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In recent years, using cell phone log data to model human mobility patterns

became an active research area. This problem is a challenging data mining problem

due to huge size and the non-uniformity of the log data, which introduces several

granularity levels for the specification of temporal and spatial dimensions. This

paper focuses on the prediction of the location of the next activity of the mobile

phone users. There are several versions of this problem. In this work, we have

concentrated on the following three problems: Predicting the location and the

time of the next user activity, predicting the location of the next activity of the

user when the location of the user changes, and predicting both the location and

the time of the activity of the user when the user’s location changes. We have

developed sequential pattern mining based techniques for these three problems

and validated the success of these methods with real data obtained from one of

the largest mobile phone operators in Turkey. Our results are very encouraging,

since we were able to obtain quite high accuracy results under a small prediction

sets.

Keywords: Human Mobility Patterns; Mobile Phone User; Sequence Mining; Location and

Time Prediction
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1. INTRODUCTION

Since the introduction of the first mobile phones,
especially after 1990s, mobile phones quickly became
indispensable devices for ordinary people. Nowadays
almost 95% of the people in the world use mobile
phones. Mobile phone usages of people generate huge
amount of data for mobile phone operators. This data
is mainly used for generating customer invoice.

However, in addition to the information used for
generating invoice such as caller and callee information,
the time and the duration of the call, this data also
contains location information of both the caller and
the callee. This location information is not precise
since the mobile phone operators only keep/know the
base station id of both users, not exact locations.
Although exact locations of mobile phone users can be
determined, it is typically not obtained by mobile phone
operators, since it is not feasible. Some operators use
coarse location data to improve their service quality,

and some of them exploit this data to create new
forms of businesses such as generating appropriate
advertisement messages to users selected according to
their predicted movements [1, 2, 3, 4].

One of the most well-known problems related to the
user location information is the prediction of the next
location of the mobile phone user. Users’ navigation
behavior patterns are important knowledge for mobile
phone operators, so that they can calculate potential
next location of individual users in order to be able
to optimize their advertisement strategies. There are
also other potential usages of user behavior patterns in
terms of mass people movement modeling, such as city
planning and traffic optimization.

In this paper, we focus on predicting individual
mobile phone user’s next location using her previous
log data. User log data, also named as Call Detail
Record (CDR), contains the base station identifiers
(and their locations) for the caller and callee and the
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time of the activity (such as voice call, sending SMS or
use of internet). This historical data can be processed
using sequential pattern mining and time series analysis
techniques in order to predict the time and the location
of the next event for users. The main challenges of this
problem are due to the huge size and the non-uniformity
of the data. User events do not come with uniform
distribution in time or spatial dimensions. Sometimes
events are very rare and sometimes are very often.
Similar non-uniform pattern can also be observed in
terms of location distribution of the data. However,
a simple analysis also shows that 80% of the users’
location of next activity is the same as their current
location (in terms of the base station identifiers their
mobile phones are connected to). Only 20% of the two
consecutive events are at different locations.

Although the prediction of the next location of the
mobile phone users seems like a well-defined problem,
since it contains different parameters, several different
variations of it can be defined. In this paper, we
have investigated three versions of the next location
prediction problem, which are listed below:

• Determining the location and the time of the next
user activity, regardless of whether the location of
the user changes or not,

• Predicting the location of the next activity of the
user when the location of the user changes,

• Predicting both the location and the time of
the activity of the user when the user’s location
changes.

In this study, we have utilized CDR data obtained
from one of the largest mobile phone operators in
Turkey. Typically each mobile phone activity is
associated with the closest base station. Therefore, each
base station can be assumed to be defining a region
covering the activities in that region. In CDR data the
exact time of each activity is recorded. However, in the
time prediction of user activity, exact time is not very
informative. Therefore, we have divided a day into time
intervals in our process.

Also, we have clustered base stations according to
their locations into regions and aimed to predict the
region of the next activity of the user in terms of
these regions. In the first problem, we have tried to
predict both the region and the time interval of the
next activity.

For the second problem, we have focused on only
predicting the location of the next activity of the user
in case the user’s location changes. Since for 80% of
the activities the location of the the activity is same as
the location of the previous activity, the location change
problem is important.

Finally, in the last problem we have tried to predict
both the time and the location of the user’s next activity
when the location of the user changes. This is a kind of
the extended version of the second problem. Basically,
we aimed to show that using time information, in terms

of time intervals, in addition to the location change
information, increases the accuracy of the predicting
the changed location and the time of the change.

We have made an extensive set of experiments to
measure the applicability and the accuracies of these
approaches using real data of more than 1 million
mobile phone users for a period of 1 month for a
region of roughly 25000 km2. Usually there is a typical
tradeoff in this kind of prediction problems such that in
order to increase the accuracy of a prediction it might
be necessary to make a large number of alternative
suggestions. When the suggestion or prediction set gets
smaller, usually the accuracy of the prediction quickly
drops. Our results are very encouraging, since for each
problem, high accuracy values are obtained by making
only a very small number of alternative suggestions.
Our solutions for the first and second problem with
limited experimental analysis were also included in our
previous works [11] and [5]. A shorter version of our
solution for the third problem was also studied in [6].

The rest of the paper is organized as follows. Section
2 introduces previous work on location prediction.
Section 3 presents the details of the data and the
problem definition. Section 4 introduces the proposed
solutions for the problem defined. Section 5 contains the
experimental results of our proposed methods. Section
6 concludes our work and points out possible further
studies.

2. RELATED WORK

In recent years, variety of location prediction schemes
on human mobility have been studied in various
dimensions [7], [8], [9], [10],[11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [2], [21], [22].

Interesting findings about the human mobility habits
and its predictability are reported in [14] and [15].
In [14], Montjoye et al. propose a method using
both Voronoi diagrams involving base stations and
spatial and temporal properties of users’ movement
data to find the minimum number of points enough
to uniquely identify individuals. They show that,
almost for all users, distinct sequences with four spatio-
temporal points exist in CDR data. Therefore, such
short sequences are sufficient to uniquely identify 95%
of the users, while sequences of length two characterize
more than 50%.

In [15], Song et al. analyze the limits of predictability
in human mobility. They used the data collected
from 50,000 mobile phone users for 3 months. They
propose three entropy measures which are believed to be
the most fundamental quantities to analyze the limits
of predictability, the random entropy, the temporal-
uncorrelated entropy and the actual entropy. They
also use a probability measure for correctly predicting
user’s future movements. They find that there is a 93%
potential predictability in user mobility at best and 80%
at worst for any user [15].
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In [23], Zheng et al. investigate human mobility
from mobile data both in individual and group behavior
aspects. They use probabilistic, unsupervised approach
for uncovering the behavior similarity among users and
for clustering individual behaviors.

There are other methods to use for location prediction
problem rather than sequential pattern mining such
as Markov models and expectation maximization
algorithms. In [10], Thanh et al. make use of
Gaussian distribution and expectation maximization
algorithm to learn the model parameters. Then,
mobility patterns, where each is characterized by a
combination of common trajectory and a cell residence
time model, are used for making predictions. They
use Gaussian mixture models to find similarities in cell-
residence times of mobile users. They outperform the
methods that ignore temporal characteristics of user
movements. However, they are in need of studying their
method in real data.

In [12], Gao et al. use both spatial and temporal data
to predict users’ location. They propose ten different
models which can be categorized as spatial-based,
temporal-based and spatio-temporal-based. They make
use of Bayes’ rules for their prediction models which
use historical data while predicting the next location.
They also make use of Markov models to build two
of their models. For the best model named as HPY
Prior Hour-Day Model, they managed to predict user
locations with an accuracy rate of 50%. They do not
use any social network information together with spatio-
temporal patterns.

In [13], Gidofalvi et al., propose a method which
use both spatial and temporal GPS data for building
Markov model which is used for next location and time
prediction of user. In other words, they both predict the
change of location and the time of this change. They use
an Inhomogeneous Continuous-Time Markov (ICTM)
model since the prediction depends on the previous
locations and time. They use both spatial and temporal
information for building the model. Their ICTM model
predicts the departure time correctly with the 45 minute
error and the next region correctly 67% of the cases.

Similar to our work, in [18], [19], [11] and [20], the
authors propose sequential pattern mining techniques
for the location prediction problem. In [18], Yavas et al.
propose an AprioriAll-based algorithm which is similar
to our three methods. They extract frequent user
trajectories which they name user mobility patterns
(UMP) from a user move database and predict the
user’s next movement accordingly. However they do
not use any spatial or temporal information while
extracting UMPs or generating predictions. The rules
consist of only cell ids rather than any spatial attribute.
They introduce alignment parameters on the length of
the sequences and maximum number of predictions as
ours. They show that they get higher accuracies for
mobility prediction than previously proposed methods
using transition matrices.

In [19], Giannotti et al. propose methods to solve
different trajectory pattern mining problems. They
define spatio-temporal sequences as the pairs of spatial
attribute and the time that user has spent in there.
They also try to detect the popular regions. The
difference of this technique from the conventional
sequence pattern mining technique is the use of
trajectories (T-patterns) rather than itemsets.

In [20], Cao et al. introduces a method for discovery
of periodic patterns in spatio-temporal sequences. They
also make use of an AprioriAll-based algorithm for
extraction of periodic patterns. The distinctive feature
of these periodic patterns is that they are not frequent
in the whole time span but in some time interval, so
they change their support definition accordingly.

There are various works that aim to further increase
the prediction accuracies by the help of social networks.
In [7], Cho et al. propose that general human
mobility does not have a high degree of freedom and
variation as it is believed. They work on three features
of human mobility; geographic movement, temporal
dynamics and the social network. Social network is
used since human mobility is partly driven by our social
relationships, e.g. we move to visit our friends. They
use three main data sources, where two of them are
popular online location based social networks, Gowalla
and Brightkite and the other is a trace of 2 million
mobile phone user’s phone activity in Europe. They
find that social relationships can explain about 10%
of human movement in cell phone data and 30% of
movement in location based social networks. However
periodic movement behaviour explains about 50% to
70% of it. They reach 40% accuracy while predicting
user’s location at any time.

In [8], Boldrini et al. propose a model that integrates
three main properties believed to be fundemental for
human mobility. First, user mobility largely depends
on their social relationships. Second, users are disposed
to spend their most of time in a few number of locations.
Third, users mostly move shorter distances rather than
the longer ones. The main novelty of their model
named Home-cell Community-based Mobility Model
(HCMM) is to integrate these three features. They
incrementally improved HCMM starting with a pure
social-based model and mathematically justifying the
need for extending the features. Finally, they claim
that HCMM is able to regenerate the main properties
of human movement patterns.

In [9], Zhang et al. further improve the user
mobility models of [8] and [7] by amplifying the effect
of social network information in location prediction.
They also claim that call patterns are strongly related
with co-locate patterns and mainly affect user’s short-
time mobility. They further propose a method named
NextMe which takes social interplay into consideration
as well. However this time, when the social interplay
will affect social mobility is identified and used
accordingly. They validate their scores with the MIT
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Reality Mining dataset. They reach up to 60% accuracy
levels for the prediction with their NextMe method.

Rather than using social relationships or networks
of the user, in [16] and [17] distinctive features of
spatial attribute in the data are made use of. In
[16], Zheng et al. aim to extract interesting locations
such as culturally significant places, shopping malls,
city centers etc., and travel sequences from multiple
users’ GPS logs. They used tree-based hierarchical
graph (TBHG) to model user’s historical movement
patterns then introduce a HITS (Hypertext Induced
Topic Search)-based inference model, which represents
one of the users’ travel to a location as a vertex. The
weight of the vertex is defined by user’s experience.
Location’s interest is also defined by user’s experience
as well as the number of user’s visit. They claim that
such a model can be used for location recommendation
like a mobile tourist guidance. They evaluated their
method with the GPS data of the 107 users of a 1 year
period.

In [17], Ying et al. propose an algorithm
which uses semantic labels for locations rather
than just using spatial attributes. They explore
semantic trajectories of the users and predict the
next location of the user accordingly. Rather than
using sequential pattern mining techniques, they
use clustering methods for next location prediction.
They group users hierarchically according to their
semantic trajectories by using Maximal Semantic
Trajectory Pattern Similarity (MSTP-Similarity) which
they define. It was the first work which combines the
semantic tags for location and spatial attributes for next
location prediction problem and their proposed location
prediction model has a high performance.

3. DATA AND PROBLEM DEFINITION

3.1. Call Detail Record (CDR) Data

The data used in this study is provided by one of the
largest mobile phone operators in Turkey. The CDR
data contains more than 1 million user’s mobile phone
records corresponding to a period of 1 month. The area
corresponding to the calls is around 25000 km2 and the
population of the area is almost 5 million. Two thirds of
the population lives in a large urban area, corresponding
to less than 30 percent of the whole area, and the rest of
the population is scattered in small towns and villages.
Due to this population distribution, most of the 13000
base stations are located in densely populated areas of
the region. In rural areas the distances among base
stations reach tens of kilometers, while in the downtown
area sometimes these distances are as small as hundred
meters.

Each record in data represents one of the following
mobile user activities; voice caller, voice callee, SMS
sender, SMS receiver, GPRS connection. Besides these
cases, no record exists in the CDR data. These records
consist of 11 attributes. For both the caller (i.e., #1)

and callee (i.e., #2), base station id, phone number,
province code of the phone number are included. In
addition, call time, CDR type, URL, duration, call date
also exist in these records. Definition of these attributes
and example record attributes are presented in Table 1.

3.2. Problem Definition

Due to the content of our data set, the location of
user activity corresponds to the location of the base
station s/he is connected to. In some dense areas, the
base station locations are very close to each other, and
sometimes users are not connected to the nearest base
stations due to load balancing. Therefore, we have
grouped base stations into larger regions and aimed to
obtain possible region of the user.

It is possible to construct next location and time
prediction model for each user separately from her/his
CDR records. Typical weekday and holiday patterns
of most users can be constructed using statistical
methods if sufficient amount of CDR data (at least
a couple of months) is available. Travels, insufficient
action records, and heterogeneity of user actions are
main drawbacks for constructing models for each user
separately. However, in our model we wanted to
determine frequent common user patterns from daily
user patterns, regardless of which users daily activities
support them. Thus, for example, a frequent common
pattern may be supported by some of the weekday
activities of a number of users. Therefore, this frequent
pattern may just correspond to a few hours of a day.
This way, when a new user sequence is given, it may be
compared against existing sequences to determine if it
matches with one frequent pattern, and that frequent
pattern can be used to predict potential next location
and the time for that user. In this approach, the number
of frequent patterns becomes much smaller compared
to user based model generation. Also considering
users switching mobile phone operators more frequently
nowadays, the cold start problem for many users are
overcome with this approach.

One month CDR data of almost one million users are
used in this study. At the preprocessing phase of raw
CDR data, each activity record is converted to a triple
as (User Id,Action Location,Action T ime). The first
field, namely user id, is used only in order to generate a
sequence of location and time tuples for each user. We
have used these daily sequences as the main input of our
sequential pattern mining methods, which is defined as
follows:

Definition (DUAS: Daily User Activity Se-
quence): < (L1, T1), ...(Ln, Tn) > is a daily user ac-
tivity sequence obtained from the one day activities of
one of the users, in which each (Li, Ti) pair represents
the location and the time of an activity of the selected
user.

All the problems that are discussed in this work are
based on finding frequent patterns obtained basically
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TABLE 1: List of attributes for CDR data

Attributes Description

base station id#1 unique integer representing the base station which caller,
SMS sender or GPRS user connected to. e.g. 17083

phone number#1 unique string representing the caller, SMS sender or
GPRS user. Due to the privacy reasons, it is not a regular
phone number.
e.g. 7bcfc0259b9c8a4af95177a7e79bcd28

province code of an integer that represents the province user started
phone number #1 a call or a GPRS connection, or sent an SMS. e.g. 06

base station id #2 unique integer representing the base station
which callee or SMS receiver is connected to. It is null
if the type of the record is GPRS connection. e.g. 17083

phone number #2 unique string that represents the callee or
SMS receiver. Due to the privacy reasons, it is not a regular.
phone number. It is null if the type of the record is GPRS
connection. e.g. 28119ffa652d31607a3bb573bd3d594b

province code of an integer that represents the province callee
the phone number #2 or SMS receiver is in. e.g. 06

call time The time that action started in a ”hhmmss” format.
e.g. 170251

CDR type It can be one of the following: voice caller, voice callee
SMS sender, SMS receive, GPRS connection

URL It is used only for GPRS data. It represents the URL
that user tries to get.

duration t is an integer that represents the duration of the call.
It is null for SMS. e.g. 47

call date it is the date that action performed in a ”yyyyMMdd”
format. e.g. 20120907

from DUAS. A DUAS can contribute (i.e., increase)
to the frequency of a pattern only once, even if that
pattern occurs more than once in that DUAS, which
may occur only for problems that do not include the
time information. Matching between a pattern and a
DUAS is done in terms of substring matching with some
tolerance, whenever it is defined. This is inheritanly
enforced by the time dimension whenever it is used by
converting exact times into time intervals.

Since the exact activity time for most activities
do not have any significance, we have used simple
abstraction approach and divided each day into a
predefined number of time intervals. If no action has
been recorded in a given time interval, then it is dropped
from the DUAS. If more than one action is recorded in
a given time interval, then the most frequent location is
selected as the location information. As a result, DUAS
is converted into Daily User Location-Time Sequence,
which is defined below:

Definition (DUS-LT: Daily User Sequence
with Location and Time): < (L1, T1), ...(Ln, Tn) >
is a daily user location-time sequence obtained from
DUAS, in which each Ti corresponds to the beginning
of predefined time intervals and each Li corresponds to
the location of the most of the activities occurred for a
selected user in that time interval.

The first problem is defined on DUS-LT to determine

the location and the time of the next activity of the
given user.

Definition (FDUS-LT: Frequent DUS-LT):
{D1, D2, ...Dm} is a set of DUS-LT such that each Di

is a frequent DUS-LT generated under some tolerance
on time intervals for pre-selected locations.

Problem 1: predicting the Location and the
Time for the Next Activity in the following time
interval (LTNA): In this problem, for a given user
sequence, which is a DUS-LT, such as u =<

(Lu1
, Tu1

),...(Lun
, Tun

) > a frequent pattern is searched
from FDUS-LT and if a matching (under some
tolerance) has been found, the next location-time pair
is predicted for that user sequence from the matching
frequent pattern.

For the next problem, time information is not used,
and DUS-LT are converted into a sequence of locations,
which is defined as below:

Definition (DUS-NL: Daily User Sequence
with Non-repeating Location): < L1, L2, ...Ln > is
a daily user location sequence obtained from DUS-LT
by dropping time attribute and replacing successively
repeated locations with a single one. Thus, two
successive locations Li, Li+1Li 6= Li+1.

Definition (FDUS-NL: Frequent DUS-NL):
{D1, D2, ...Dm} is a set of DUS-NL such that each Di

is a frequent DUS-NL for pre-selected locations.
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TABLE 4: Sample Frequent Patterns

Frequent Pattern (Sequence) Support

< (R91, 1000), (R95, 1215), (R45, 1615), (R48, 1800) > 4.02× 10−6

< (R91, 1000), (R95, 1215), (R45, 1615), (R70, 1900) > 3.68× 10−6

< (R91, 1000), (R95, 1215), (R45, 1615), (R55, 1915) > 2.53× 10−6

Assume that we have a user, with the following
navigation sequence:

< (R91, 1015), (R95, 1230), (R45, 1630) >
However, there is no frequent pattern starting exactly
with the same sequence, but we have the following
frequent pattern:
< (R91, 1000), (R95, 1245), (R45, 1630), (R52, 1700) >
This frequent pattern and the above user navigation
pattern have only 15 minutes time difference. We
can assume that, the current user’s navigation pattern
is very similar to this existing frequent pattern, and
therefore we can predict the next region-time interval
pair of this user as the last pair in the frequent pattern
as:

(R52,1700)
In order to be able to produce these kind of results,

our method uses time-tolerance parameter. In this
example, it should be set to 15 minutes or larger in
order to be able to accept these matchings.

In general, more than one frequent pattern’s prefix
may match with the current user’s navigation pattern.
When such case occurs, as a simple solution, the kth

pair of the frequent pattern with the highest support
value may be returned as a prediction. We may prefer
to have more than one prediction in order to increase the
accuracy of the prediction. However, it is not feasible
to produce a large set of prediction just to increase
the accuracy. This trade-off has been handled by our
system with the introduction of the multi-prediction
limit parameter. This parameter works as follows: All
frequent patterns starting with given user’s traversal
sequence are sorted in decreasing order of the support
values and then the sum of the support values are
normalized to 1. After that, the prediction set is
generated by adding kth elements of frequent patterns
one by one in support-sorted order, until sum of the
normalized support values reach to the multi prediction
limit for the selected sequences. The details are given
in the following section.

For example, for the user sequence <

(R91, 1000), (R95, 1215), (R45, 1615) > there are
three frequent patterns with length 4 as given in Table
4. For this sequence, if the frequent pattern with the
highest support value is used to make the prediction,
(R48,1800), will be predicted. If the multi prediction
limit is set to 0.5, again only the same prediction will
be made. However, if the prediction limit is increased
to 0.8, then, the first two frequent sequences are going
to be used, and two predictions, which are (R48, 1800)
and (R70, 1900), going to be produced.

4.2. Predicting Location for the first Successive
Activity, which has a different location
from the current location (LSA)

In this method, each record, which is structured as
a sequence of region ids, represents a user’s daily
location change pattern. An example sequence, which
is obtained from the sample data given in Table 2 is
going to be < R91, R55 >.

4.2.1. Extracting Frequent Patterns
Since in this problem we are interested in the change
of the regions of the mobile phone users, the frequent
pattern generation phase is slightly different from the
first problem, in which all frequent patterns as pairs
of regions and time intervals are determined. In
this problem, time information is not used and only
temporal relations of regions are considered in order
to determine frequent user sequences corresponding
to region changes. To achieve this, firstly as a
preprocessing, for all user sequences, successively
repeated regions are eliminated from each daily
sequence. After that, standard frequent pattern mining
algorithm has been applied on these sequences, and,
as a result, frequent patterns corresponding to users’s
region changes are obtained.

4.2.2. Prediction
The prediction method used in this problem is very
similar to the first problem. Since time information
is not used, there is no need for the time-tolerance
parameter. Instead, a new tolerance parameter
has been introduced in order to be able to match
patterns with different lengths, as a simple alignment
operation between sequences. We have not used
standard alignment algorithms since in our problem the
sequences are very short, and therefore, the amount of
tolerance needed is very small. As an example, consider
that we have a user sequence as follows:

< R77, R91, R95, R16, R22, R41 >

Although there is no exact matching frequent sequence,
let us assume that we have a frequent sequence starting
with:

< R77, R95, R16, R22, R41 >

or
< R77, R95, R35, R16, R22, R41 >

In this case, we may tolerate one additional region
(R91) in the user sequence or one additional region
(R35) in the frequent sequence in the matching process
and predict the next region of the frequent pattern as
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a potential next region of the user.
Since potentially the lengths of frequent patterns and

user sequences are quite small, our tests have shown
that except for length tolerances of 1 or 2 the quality
of predictions using general alignment methods sharply
drops.

4.3. Predicting Location and Time for the first
Successive Activity, which has a different
location from the current location (LTSA)

For this method, user’s daily sequence contains not
only spatial attribute but also temporal attribute.An
example sequence which is obtained from the sample
data given in Table 2 will be < (R91, 01 : 02), (R55, 09 :
22) >.

4.3.1. Extracting Frequent Patterns
Basic intuition behind the extraction method is nearly
the same as that of the first proposed method. In
this approach, the patterns are generated in order to
keep only the change of region ids in a single day. The
difference with the second method is the use of temporal
information. This time user’s daily sequences have pairs
of region id and time information as in the first method.
Thus, pairs having the same region id as in the previous
pair are eliminated. This guarantees that there will be
no successive repetition of region ids in one frequent
pattern, and predictions never have the same region id
with the last region id of traversal instance.

4.3.2. Prediction
In this method, we use both tolerance parameters, time
tolerance and tolerance in pattern length for prediction.
Apart from this difference, the prediction algorithm
works similar to the first method.

5. EVALUATION AND EXPERIMENTAL
RESULTS

5.1. Problem Parameters

In the evaluation process we have measured the qualities
of the proposed solutions for the three problems by
using the following problem parameters:

• Pattern Length (l): Defines the length of the
patterns that are constructed at the frequent
pattern construction phase. During the prediction
phase whenever a user pattern of length (l-1)
has been reached, it is compared against the
frequent patterns in order to be able to find
matching patterns and then use the last items of
those patterns to predict the lth item of the user
sequence.

• Length Tolerance (lt): Defines the amount of
alignment tolerance for matching two patterns. If
lt is 1 then two sequences with length n and (n+1)
matches with each other if n of their items are
same.

• Minimum Support Threshold (s): Defines the
minimum number of occurrences of a sequence of
a given length in daily user sequences in order to
mark that sequence as frequent sequence, which is
specified in terms of the percentage of the size of
the daily user sequences.

• Multi Prediction Limit (p): Defines, in terms of
percentages, how to construct prediction set from
all frequent patterns that match with the given
user sequence using the supports of these frequent
patterns, whose values are normalized as the
summation of them is 100. This is done as follows:
First, all frequent patterns matching with the given
users sequence are sorted in decreasing order of the
support values, and the sum of their support values
are normalized to 100, and the supports of the
frequent patterns are also normalized accordingly.
After that, the prediction set is populated by
choosing the last items of the first k frequent
patterns until the normalized summation of the
support values of the chosen frequent patterns
reach to the specified multi prediction limit p.

• Region/Cluster count (r): Defines the number
of regions/clusters which are generated using the
coordinates of the base stations via clustering.

• Time Interval Length (t): Defines the length of
time intervals in terms of minutes, which is used
to divide one day (24 hours) into same size time
intervals.

• Time Tolerance (tt): Defines the amount of the
tolerance time in terms of minutes, that two time
parameters can match. For example if both tt and
t is 15, then an activity that occurred at 13:10
(which is converted to 13:00, after mapping it to
start time of the time interval it is in) can match
with an activity which occurred in a time interval
(12:45-13:15)

Varying values of the above parameters are used in
the evaluation of the three problems introduced in the
previous sections in order to determine the qualities of
the solutions:

• LTNA: Only pattern length and minimum support
threshold are used.

• LSA: Pattern length, minimum support, length
tolerance and multi prediction limit parameters are
used.

• LTSA: All of the above parameters, namely
pattern length, length tolerance, minimum support
threshold, multi prediction limit, region/cluster
count, time interval length and time tolerance
parameters are used.

5.2. Evaluation Process

In order to assess the quality of the predictions made
by the methods proposed in the previous section, we
have used 5-fold cross validation on a real CDR data
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set that has been introduced earlier. Training phase of
the evaluation process consists of applying the frequent
pattern extraction steps of the proposed methods on the
training data, in order to generate frequent patterns.

The testing phase works as follows: In step one,
the test data is processed as in the training phase to
extract all sequential patterns, except this time with
no minimum support, in order to generate all traversal
patterns. For each one of the traversal patterns,
prediction algorithm introduced in the previous section
has been applied to predict the last elements of these
patterns. The result of the prediction is compared
against the actual last element of the traversal pattern.
These results are used in the calculations of the
evaluation metrics which is introduced below.

5.3. Evaluation Metrics

In order to measure the qualities of the proposed
methods, we have introduced three new metrics, namely
p-accuracy, g-accuracy and prediction count.

g-accuracy (general accuracy) is the ratio of number
of true predictions to the number of all patterns with
the same length in the test set.

g − accuracy =
|Correctly Predicted Instances|

|Test Set|

p-accuracy (predictions’ accuracy) is the ratio of the
number of true predictions to the number of all
predictions we are able to make.

p− accuracy =
|Correctly Predicted Instances|

|Predicted Instances|

The reason for using two different accuracy calculation
is due to the fact that the proposed algorithm may
not be able to generate prediction for each one of the
test instances, if there is no matching frequent pattern
found for the queried instance. In the first form of
accuracy calculation, the accuracy result superficially
drops for such cases.

In addition to the accuracy, the quality of the results
obtained also depends on the size of the prediction set.

Prediction Count metric is required because of the
multi prediction limit parameter. It quantifies the size
of the prediction set when correct prediction result is in
the prediction set.

5.4. Experimental Results

In our experiments, we fix all the related problem
parameters except the one which we measure the effect
on the performance.

TABLE 5: Number of Frequent Patterns for Different
Pattern Lengths for LTNA

Pattern Length Number of Frequent Patterns

2 1777423

3 1706778

4 1186798

5 796505

6 539586

7 381818

8 281931

9 214897

10 168218

11 134827

12 110334

5.4.1. Results for Problem 1 (LTNA):
In the first set of experiments, we analyze the effect of
length of the frequent patterns and support threshold
using the following parameter values:

• pattern length is 6
• time tolerance is 75 minutes,
• time interval is 15 minutes,
• minimum support is 10−6,
• cluster count is 100,
• multi prediction support limit is 1.0, (which means

allowing to use all frequent patterns matching with
test set patterns)

The Effect of Pattern Length

FIGURE 4: The effect of Pattern length on g-accuracy
for LTNA

As it can be seen in Figure 4, when the pattern length
increases, prediction g-accuracy decreases. This is due
to the fact that the number of longer frequent patterns
is much fewer than the number of shorter frequent
patterns. The number of frequent patterns for various
pattern lengths are given in Table 5.

An important observation in this result is that
using multi prediction, a very high g-accuracy has
been obtained for patterns with length smaller than
5. However, when we have analyzed the number
of predictions made with multi prediction method as
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TABLE 6: Prediction Counts for Different Pattern
Lengths for LTNA

Pattern Length Prediction Count

2 59.79

3 11.82

4 6.92

FIGURE 5: The effect of Minimum Support on g-
Accuracy for LTNA

a potential next region we have observed that these
numbers are quite high as presented in Table 6.

When the total number of regions, which is 100 in our
case, are considered, the number of predictions obtained
from multi prediction method is not practical and useful
for real cases. For example, for length 2, the size of the
prediction is almost 60 on average. This explains the
superficially high g-accuracy values for patterns shorter
than five.

The Effect of Support Threshold
Figure 5 shows that, when minimum support threshold
value increases, prediction g-accuracy drops. The
reason for this result is that as minimum support
threshold increases the number of generated frequent
patterns decreases.

The most remarkable result that we found in this
analysis is the ratio of the number of the patterns (any
length n) that have the same region id for nth and (n-
1)th time interval to the number of all patterns. It holds
for almost 80% of patterns having lengths greater than
4. This causes prediction for test set pattern to be the
last element of the matching key in frequent pattern, in
other words causes to predict one person’s next location
as the current location for 80% of the test data. Since
our first motivation was change of location problem, we
did not evolve this method and do not elaborate on
further results of this method.

5.4.2. Results for Problem 2 (LSA):
In the experiments for this problem, we analyze the
effect of the pattern length, support threshold, length
tolerance, and the multi prediction limit in terms of
accuracy and prediction count using the following values

of parameters:

• pattern length is 5
• multi prediction limit is 0.8,
• the length tolerance is 2
• cluster count is 100,
• the minimum support is 4× 10−7.

For the length tolerance experiment, three parame-
ters are set to different values, namely pattern length
is set to 7, multi prediction limit is set to 0.5, and the
minimum support value is set to 0.0001.

The Effect of Pattern Length

(a) Pattern Length vs Accuracy

(b) Pattern Length vs Prediction Count

FIGURE 6: The effect of pattern lenght on g-Accuracy,
p-Accuracy and Prediction Count for LSA

As it can be seen in Figure 6a, when the pattern
length increases, prediction g-accuracy drops. It is
because of the decreasing number of frequent patterns
as the pattern length increases. We did not include
patterns shorter than 5 since for patterns with length
4, multi prediction method generates 7 alternatives
on average. For pattern length 5, our method under
multi prediction limit 0.8 generated 2.3 predictions on
average for successful prediction, which is reasonable
value for the number of generated predictions. Figure
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TABLE 7: Length Tolerance vs g-Accuracy for LSA

Length Tolerance g-Accuracy

0 0.20

1 0.23

2 0.29

6a also shows the relationship between pattern length
and p-accuracy. Since p-accuracy is the ratio of
true predictions to the number of predictions made
(instead of the total number of test patterns), it is
not expected to have a similar behavior when pattern
length increases. The reason for the lower g-accuracies
of higher pattern lengths in the Figure 6a is the non-
predicted instances in test data. However, we do not
include non-predicted patterns in p-accuracy.

Prediction count has been positively affected with the
increase in pattern lengths, as can be seen in Figure 6b.
After quick drop of prediction count at pattern length
7, p-accuracy starts to increase. It is expected to have
greater p-accuracy for the longer patterns with nearly
the same prediction count.

The Effect of Support Threshold
Figure 7a shows that when minimum support value
increases, prediction g-accuracy drops as in our first
problem. Similarly, this is due to the fact that as the
minimum support increases, the number of generated
frequent patterns decreases.

When compared to the first problem, it can be
seen that g-accuracy values are much higher in the
second problem. There are two reasons for it; length
tolerance and eliminating successively repetitive region
ids. Length tolerance gives the ability to search test
set pattern throughout different lengths of frequent
patterns. Eliminating repetitive region ids gives less
variety in frequent patterns. These factors reduce the
number of non-predicted patterns as expected (from
2,214,700 to 1,237,313), and increment both true and
false predictions biased to true predictions.

Similar to the previous experiments, as can be seen
in Figure 7a, p-accuracy does not seem to be effected
with the increase in the support value, and there is a
very small increase.

For the selected parameter set, prediction count is
stable. This experiment shows that multi prediction
limit outweighs the effect of minimum support on
prediction count.

The Effect of Length Tolerance
As given in Table 7, g-accuracy values are lower than
the first problem, since minimum support used in this
set of experiments is 0.0001. As it can be seen in the
table, when the length tolerance increases, prediction
g-accuracy also increases.

(a) Minimum Support vs Accuracy

(b) Minimum Support vs Prediction Count

FIGURE 7: The effect of Support Threshold on g-
Accuracy, p-Accuracy and Prediction Count for LSA

The Effect of Multi Prediction Limit
Figure 8a depicts that when multi prediction limit
increases, both prediction g-accuracy and p-accuracy
also increase, as expected. Nevertheless, Figure 8b
shows that, with the increase in multi prediction limit
prediction count also increases.

5.4.3. Results Problem 3 (LTSA):
For this problem, we analyze the effect of all 7
paramaters on the accuracy and prediction count using
the following values of parameters:

• pattern length is 5
• length tolerance is 2,
• time interval length is 60,
• time tolerance is 120,
• multi prediction limit is 0.8,
• cluster count is 100,
• minimum support is 4× 10−7.

In the time interval experiment, time tolerance is set to
0.
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(a) Multi Prediction Limit vs Accuracy

(b) Multi Prediction Limit vs Prediction Count

FIGURE 8: The effect of multi prediction limit on g-
Accuracy, p-Accuracy, Prediction Count for LSA

The Effect of Pattern Length
Figure 9a shows that when pattern length increases
similar to two previous problems, g-accuracy decreases,
and p-accuracy is almost stable. On the other hand,
the drop in prediction count is remarkable. It drops to
4, for pattern length 6, and then quickly drops almost
to 2 for the pattern length 7.

The Effect of Support Threshold
We have observed similar behaviours for the minimum
support paramater, and as it can be seen in Figure
10a, when minimum support value increases, g-accuracy
decreases. On the other hand, similar to previous
problems, p-accuracy is almost stable. Furthermore,
Figure 10b also shows that when minimum support
value increases, prediction count also decreases, as
expected.

The Effect of Length Tolerance
As it can be seen in Figure 11a, when length tolerance
increases, both g-accuracy and p-accuracy increase.
Increasing length tolerance makes some unpredicted
test sequences predictable which increases the g-
accuracy. Unfortunately, as it can be seen in Figure 11b,

(a) Pattern Length vs Accuracy

(b) Pattern Length vs Prediction Count

FIGURE 9: The Effect of pattern length on g-Accuracy,
p-Accuracy and Prediction Count for LTSA

setting higher length tolerance leads to larger prediction
sets.

The Effect of Multi Prediction Limit
The increase in multi prediction limit increases both
accuracy results, as seen in Figure 12a, as in previous
problem, while increasing the prediction count very
quickly also, shown in Figure 12b.

The Effect of Number of Regions
In this problem, we have also analysed the effect
of the region sizes. As it can be seen in Figure
13a, when cluster count, i.e, number of base station
regions, increases g-accuracy decreases slightly. It is
because of the unpredicted test sequences rather than
false predictions since increasing cluster count makes
frequent patterns harder to extract. However, Figure
13a also shows that, p-accuracy increases slightly. This
is due to the fact that when cluster count increases
movement patterns of users can be defined more
precisely which makes frequent patterns harder to find
but more accurate ones. Therefore, usually correct
predictions are generated when compared to fewer
numbers of clusters. It also eventually decreases the
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(a) Minimum Support vs Accuracy

(b) Minimum Support vs Prediction Count

FIGURE 10: The effect of support threshold on g-
Accuracy, p-Accuracy and Prediction Count for LTSA

prediction count, which can be seen in Figure 13b.

The Effect of Time Interval Length
When time interval length increases, both g-accuracy
and p-accuracy increase, as shown in Figure 14a.
Although there is a sharp increase in g-accuracy, the
increase in p-accuracy is limited. Since the larger time
interval means the more similar daily sequences and
eventually higher number of frequent patterns, increase
in the values of accuracy metrics is expected. We can
say that prediction count increases in general, as it can
be seen in Figure 14b, the time interval length increases.
However, for time interval length 360, there is small
drop.

The Effect of Time Tolerance
Similarly, when time tolerance increases both g-
accuracy and p-accuracy increases slightly, as it can be
seen in Figure 15a. Moreover, also Figure 15b shows
that, when time tolerance increases prediction count
slightly decreases. However, for this set of parameters
the prediction count is very large.

(a) Length Tolerance vs Accuracy

(b) Length Tolerance vs Prediction Count

FIGURE 11: The effect of length tolerance on g-
Accuracy, p-Accuracy and Prediction Count for LTSA

6. DISCUSSION AND CONCLUSION

In this work, we applied sequence pattern mining
techniques for location prediction problem domain.
We used one of the largest mobile phone operator
companies’ CDR data. We focused on three different
subproblems in the location prediction problem space
namely, next location and time prediction using spatio-
temporal data, next location change prediction using
spatial data, next location change and time prediction
using spatio-temporal data. The main novelties are
time prediction and spatio-temporal alignments for
the prediction task. In the experiments, we have
evaluated our model’s prediction quality with respect to
g-accuracy, p-accuracy and prediction count and further
analyzed the effects of change of minimum support,
multi prediction limit, length tolerance, pattern length,
cluster count, time interval length and time tolerance
on prediction accuracies and count. Here are the some
basic findings and most valuable prediction results for
these three methods;

• For the spatio-temporal next location prediction, it
does not make sense to present the results below or
around 80% accuracy since 80% of the user’s next

The Computer Journal, Vol. ??, No. ??, ????

Page 14 of 17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Predicting the Location and Time of Mobile Phone Users by Using Sequential Pattern Mining Techniques15

(a) Multi Prediction Limit vs Accuracy

(b) Multi Prediction Limit vs Prediction Count

FIGURE 12: The effect of multi prediction limit on g-
Accuracy, p-Accuracy and Prediction Count for LTSA

location is their current location.
• For the spatial next location change prediction,

g-accuracies differ between 48% and 84% for the
prediction counts 2.4 and 14 for 100 regions
while p-accuracies differ between 74% and 99% for
the same prediction counts. These values show
that our proposed model for this problem can
generate successful accuracy values with acceptable
prediction counts.

• For the spatio-temporal next location change and
time prediction, while it predicts nearly half of
the test sequences, p-accuracies reach up to 93%
for 14 prediction count for possible 9600 ([24 x 1
hour time interval] x 400 clusters) spatio-temporal
prediction combination. Moreover it generates 87%
p-accuracy for 3.44 prediction count for possible
153600 ([24 x 1 hour time interval] x 6400 clusters)
prediction combination.

As a future work, we plan to enlarge our problem space
with the followings; next location change prediction
using spatio-temporal data, next action time prediction
using temporal data, location and time prediction of the
next action using spatio-temporal data.

(a) Cluster Count vs Accuracy

(b) Cluster Count vs Prediction Count

FIGURE 13: The effect of number of regions on g-
Accuracy, p-Accuracy and Prediction Count for LTSA
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