +G2(Q
2)(qαgρβ − qβgρα)

−
1

2m2
ρ

G3(Q
2)qαqβ(p+ p′)ρ

}
, (4)

where ερ is the photon and (εr)α, (εr
′

)β are the ρ meson vector polarizations. The Lorentz
invariant form factors Gi(Q

2) are related to the charge, magnetic and quadropole form
factors through the relations

FC = G1 +
2

3
ηFD ,

FM = G2 ,

FD = G1 −G2 + (1 + η)G3 , (5)

where η = Q2/4m2
ρ is a kinematical factor. At zero momentum transfer, these form factors

are proportional to the usual static quantities of charge, magnetic moment µ and quadropole
moment D:

eFC(0) = e ,

eFM (0) = 2mρµ ,

eFD(0) = m2
ρD . (6)

Using Eqs. (2)–(4) and performing summation over polarizations of the ρ meson, for
the phenomenological part of the correlator we get

Πµν =
m4

ρ

g2ρ
ερ

1

(m2
ρ − p2)[m2

ρ − (p + q)2]

×

{
G1(Q

2)(p+ p′)ρ

[
gµν −

pµpν
m2

ρ

−
p′µp

′
ν

m2
ρ

+
p′µpν

2m4
ρ

(Q2 + 2m2
ρ)

]
+G2(q

2)

[
qµgνρ

− qνgµρ −
pν
m2

ρ

(
qµpρ −

1

2
Q2gµρ

)
+
p′µ
m2

ρ

(
qνp

′
ρ +

1

2
Q2gνρ

)
−
p′µpνpρ

m4
ρ

Q2
]

−
1

2m2
ρ

G3(Q
2)(p+ p′)ρ

[
qµqν −

pνqµ
m2

ρ

1

2
Q2 +

p′µqν

m2
ρ

1

2
Q2 −

pνp
′
µ

m4
ρ

1

4
(Q2)2

]}
, (7)
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where Q2 = −q2. Throughout our analysis, only the values of the form factors at Q2 = 0
are needed. Additionally, using p′ = p + q and qε = 0, Eq. (7) can be simplified and final
answer for the phenomenological part can be written as

Πµν =
m4

ρ

g2ρ

ερ

[m2
ρ − (p+ q)2]

{
2pρFC(0)

[
gµν −

pµpν
m2

ρ

−
pµqν
m2

ρ

]

+ FM (0)

[
qµgνρ − qνgµρ +

1

m2
ρ

pρ(pµqν − pνqµ)

]
−
(
FC(0) + FD(0)

) pρ
m2

ρ

qνqµ

}
. (8)

In order to extract out the magnetic moment of the ρ meson from Eq. (8), we will chose
the structure (pε)(pµqν − pνqµ). Hence, the phenomenological part of the correlator for the
above–mentioned structure can be written as

Π =
m2

ρ

g2ρ

1

(m2
ρ − p2)[m2

ρ − (p+ q)2]
µ , (9)

where µ is the ρ meson magnetic moment in units of e/2mρ.
Our next task is calculation of the correlator in Eq. (1) from the QCD side. The

correlator receives perturbative and nonperturbative contributions. The perturbative part
corresponds to on–shell photon emission from virtual quarks and it is described by the
triangle diagram (see Fig. (1)). In order to calculate the nonperturbative contributions
(see Fig. (2)), we need the matrix elements of the nonlocal operators between the vacuum
and the photon states, i.e., 〈γ(q)|q̄(x)Γi(0)|0〉, where Γ is an arbitrary Dirac matrix. In
our calculations we take into account twist–2, 3 and 4 photon wave functions (more about
the photon wave functions, see [15]). In what follows we present definitions whose wave
functions give contribution only to the structure (pε)(pµqν − pνqµ).

〈γ(q)|q̄(x)γµq(0)|0〉 = eeqf3γ

(
εµ − qµ

εx

qx

)∫ 1

0
dueiuqxψ(v)(u) , (10)

〈γ(q)|q̄(x)γµγ5q(0)|0〉 = −
1

4
eeqf3γǫµαβρε

αqβxρ
∫ 1

0
dueiuqxψ(a)(u) , (11)

〈γ(q)|q̄(x)σµνq(0)|0〉 = −ieeq〈q̄q〉(εµqν − ενqµ)
∫ 1

0
dueiuqx

{
χφγ(u) +

x2

16
A(u)

}

−ieeq〈q̄q〉

[
xν

(
εµ− qµ

εx

qx

)
− xµ

(
εν − qν

εx

qx

)] ∫ 1

0
dueiuqxhγ(u) , (12)

where φγ(u) is twist–2, ψ
(v)(u) and ψ(a)(u) are twist–3, A(u) and hγ(u) are twist–4 photon

wave functions, respectively, and χ is the magnetic susceptibility. It should be noted here
that, there are several other functions Ti(αi) and S̃(αi) (for their definitions, see [15])
that also give contribution to the above–mentioned structure. But their contributions are
proportional to the quark mass (in our case u and d quark masses) and therefore irrelevant
in the massless quark case.

After some effort, we get the following expression for the correlator from QCD side in
the x–representation

Πµν = e
∫ 1

0
du
∫
dxei(p+uq)xεx(xµqν − xνqµ)
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×

{
(ed − eu)

[
3

4π4x6
− f3γ

ψ(a)(u)

8π2x4
+
i

2
f3γ

ψ(v)(u)

π2(qx)x4
−

m2
0

384(qx)
〈q̄q〉2hγ(u)

]

−
(ed + eu)

8(qx)
hγ(u)

}
. (13)

Using Eq. (13) and after performing Fourier transformation, the result for the structure
(pε)(qνpµ − qµqν) can be obtained. The sum rules for the ρ meson can be obtained after
applying double Borel transformation on the variables p2 and (p + q)2, which suppresses
the continuum and higher states contributions (about this procedure, see [11, 12, 16, 17],
and references therein) and then matching both representations of the correlators.

Finally, for the above–mentioned structure we get the following sum rule for the ρ meson
magnetic moment

µ =
g2ρ
m2

ρ

em
2
ρ/M

2

(eu − ed)

{
3

8π2
M2f0(s0/M

2) +
f3γ
2
ψ(a)(u0)− 2f3γΨ

(v)(u0)

}
, (14)

where

Ψ(v)(u) =
∫ u

0
ψ(v)(v)dv ,

and, the function

f0(s0/M
2) = 1− e−s0/M2

,

is used to subtract continuum contributions, and naturally, the Borel parameters M2
1 and

M2
2 are set to be equal to each other, i.e., M2

1 =M2
2 ≡ 2M2 since we are dealing with just

a single meson, and hence

u0 =
M2

1

M2
1 +M2

2

=
1

2
.

Note that, the last two terms in Eq. (13) disappear after double Borel transformation is
performed.

The main reason why we choose the structure (pε)(qνpµ − qµqν) is that, the term pro-
portional to the magnetic susceptibility χ does not give any contribution, and hence the
main uncertainty coming from the definition of χ is absent in the sum rule.

3 Numerical analysis

In this section we present our numerical analysis on the ρ meson magnetic moment. It
follows from Eq. (14) that, in order to perform further numerical analysis one needs to know
the photon wave functions ψ(a)(u) and ψ(v)(u). The explicit expressions of the functions
are

ψ(v)(u) = 10u(1− 3u+ 2u2)−
15

8
u(wA

γ − 3wV
γ )(1− 10u+ 30u2 − 35u3 + 14u4) ,

ψ(a)(u) =
5

2

[
1 +

9

16
wV

γ −
3

24
wA

γ

]
[1− (2u− 1)2][5(2u− 1)2 − 1] .
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The values of the input parameters wV
γ , w

A
γ and f3γ are given in [15] to have the values:

wV
γ = (3.8± 1.8), wA

γ = −(2.1± 1.0) and f3γ = −(3.9± 2.0)× 10−3 GeV −2. The remaining
input parameters are mρ = 0.77 GeV and g2ρ/4π = 1.27.

In Fig. (3) we present the dependence of the magnetic moment onM2 at three different
values of the continuum threshold: s0 = 1.5 GeV 2, s0 = 1.8 GeV 2 and s0 = 2.0 GeV 2.
Note that, M2 in the sum rule is an auxiliary parameter and the physical quantities are
expected to be independent of it. Therefore, one must look for a region ofM2 for which the
magnetic moment µ be practically independent of it. The lower limit of M2 is determined
by the requirement that terms ∼M−2n (n > 1) remain subdominant. In other words, large
power corrections must be absent in the sum rule. The upper bound ofM2 is determined by
demanding that the contributions of the higher resonances and continuum are less than, for
example, 30% of the total result. Our numerical calculation shows that these requirements
are satisfied in the region 1.0 GeV 2 ≤ M2 ≤ 1.4 GeV 2 and magnetic moment in this
region is practically independent of M2. We also see from this figure that as s0 varies
from s0 = 1.5 GeV 2 to s0 = 2.0 GeV 2, the magnetic moment of the ρ meson changes by
an amount of approximately 10%. Therefore we can conclude that the result seems to be
almost insensitive to the change in s0 and M2 in the above–mentioned region. The final
result for the magnetic moment of the ρ meson turns out to be

µ = 2.3± 0.5 ,

in units of (e/2mρ), where the error can be attributed to the variations in s0, M
2 and

uncertainties in the values of f3γ , w
V
γ and wA

γ .
At the end, we would like to present a comparison of our result on the ρ meson magnetic

moment, with the ones existing in literature. In the Dyson–Schwinger based models, the ρ
meson magnetic moment is estimated to have the value µ = 2.69 [18], 2.5 ≤ µ ≤ 3 [19] in
units of e/2mρ. Covariant and Light front approaches with constituent quark model, both,
predict µ = 2.23± 0.13 [20] and in light front formalism it is estimated to be µ = 1.83 [21].
The magnetic moment of ρ meson was calculated long time ago in [22], by considering the
low energy limit of the radiative amplitudes in conjunction with the amplitude calculated
by the hard–pion technique and found that

16π2α2g2ρ
m2

ρ

∫
dsσe+e−→n

< µρ < 2 .

The ρ meson magnetic moment was also calculated in lattice theory which predicted µρ =
2.25(34) [23]. As has already been noted, the magnetic moment of the ρ meson in the
framework of the traditional QCD sum rule in the presence of external field, is calculated
in [8] and it is obtained that µ = 1.5 ± 0.3. Our result is closer to the predictions of the
works [20] and [23].

Finally, we would like to discuss briefly the question how to measure the magnetic
moment of ρ meson in experiments. At present, even upper bound for the magnetic and
quadropole moments of ρ meson are absent. The very short lifetime does not allow the
use of vector–meson–electron scattering or spin procession technique [24] to measure the
above–mentioned quantities.

An alternative method for determination of the multipole moments of particles is based
on soft photon emission off the hadrons was proposed in [25], since the photon carries
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information on higher multipoles of the emitting particles. The main idea of this work
is that the amplitude for radiative process can be expressed as a power expansion in the
photon energy w as follows

M =
A

w
+Bw0 + Cw + · · ·

The electric charge contribute to the amplitude at order w−1 and the contribution coming
from magnetic moment is proportional to w0. Therefore, by measuring the cross section or
decay width of the radiative process and neglecting terms linear in w, one can determine
the magnetic moments of charged particles.

In [25] and [26], the possibility of measuring the magnetic moment of the charged ρ
meson in radiative production and decays of such mesons are mentioned and it is claimed
that, combined angular and energy distributions of radiated photons is an efficient tool in
measuring the magnetic moment of the charged ρ meson.
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Figure captions

Fig. (1) Diagrams describing perturbative contribution to the correlator in Eq. (1).

Fig. (2) Diagrams describing nonperturbative contribution to the correlator in Eq. (1).
Here, Fig. (2a) corresponds to the leading order contribution and Fig. (2b) corresponds to
the gluon correction to the correlator in Eq. (1). In these figures, the wavy line represents
gluon, and solid lines represent quark fields, respectively.

Fig. (3) The dependence of the magnetic moment of the ρ meson on the Borel parameter
M2, at three different values of the continuum threshold; s0 = 1.5 GeV 2, s0 = 1.8 GeV 2

and s0 = 2.0 GeV 2.
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