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Abstract Magnetic dipole moments of the negative par-
ity light and heavy tensor mesons are calculated within the
light cone QCD sum rules method. The results are compared
with the positive parity counterparts of the corresponding
tensor mesons. The results of the analysis show that the mag-
netic dipole moments of the negative parity light mesons are
smaller compared to those of the positive parity mesons. Con-
trary to the light meson case, magnetic dipole moments of
the negative parity heavy mesons are larger than the ones for
the positive parity mesons.

1 Introduction

The study of the spectroscopy of particles plays a critical
role in understanding the dynamics of quantum chromody-
namics (QCD), both at large and short distances. According
to the conventional quark model, the particles are charac-
terized by the J PC quantum numbers P = (−1)L+1 and
C = (−1)L+S , where L and S are the orbital angular momen-
tum and the total spin, respectively. The spectroscopy of the
particles with the quantum numbers J PC = 0±+, 1±−, 1++
are widely investigated elsewhere in the literature. The mass
and residues of light tensor mesons are studied firstly in [1]
in the framework of the QCD sum rules method. Later simi-
lar studies are extended for the strange tensor mesons in [2].
The masses and decay constants of the ground states of the
heavy χQ2 tensor mesons are investigated within the same
framework in [3]. The relevant quantities in understanding
the internal structure of the mesons and baryons are their
electromagnetic form factors and multipole moments, such
as the dipole moments. The dipole moments for the heavy

a e-mail: taliev@metu.edu.tr
b e-mail: tbarakat@KSU.EDU.SA
c e-mail: savci@metu.edu.tr

and light tensor mesons with the quantum number J P = 2+
are investigated in the framework of the light cone QCD sum
rules in [4] and [5], respectively. The negative parity ten-
sor mesons have received less attention. The first attempt has
recently been made to calculate the mass and decay constants
of the negative parity q̄q, q̄s, s̄s, q̄c, s̄c, q̄b, s̄b, and c̄b tensor
mesons within the QCD sum rules method in [6].

In the present work, we calculate the magnetic dipole
moments of these negative parity tensor mesons in the frame-
work of the light cone QCD sum rules method (for more about
the light cone QCD sum rules approach, see [7] and [8]).

The paper is organized as follows. Section 2 is devoted
to the derivation of the light cone QCD sum rules for the
magnetic dipole moment of the negative parity mesons q̄q,
q̄s, s̄s, q̄c, s̄c, q̄b and s̄b. In Sect. 3, numerical analysis of
the obtained sum rules for the dipole moments of the 2−−
tensor mesons is performed. This section also contains the
discussions and a brief summary of the present study.

2 Theoretical framework

In this section we derive the light-cone sum rules for the mag-
netic dipole moments of the negative parity tensor mesons.
For this goal, we consider the 3-point correlation function,

�μνραβ(p, q) = −
∫

d4x
∫

d4yei(px+qy)

〈
0

∣∣∣T
{
jμν(x) j

el
ρ (y) j̄αβ(0)

}∣∣∣ 0
〉
, (1)

where jμν is the interpolating current for the tensor meson
with J PC = 2−−,

jμν = i

2

[
q̄1(x)γμγ5

↔
Dν q2(x) + q̄2(x)γνγ5

↔
Dμ q1(x)

]
.

(2)
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The electromagnetic current j elρ in Eq. (1) is defined as,

j elρ = eq1 q̄1γρq1 + eq2 q̄2γρq2,

where eqi is the electric charge of the corresponding quark.
The momenta p and q are carried by the currents jμν and
j elρ , respectively.

The covariant derivative
↔
D is defined as

↔
Dμ (x) = 1

2

[ →
Dμ (x)− ←

Dμ (x)
]
, (3)

where

→
Dμ (x) = →

∂ μ (x) − i
g

2
λa Aa

μ(x),

←
Dμ (x) = ←

∂ μ (x) + i
g

2
λa Aa

μ(x).

Here Aa
μ(x) is the gluon field, satisfying the Fock–Schwinger

gauge condition xμAa
μ(x) = 0, which we have used in the

present work, and λa are the Gell-Mann matrices.
The correlation function can be rewritten in terms of the

external background electromagnetic field. For this goal, it is
necessary to introduce plane wave background electromag-
netic field,

Fμν = i(qμεν − qνεμ)eiqx ,

where εμ and qμ are the polarization and four-momentum
vectors of this field, respectively. The radiated photon can be
absorbed into the background field. This allows us to rewrite
the correlation function as,

ερ �μνραβ = i
∫

d4xeipx
〈
0

∣∣∣T
{
jμν(x) j̄αβ(0)

∣∣∣ 0
〉
F

, (4)

where the subindex F means that the vacuum expectation
value is calculated in the background electromagnetic field.

Note that the correlation function given in Eq. (1) can be
obtained from Eq. (4) by expanding it in powers of Fμν and
taking only the terms linear in Fμν (more technical details
about the external background field method can be found in
[9,10]). The main advantage of using the background field
method is that it separates the hard and soft contributions in a
gauge invariant way. Hence, the main object of our discussion
is the correlation function given in Eq. (4). Here a cautionary
note is in order. Since the current Jμν contains derivatives, we
first replace J̄αβ(0) in Eq. (4) with J̄αβ(y), and after carrying
out the derivative with respect to y we set the variable y to
zero.

To obtain the sum rules for the magnetic dipole moment
the tensor mesons, one should insert the spin-2 mesons into
the correlation function. Separating the contribution of the
ground state tensor mesons we obtain,

ερ�μνραβ = i

〈
0

∣∣ jμν

∣∣ T (p, ε)
〉

p2 − m2
T

〈T (p, ε) | T (p

+ q, ε)〉F
〈
T (p + q, ε)

∣∣ j̄αβ

∣∣ 0
〉

(p + q)2 − m2
T

+ · · · , (5)

where dots mean contributions of the higher states of spin-2
mesons. The matrix element

〈
0

∣∣ jμν

∣∣ T (p, ε)
〉

is defined as,
〈
0

∣∣ jμν

∣∣ T (p, ε)
〉 = gTm

3
T εμν, (6)

where gT is the decay constant, and εμν is the polarization
matrix of the tensor meson.

In the presence of the background electromagnetic field,
the transition matrix element 〈T (pε)|T (p + q, ε)〉F is
parametrized as follows:

〈T (p, ε)|T (p + q, ε)〉F = ε∗
α′β ′(p)

{
2(εp)

[
gα′ρgβ ′σ F1(q

2)

− gβ ′σ q
α′
qρ

2m2
T

F3(q
2) + qα′

qρ

2m2
T

qβ ′
qσ

2m2
T

F5(q
2)

]

+ (εσqβ ′ − εβ ′
qσ )

[
gα′ρF2(q

2) − qα′
qρ

2m2
T

F4(q
2)

]}

ερσ (p + q), (7)

where Fi (q2) are the form factors.
In the analysis of the experimental data, it is more con-

venient to use the form factors of a definite multipole in a
given reference frame. Relations between these two sets of
form factors for the arbitrary integer, and half-integer spin
are derived in [11], and the relations for the real photon case
are:

F1(0) = GE0(0),

F2(0) = GM1(0),

F3(0) = −2GE0(0) + GE2(0) + GM1(0),

F4(0) = −GM1(0) + GM3(0),

F5(0) = GE0(0) − [GE2(0) + GM1(0)]
+GE4(0) + GM3(0), (8)

where GE�
(0) and GM�

(0) are the electric and magnetic mul-
tipoles. Substituting these form factors in Eq. (7) we get,

〈
T (p, ε)

∣∣T (p + q, ε′)
〉
F = ε∗

α′β ′(p)

{
2(εp)

[
gα′ρgβ ′σGE0

− qα′
qρ

2m2
T

gβ ′σ (−2GE0 + GE2 + GM1)

+ qα′
qρ

2m2
T

qβ ′
qσ

2m2
T

(GE0 − GE2 − GM1 + GE4 + GM3)

]

+ (εσqβ ′ − εβ ′
qσ )

[
gα′ρGM1 − qα′

qρ

2m2
T

(−GM1

+GM3)

]}
ερσ (p + q). (9)
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In order to obtain the correlation function from the phys-
ical side, we substitute Eqs. (6) and (9) into Eq. (5), and
perform summation over the spins of the tensor particles by
using,

εμν(p)ε
∗
αβ(p) = 1

2
PμαPνβ + 1

2
PμβPνα − 1

3
PμνPαβ,

(10)

where

Pμν = −gμν + pμ pν

m2
T

,

we obtain,

�μνραβ(p, q) ερ = m6
T g

2
T

(p2 − m2
T )[(p + q)2 − m2

T ]
×

{1

2
Pμα′(p)Pνβ ′(p) + 1

2
Pμβ ′(p)Pνα′(p)

− 1

3
Pμν(p)Pα′β ′(p)

}
×

{
2(εp)

[
gα′ρgβ ′σGE0(0)

− gβ ′σ q
α′
qρ

2m2
T

(
− 2GE0(0) + GE2(0)

+GM1(0)
)

+ qα′
qρ

2m2
T

qβ ′
qσ

2m2
T

(
GE0(0)

−[GE2(0) + GM2(0)] + GE4(0) + GM3(0)
)]

+
(
εσqβ ′ − εβ ′

qσ
)[

gα′ρGM1(0)

− qα′
qρ

2m2
T

(
− GM1(0) + GM2(0)

)]}

×
{1

2
Pρα(p + q)Pσβ(p + q)

+1

2
Pρβ(p + q)Pασ (p + q) − 1

3
Pρσ (p)Pαβ(p + q)

}
.

(11)

One can easily see that the expression of the correlation func-
tion contains many independent structures and any one of
these structures can be used in the analysis of the multipole
moments of the tensor mesons. In this work, we restrict our-
selves to calculate the magnetic dipole form factor only and
for this aim, we choose the structure,
[
(εβqν − ενqβ)gμα + (εβqμ − εμqβ)gνα

]
,

whose coefficient is,

� = m6
T g

2
T

(p2 − m2
T )[(p + q)2 − m2

T ]{
1

4
GM1 + other structures

}
+ · · · . (12)

The choice of this structure is dictated by the fact that it
contains contributions coming solely from spin-2 states, and
does not include any contribution from the contact terms (see
[12]).

Before calculating the operator product expansion (OPE)
from the QCD side few words about the QCD factorization
of the correlation function are in order. It should be noted
here that at the operator level, formulation of the QCD fac-
torization for the hadronic form factors is discussed in [13].
We are planning to discuss the factorization procedure of the
correlator function (4) at tree and O(αs) level elsewhere in
future.

Using OPE, we calculate the correlation from the QCD
side in deep Euclidean region where p2 → −∞ and (p +
q)2 → −∞. After contracting all quark fields we obtain,

�μνραβ(p, q) ερ = −i

16

∫
eip·xd4x

〈
0

∣∣∣
{
Sq1(y

− x)γμγ5

[ →
∂ ν (x)

→
∂ β (y)− →

∂ ν (x)
←
∂ β (y)

− ←
∂ ν (x)

→
∂ β (y)+ ←

∂ ν (x)
←
∂ β (y)

]
Sq2(x

−y)γαγ5

}∣∣∣ 0
〉
F

+ {β ↔ α} + {ν ↔ μ}
+ {β ↔ α, ν ↔ μ}. (13)

As has been noted, we set y = 0 after performing the deriva-
tives with respect to y. It follows from Eq. (13) that in the
calculation of the correlation function the quark propagators
are needed. The expression of the light quark propagator is
given as,

Sq(x − y) = S f ree(x − y) − 〈q̄q〉
12

[
1 − i

mq

4
( 
 x− 
 y)

]

− (x − y)2

192
m2

0〈q̄q〉
[

1 − i
mq

6
( 
 x− 
 y)

]

− igs

∫ 1

0
du

{ 
 x− 
 y
16π2(x − y)2 Gμν(u(x − y))σμν

− u(xμ − yμ)Gμν(u(x − y))γ ν

× i

4π2(x − y)2 − i
mq

32π2 Gμν(u(x − y))σμν

[
ln

(
− (x − y)2�2

u
+ 2γE

) ]}
, (14)

where

S f ree
q (x − y) = i( 
 x− 
 y)

2π2(x − y)4 − mq

4π2(x − y)2 ,

is the free quark propagator. In the expression of light quark
propagator given above, � is some cut off parameter sepa-
rating low momentum nonperturbative regime from the high
momentum perturbative region, whose value should be of the
order of a few 100 MeV. For definiteness, in the present work
we choose � = 0.5 GeV (see for example [14]). It should be

123
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remembered that the light cone expansion of the light quark
propagator is obtained in [15], which gets contributions from
nonlocal three q̄Gq, and four-particle q̄qq̄q, q̄G2q opera-
tors, where Gμν is the gluon strength tensor. Expansion in
conformal spin proves that the contributions coming from
four-particle operators are small and can be neglected [16].

The expression of the complete heavy quark propagator
in the coordinate space is given as,

SQ(x − y) = S f ree
Q − gs

16π2

∫ 1

0
duGμν(u(x − y))

×
(
i
[
σμν( 
 x− 
 y) + ( 
 x− 
 y)σμν

]

×K1(mQ

√−(x − y)2)√−(x − y)2
+ 2σμνK0(mQ

√
−(x − y)2)

)}

+ · · · , (15)

respectively, where Ki (mQ
√−x2) are the modified Bessel

functions. The free part of the heavy quark propagator has
the following form:

S f ree
Q (x − y) = m2

Q

4π2

{
K1(mQ

√−(x − y)2)√−(x − y)2

+ i
( 
 x− 
 y)

−(x − y)2 K2(mQ

√
−(x − y)2)

}
.

The correlation function given in Eq. (13) gets contribu-
tions from following parts: (a) Perturbative contribution, (b)
“Mixed contribution”, (c) Long distance contribution. The
perturbative contribution is obtained by replacing one of the
quark propagators by,

S(x − y) =
∫

d4z S f ree(x − z) 
A(z)S f ree(z − y), (16)

and the other propagator is replaced by the free quark prop-
agator . The “mixed contribution” is calculated by replacing
one of the quark propagators by (16) and the other quark prop-
agator is taken as the full propagator given in Eqs. (14) or
(15). The long distance contribution is obtained from Eq. (13)
by replacing the light quark propagator that emits a photon
(if we have two light quark propagators, only one of them
should be replaced) by

Sabμν(x − y) → −1

4
q̄a(x)�ρq

b(y)
(
�ρ

)
μν

, (17)

where �ρ =
{

1, γ5, γμ, iγ5γμ, σμν/
√

2
}

. Moreover, matrix

elements of the nonlocal operators, such as q̄(x)�q(y),
q̄(x)Fμν�q(y), and q̄(x)Gμν�q(y) appear between vac-
uum and photon states, when a photon interacts with the
light quark fields at large distance. Parametrization of these
matrix elements in terms of the photon distribution ampli-
tudes (DAs) is given in [10],

〈γ (q)|q̄(x)σμνq(0)|0〉 = −ieq〈q̄q〉(εμqν − ενqμ)∫ 1

0
dueiūqx

(
χϕγ (u) + x2

16
A(u)

)

− i

2(qx)
eq〈q̄q〉

[
xν

(
εμ − qμ

εx

qx

)
− xμ (εν

−qν

εx

qx

)] ∫ 1

0
dueiūqxhγ (u)

〈γ (q)|q̄(x)γμq(0)|0〉 = eq f3γ

(
εμ − qμ

εx

qx

)

∫ 1

0
dueiūqxψv(u)

〈γ (q)|q̄(x)γμγ5q(0)|0〉 = −1

4
eq f3γ εμναβενqαxβ

∫ 1

0
dueiūqxψa(u)

〈γ (q)|q̄(x)gsGμν(vx)q(0)|0〉
= −ieq〈q̄q〉 (

εμqν − ενqμ

) ∫
Dαi e

i(αq̄+vαg)qxS(αi )

〈γ (q)|q̄(x)gsG̃μν iγ5(vx)q(0)|0〉
= −ieq〈q̄q〉 (

εμqν − ενqμ

) ∫
Dαi e

i(αq̄+vαg)qx S̃(αi )

〈γ (q)|q̄(x)gsG̃μν(vx)γαγ5q(0)|0〉
= eq f3γ qα(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qxA(αi )

〈γ (q)|q̄(x)gsGμν(vx)iγαq(0)|0〉
= eq f3γ qα(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qxV(αi )

〈γ (q)|q̄(x)σαβgsGμν(vx)q(0)|0〉 = eq〈q̄q〉{[(
εμ − qμ

εx

qx

) (
gαν − 1

qx
(qαxν + qνxα)

)
qβ

−
(

εμ − qμ

εx

qx

) (
gβν − 1

qx
(qβxν + qνxβ)

)
qα

−
(

εν − qν

εx

qx

) (
gαμ − 1

qx
(qαxμ + qμxα)

)
qβ

+
(

εν − qν

εx

q.x

) (
gβμ − 1

qx
(qβxμ + qμxβ)

)
qα

]
∫

Dαi e
i(αq̄+vαg)qxT1(αi )

+
[(

εα − qα

εx

qx

)(
gμβ − 1

qx
(qμxβ + qβxμ)

)
qν

−
(

εα − qα

εx

qx

)(
gνβ − 1

qx
(qνxβ + qβxν)

)
qμ

−
(

εβ − qβ

εx

qx

)(
gμα − 1

qx
(qμxα + qαxμ)

)
qν

+
(

εβ − qβ

εx

qx

) (
gνα − 1

qx
(qνxα + qαxν)

)
qμ

]
∫

Dαi e
i(αq̄+vαg)qxT2(αi )

123
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+ 1

qx
(qμxν − qνxμ)(εαqβ − εβqα)

∫
Dαi e

i(αq̄+vαg)qxT3(αi )

+ 1

qx
(qαxβ − qβxα)(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qxT4(αi )

}

〈γ (q)|q̄(x)eq Fμν(vx)q(0)|0〉 = −ieq〈q̄q〉 (
εμqν − ενqμ

)
∫

Dαi e
i(αq̄+vαg)qxSγ (αi )

〈γ (q)|q̄(x)σαβFμν(vx)q(0)|0〉 = eq〈q̄q〉 1

qx
(qαxβ

− qβxα)
(
εμqν − ενqμ

)

×
∫

Dαi e
i(αq̄+vαg)qxT γ

4 (αi ),

where ϕγ (u) is the leading twist–2, ψv(u), ψa(u), A and V
are the twist–3, and hγ (u), A, S, S̃ , Sγ , Ti (i = 1, 2, 3, 4),
T γ

4 are the twist–4 photon DAs, χ is the magnetic suscepti-
bility, and the measure Dαi is defined as

∫
Dαi =

∫ 1

0
dαq̄

∫ 1

0
dαq

∫ 1

0
dαgδ(1 − αq̄ − αq − αg).

Equating the coefficients of the Lorentz structure
[
(εβqν

−ενqβ)gμα + (εβqμ − εμqβ)gνα

]
from both representa-

tions of the correlation function, the sum rules for the mag-
netic moments of the negative parity tensor mesons are
obtained. To suppress the contributions of the higher states
and continuum, double Borel transformation with respect
to the variables −p2 and −(p + q)2 is performed. After
this transformation, finally, for the magnetic moments of
the negative parity tensor mesons we get the following sum
rules:

• Light tensor mesons

m6
T g

2
T

4
e−m2

T /M2
GM1(q

2 = 0) = 1

24
M2E0(x)[

eq1mq2〈q̄1q1〉
(
A(u0) + 4u0 j1(hγ ) − 2 j̃1(hγ )

)

− eq2mq1〈q̄2q2〉
(
A(ū0) + 2 j2(hγ ) + j̃2(hγ )

)]

− 1

48π2 M
4E1(x)(3 − 4u0)(eq1 − eq2)mq1mq2

− 1

48
f3γ M

4E1(x)
[
eq2

(
8 j2(ψv) − ψa(ū0)

+ 4ψv(ū0) + ψ ′
a(ū0)

)

− eq1

(
8 j1(ψv) − ψa(u0) + 2u0(4ψv(u0) − ψ ′

a(u0))
)]

− 1

240π2 M
6E2(x)(5 − 18u0)(eq1 − eq2)

− 1

72
m2

0[eq2〈q̄1q1〉(mq1 − 3mq2)

+ eq1〈q̄2q2〉(3mq1 − mq2)]. (18)

• Heavy tensor mesons

m6
T g

2
T

4
e−m2

T /M2
GM1(q

2 = 0)

= 1

1152π2

[
eq〈g2

s G
2〉M2 (

2m2
QI2 − m4

QI3
) ]

− e−m2
Q/M2

3456mQπ2 M
2
{

9mQ
(
eq〈g2

s G
2〉−96eQmQπ2〈q̄q〉)

− 4eqπ
2
[
18m2

Q〈q̄q〉 (
A(u0) + 2 j̃1(hγ ) + 4 j̃2(hγ )

)

+ 〈g2
s G

2〉〈q̄q〉χϕγ (u0) − 36 f3γm
3
Qψa(u0)

]}

+ 1

32π2 eQm
4
QM

4 (
I2 − m2

QI3
)

+ e−m2
Q/M2

96
eqM

4
{

8 f3γ j̃1(ψ
v) − 8mQ〈q̄q〉χϕγ (u0)

− f3γ

[
6ψa(u0) − 4ψv(u0) + ψa′(u0)

]}

+e−m2
Q/M2

16π2 eqM
6

+ 1

32π2 m
2
QM

6
[
2eQI2 − 3eQm

2
QI3 − 4eQm

4
QI4

− 2eqm
4
QI4 − 2(eQ − eq)m

6
QI5

]

− e−m2
Q/M2

6912M2 mQ

{
432eQm

2
0m

2
Q〈q̄q〉

− eq〈g2
s G

2〉
[
4〈q̄q〉A(u0) − 4(5 − 4u0)〈q̄q〉 j̃1(hγ )

− 40〈q̄q〉 j̃2(hγ ) + mQ

(
8mQ〈q̄q〉χϕγ (u0)

− f3γ (8 j̃1(ψ
v) − 6ψa(u0) − 4ψv(u0) − ψa′(u0))

)]}

− e−m2
Q/M2

3456M4 eq〈g2
s G

2〉m3
Q

[
〈q̄q〉

(
A(u0) + 2 j̃1(hγ )

+ 4 j̃2(hγ )
)

− 2 f3γmQψa(u0)
]

− e−m2
Q/M2

3456M6 eq〈g2
s G

2〉m5
Q〈q̄q〉A(u0) − e−m2

Q/M2

3456mQπ2 eq

×
{

4(〈g2
s G

2〉 − 18m4
Q)π2〈q̄q〉A(u0)

+ 〈g2
s G

2〉
[
3m3

Q + π2
(

4(2 + u0)〈q̄q〉 j̃1(hγ )

+ 16〈q̄q〉 j̃2(hγ ) − mQ{12mQ〈q̄q〉χϕγ (u0)

− f3γ [12 j̃1(ψ
v) + 2ψa(u0)

+ (2 − u0)(4ψv(u0) − ψa′(u0))]}
)]}

, (19)
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where

u0 = M2
1

M2
1 + M2

2

, M2 = M2
1 M

2
2

M2
1 + M2

2

.

The functions jn( f (u)), and j̃1( f (u)) (n = 1, 2) are
defined as:

j1( f (u
′)) =

∫ 1

u0

du′ f (u′),

j̃1( f (u
′)) =

∫ 1

u0

du′(u′ − u0) f (u
′),

j2( f (u
′)) =

∫ ū0

0
du′ f (u′),

j̃2( f (u
′)) =

∫ ū0

0
du′(u′ − ū0) f (u

′),

En(x) = 1 − e−x
n∑

k=0

xk

k! = 1

n!
∫ x

0
dx ′x ′ne−x ′

,

In =
∫ s0

m2
Q

ds
e−s/M2

sn
,

with x = s0/M2, s0 being the continuum threshold, and the
Borel parameter M2 is defined as,

M2 = M2
1 M

2
2

M2
1 + M2

2

and, u0 = M2
1

M2
1 + M2

2

.

Since we have the same heavy tensor mesons in the initial
and final states, we can set M2

1 = M2
2 = 2M2, as the result

of which we have,

u0 = M2
1

(M2
1 + M2

2 )
= 1

2
.

3 Numerical analysis

In this section, we perform the numerical analysis of the
sum rules for the magnetic dipole moments of the nega-
tive parity tensor mesons derived in the previous section.
The input parameters used in the numerical analysis are,
〈ūu〉(μ = 1 GeV) = 〈d̄d〉(μ = 1 GeV) = −(1.65 ±
0.15) × 10−2 GeV3, 〈s̄s〉|μ=1 GeV = (0.8 ± 0.2)〈ūu〉(μ =
1 GeV),m2

0 = (0.8±0.2) GeV2 [17] which are obtained from
the mass sum rule analysis for the light baryons [18,19] and B
meson [20]. Furthermore, we have used the MS values of the
heavy quarks masses whose values are m̄b(m̄b) = (4.16 ±
0.03) GeV and m̄c(m̄c) = (1.28 ± 0.03) GeV [21,22]. The
magnetic susceptibilityχ of quarks is calculated in the frame-
work of the QCD sum rules in [23–25]. In further numerical
analysis we have used χ(1 GeV) = −(2.85 ± 0.5) GeV−2

[23]. As we have already noted, the masses of the negative
parity tensor mesons are calculated in [6], which we have
used in the present work. By using the results of [6] for the

mass sum rules, we further have calculated the decay con-
stants of J = 2− mesons which are needed in the numerical
analysis.

The key input parameters in the present numerical anal-
ysis are the DAs. Below we display only the expressions of
the DAs that enter to the sum rules for the magnetic dipole
moments.

ϕγ (u) = 6uū
[
1 + ϕ2(μ)C

3
2
2 (u − ū)

]
,

ψv(u) = 3[3(2u − 1)2 − 1] + 3

64
(15wV

γ − 5wA
γ )

[3 − 30(2u − 1)2 + 35(2u − 1)4],
ψa(u) = [1 − (2u − 1)2][5(2u − 1)2 − 1]

5

2

(
1 + 9

16
wV

γ − 3

16
wA

γ

)
,

A(αi ) = 360αqαq̄α
2
g

[
1 + wA

γ

1

2
(7αg − 3)

]
,

V(αi ) = 540wV
γ (αq − αq̄)αqαq̄α

2
g,

hγ (u) = −10(1 + 2κ+)C
1
2
2 (u − ū),

A(u) = 40u2ū2(3κ − κ+ + 1) + 8(ζ+
2 − 3ζ2)

[uū(2 + 13uū) + 2u3(10 − 15u + 6u2) ln(u)

+ 2ū3(10 − 15ū + 6ū2) ln(ū)]. (20)

The values of the constant parameters in the DAs are given
as: ϕ2(1 GeV) = 0, wV

γ = 3.8 ± 1.8, wA
γ = −2.1 ± 1.0,

κ = 0.2, κ+ = 0, ζ1 = 0.4, ζ2 = 0.3, ζ+
1 = 0 and ζ+

2 = 0
[10].

The sum rules for the magnetic dipole moments of the neg-
ative parity J PC = 2−− tensor mesons which are obtained
in the previous section contain two more arbitrary parame-
ters, in addition to the input parameters summarized above:
Borel mass parameter M2 and the continuum threshold s0.
In the analysis of the sum rules, the working regions of these
two parameters should be determined, such that the magnetic
dipole moments exhibit weak dependence on these parame-
ters. The working region of M2 should satisfy the following
requirements: The upper limit of M2 is determined from the
condition that the higher states contributions constitute max-
imum 40% of the perturbative ones. The lower bound of M2

is obtained by requiring that the OPE should be convergent,
i.e., the higher twist contributions should be less than the
leading twist contributions. From these conditions, we have
obtained the working domains of M2 of the J PC = 2−−
tensor mesons, which are listed in Table 1.

The working regions of the continuum threshold s0 for
the J PC = 2−− tensor mesons are determined from the
analysis of the two–point correlation function in [6], which
we have used in our numerical calculations. The values of the
continuum threshold s0 of the corresponding tensor mesons
are also listed in Table 1.
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Table 1 The working regions of
the Borel parameter M2, and the
corresponding values of the
continuum threshold s0 for the
J PC = 2−− tensor mesons
(these values are taken from [6])

M2 (GeV2) s0 (GeV2)

q̄q 1.3 ÷ 1.8 2.12

q̄s 1.4 ÷ 2.0 2.22

s̄s 1.5 ÷ 2.2 2.42

q̄c 2.0 ÷ 4.0 3.32

s̄c 2.2 ÷ 4.2 3.62

q̄b 4.5 ÷ 7.0 6.22

s̄b 4.7 ÷ 8.0 7.02

Fig. 1 Dependence of the magnetic dipole moment of the negative
parity K+

2 tensor meson, on Borel mass square M2, at several fixed
values of the continuum threshold, in units of Nuclear Magneton μN

Fig. 2 The same as Fig. 1, but for the negative parity D0
2 tensor meson

Using the values of the input parameters and the work-
ing regions of M2 and s0, the values of the magnetic dipole
moments can be determined. As n example, in Figs. 1 and 2
we present the dependence of the magnetic dipole moments
of K+

2 and D0
2 mesons on M2 at several fixed values of s0,

respectively. It follows from these figures that the magnetic
dipole moments show a weak dependence on M2 in its work-
ing region. Similar analysis for the other J PC = 2−− tensor
mesons are carried out whose results are presented in Table 2.

Table 2 The values of the magnetic dipole moments of the negative
and positive parity tensor mesons in units of the nuclear magneton μN

Tensor mesons GM1 (μN ) GM (μN )
Negative parity Positive parity

f 0
2 0 0

a+
2 0.26 ± 0.04 1.28 ± 0.30

a0
2 0 0

K+
2 0.27 ± 0.04 0.5 ± 0.15

K 0
2 −0.014 ± 0.003 0.05 ± 0.01

D0
2 1.9 ± 0.3 0.3 ± 0.1

D+
2 2.0 ± 0.3 −0.80 ± 0.20

D+
2s

2.2 ± 0.5 −0.80 ± 0.30

B+
2 0.8 ± 0.3 0.62 ± 0.20

B0
2 −0.9 ± 0.4 −0.20 ± 0.05

B0
2s

−0.8 ± 0.3 −0.23 ± 0.05

For completeness, we also give the values of the magnetic
dipole moments for the positive parity tensor mesons in the
same table. From the comparison of the results we deduce
that:

• In the case of light tensor mesons, the magnetic dipole
moments of the negative parity mesons are 2–5 times
smaller compared to that for the positive parity mesons.

• For the heavy tensor mesons, however, the situation is to
the contrary namely, the magnetic moments of the nega-
tive parity tensor mesons are larger compared to the ones
for the positive parity mesons.

These results can be explained by the fact that, the terms
proportional to the quark mass appearing in the expressions
of the sum rules for the magnetic moment of the popsitive and
negative parity mesons, have opposite sign. Therefore, the
contributions coming from the heavy quark mass terms are
constructive (destructive) for the negative (positive) parity
tensor mesons. Additionally, this difference can be attributed
to the differences in masses and residues of the tensor mesons
of both parities.

Finally, we shall briefly discuss how one can measure the
magnetic dipole moment in experiments. One of the methods
for determination of the multipole moments of particles is
based on the soft photon emission of the hadrons [26], since
the photon carries information about the higher multipole
moments of the emitted particle. The matrix element for the
radiative process can be written in terms of the photon energy
Eγ as follows:

M ∼ A

Eγ

+ B(Eγ )0 + CEγ + · · ·
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The contribution coming from the magnetic dipole moment
is described by the term (Eγ )0. Therefore, by measuring the
widths of the radiative decays, one can determine the mag-
netic dipole moment of the tensor mesons under considera-
tion.

In summary, the magnetic dipole moments of the light
and heavy J PC = 2−− tensor mesons are calculated in the
framework of the light cone QCD sum rules method. Com-
parison of the predictions for the magnetic dipole moments
of the negative and positive parity mesons is also presented. It
is observed that the results for the magnetic dipole moments
of the negative parity light mesons are smaller compared to
the ones for the corresponding positive parity tensor mesons,
while the situation is to the contrary for the heavy tensor
mesons.
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