
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Ice Accretion Prediction on Wind Turbines and
Consequent Power Losses
To cite this article: Ozcan Yirtici et al 2016 J. Phys.: Conf. Ser. 753 022022

 

View the article online for updates and enhancements.

Related content
Model Wind Turbines Tested at Full-Scale
Similarity
M.A. Miller, J. Kiefer, C. Westergaard et al.

-

Monitoring Wind Turbine Loading Using
Power Converter Signals
C A Rieg, C J Smith and C J Crabtree

-

A numerical study on the flow upstream of
a wind turbine in complex terrain
A R Meyer Forsting, A Bechmann and N
Troldborg

-

Recent citations
Isogeometric analysis of ice accretion on
wind turbine blades
Emily L. Johnson and Ming-Chen Hsu

-

Reducing Static and Impact Ice Adhesion
with a Self-Lubricating Icephobic Coating
(SLIC)
Edem Tetteh and Eric Loth

-

Experimental study of ice accretion on
S826 & S832 wind turbine blade profiles
Jia Yi Jin and Muhammad Shakeel Virk

-

This content was downloaded from IP address 144.122.201.61 on 24/07/2020 at 22:22

https://doi.org/10.1088/1742-6596/753/2/022022
http://iopscience.iop.org/article/10.1088/1742-6596/753/3/032018
http://iopscience.iop.org/article/10.1088/1742-6596/753/3/032018
http://iopscience.iop.org/article/10.1088/1742-6596/749/1/012018
http://iopscience.iop.org/article/10.1088/1742-6596/749/1/012018
http://iopscience.iop.org/article/10.1088/1742-6596/753/3/032041
http://iopscience.iop.org/article/10.1088/1742-6596/753/3/032041
http://dx.doi.org/10.1007/s00466-020-01852-y
http://dx.doi.org/10.1007/s00466-020-01852-y
http://dx.doi.org/10.3390/coatings10030262
http://dx.doi.org/10.3390/coatings10030262
http://dx.doi.org/10.3390/coatings10030262
http://dx.doi.org/10.1016/j.coldregions.2019.102913
http://dx.doi.org/10.1016/j.coldregions.2019.102913
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvEl-zlYfwKyYBzW3p_TiJWiz5EQSl8WK6qYfz87-tq25s50sYqbEt1PJLxyzTgZfwZ8jEAp0aJb5f0ep-5YzFlGrKlAtg-UrvBIdLjMhds2w7txcgcNjORrpxra5SdNXZnLPTAQ8lBOeUj235g-2iH9-lNON7u0COzcEzyxi0yedOMNj__95Ewl3mig-3sCi_yKlijYjFETNYQP4BF0sKSgOGgq2zruf6-6O98fF9QUhjF06ol&sig=Cg0ArKJSzEkM2fmS7qCt&adurl=http://iopscience.org/books


Ice Accretion Prediction on Wind Turbines and

Consequent Power Losses

Ozcan Yirtici1, Ismail H. Tuncer2, Serkan Ozgen2

1Graduate Research Assistant, Dept. of Aerospace Engineering, METU, 06800 Ankara Turkey
2Professor, Dept. of Aerospace Engineering, METU, 06800 Ankara Turkey

E-mail: oyirtici@ae.metu.edu.tr

Abstract. Ice accretion on wind turbine blades modifies the sectional profiles and causes
alteration in the aerodynamic characteristic of the blades. The objective of this study is to
determine performance losses on wind turbines due to the formation of ice in cold climate
regions and mountainous areas where wind energy resources are found. In this study, the
Blade Element Momentum method is employed together with an ice accretion prediction tool
in order to estimate the ice build-up on wind turbine blades and the energy production for
iced and clean blades. The predicted ice shapes of the various airfoil profiles are validated with
the experimental data and it is shown that the tool developed is promising to be used in the
prediction of power production losses of wind turbines.

1. Introduction
In cold climate regions and highlands, wind turbines may be exposed to heavy atmospheric
icing conditions during winter operations. In atmospheric icing conditions either clouds or
supercooled fog can emerge at lower elevations with a strong temperature inversion and such
conditions may last for days even weeks [1]. Ice accretion on blades result in power loss, changing
blade aerodynamic characteristics and creates instrument or controller errors on wind turbines.
For wind turbines in cold climate regions, icing can result in up to 17 % loss in Annual Energy
Production (AEP) and reduce the power coefficient in the range of 20-50 % [2, 3]. Although an
AEP loss as high as 23 % (reduction from 986 MWh to 785 MWh) based on the measured data
at the Alpine Test Site Gütsch is reported, Barber et al. [4] explain this large loss by including
the high turbulence and the wind gust related losses as an additional factor into the icing losses.
Power curve of the Gütsch turbine is shown in Figure 1.

The amount of wind power loss depends on the amount of ice accumulation on the blades,
blade design and turbine control. As in the case of the aircraft icing, Anti/De icing systems
(ADIS) can be used in the wind turbines to prevent or mitigate icing. Anti-icing methods
aim at preventing ice accretion (e.g. hydrophobic coating with black painting), while de-icing
techniques work by removing accreted ice (e.g. heating). System power requirements and the
blade rotation make the implementation of ADIS systems on wind turbines more difficult than
air vehicles [5]. A critical review study about ADIS usage in wind turbines is undertaken by
Parent and Ilinca [6]. Electro-thermal and hot air flow systems are generally used in the ADIS,
hence wind turbines need more power to operate. Icing simulations can help in the positioning
of ADIS for reducing energy consumption necessitated to operate these devices. In order to
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Figure 1. Power measurements at Gütsch and the bin-averaged power curve compared to the
manufacturer’s power curve [4].

maximize energy production from the turbine that operates under icing conditions, performance
losses need to be predicted. During turbine blade design phase, a flow simulation that predicts
the ice formation under icing conditions can help maintain safety, reduce the performance losses
and decrease the weight.

It is well-known that icing is formed when supercooled droplets impinge on any kind of surface
such as a turbine blade. Temperature, liquid water content, droplet size and surface size are
basic factors affecting icing. Temperature influences the type and intensity of ice. Liquid water
content determines the severity of icing, type and shape. Droplet size indicates the type and rate
of icing. Surface size of iced-up body determines the rate of ice accretion. Droplets may freeze
instantly and form rime ice on the surface or run downstream and freeze later forming glaze ice.
Rime, glaze and mixed ice are three types of ice formation seen in atmospheric conditions. Rime
ice typically forms at temperatures from 0 ◦C down to -40 ◦C. This kind of ice has a milky,
opaque appearance with smooth shapes, tends to grow into the air-stream, and can be easily
removed by de-icing or prevented by anti-icing systems. It usually occurs at low airspeed, low
temperature and low liquid water content. Rime ice accreted turbine blade is shown in Figure 2.
Glaze ice occurs at temperatures between 0 and -6 ◦C. Glaze ice has a transparent appearance
with irregular shapes like horns and is hard to remove by de-icing systems. It occurs at high
airspeed, high temperature and high liquid water content when a fraction of the water droplets
freeze upon impact while remaining droplets run along the surface and freeze downstream.
Because of the variation in the sectional velocity and angle of attack along the span of the wind
turbine rotor, it is possible for both rime and glaze ice to be formed simultaneously.

In this study, a 2-D ice accretion prediction tool [9] is used to predict the ice formation
on the turbine blade sections under given atmospheric icing conditions and flow conditions.
Performance analysis of the wind turbine is then made based on the Blade Element Momentum
(BEM) methodology. In BEM methodology the 2-D flow fields and the sectional aerodynamic
loads at a number of sections along the blade span are considered for the estimation of the torque
and the power generation of a blade. The power production losses are assessed by comparing
the power generation of the clean and iced blades.
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Figure 2. Clean and iced turbine blade [7].

2. Method
2.1. Ice Accretion Prediction
Ice accretion prediction involves complex physics comprising aerodynamics, heat transfer and
multiphase flow, which are all time-dependent and involve geometric deformation. The numerical
method employed here iteratively predicts the ice accretion on blade surfaces as a result of
water droplets hitting a surface. It employs the general methodology for simulation of ice
accretion on airfoils which is based on successive calculation of air flow, water droplet trajectories,
collection efficiency, heat transfer balance and accreted ice. In order to determine the flow
velocity field for the droplet trajectory calculations, a Hess-Smith panel method is used. Droplet
trajectories are computed by using a Langrangian approach to obtain the collection efficiency
distribution around the airfoil. To determine the thickness of the ice, convective heat transfer
coefficients are determined by using the two-dimensional Integral Boundary Layer equation
and the thermodynamic balance is achieved using the Extended Messinger model. Extended
Messinger model is governed by four equations; energy equations in ice and water layers, a mass
balance and a phase change or Stefan condition at the ice/water interface [8].
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where θ and T are the temperatures, ki and kw are thermal conductivities, Cpi and Cpw are the
specific heats and h and B are the thickness of water and ice layers, respectively. In equation 3,
ρaβV∞ is impinging water mass flow rate for a panel, respectively. Meanwhile, ρi and LF refer
to the density of ice and the latent heat of solidification of water. In order to determine the ice
and water thicknesses together with the temperature distribution at each layer, boundary and
initial conditions must be specified. These are based on the following assumptions :

• Ice is in perfect contact with the airfoil surface, which is taken to be equal to the air
temperature, Ta :

T (0, t) = Ts (5)
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• The temperature is continuous at the ice/water boundary and is equal to the freezing
temperature:

T (B, t) = θ(B, t) = Tf (6)

• At the air/water (glaze ice) or air/ice (rime ice) interface, heat flux is determined by
convection (Qc), radiation (Qr), latent heat release (Ql), cooling by incoming droplets (Qd),
heat brought in by runback water (Qin), evaporation (Qe) or sublimation (Qs), aerodynamic
heating(Qa) and kinetic energy of incoming droplets (Qk):

For glaze ice : −kw
∂θ

∂y
= (Qc +Qe +Qd +Qr) − (Qa +Qk +Qin) at y = B + h (7)

For rime ice : −ki
∂T

∂y
= (Qc +Qs +Qd +Qr) − (Qa +Qk +Qin +Ql) at y = B (8)

• Airfoil surface is initially clean:
B = h = 0, t=0 (9)

Detailed information about this methodology can be found in Reference [9].

2.2. Wind Turbine Performance Analysis
The BEM methodology is used widely in wind turbine design and performance analysis due
to its accuracy and ease of implementation. A computational tool is also needed to predict
aerodynamic force coefficients since the BEM tool depends on sectional aerodynamic loads. In
this study, the sectional aerodynamic force coefficients are evaluated by using the XFOIL flow
solver. XFOIL is a potential flow solver with a boundary layer flow module for including the
viscous effects at a given Reynolds number. It is an open source design and analysis tool written
by M. Drela [10]. XFOIL is employed for both ice free and iced airfoil profiles.

3. Results and Discussion
In this study three icing cases are studied. In the first two cases, NACA 64618 and S809
airfoils, which are widely used in wind turbines, are chosen for the validation of the ice accretion
prediction tool. The iced blade profiles are compared with the experimental and numerical data
available in the literature. In the last case, the Aeolos 30 kW wind turbine performance analysis
is carried out with the BEM methodology developed, and an icing related momentary power
loss is analyzed at 11 m/s wind speed for the same wind turbine.

3.1. Ice Accretion Prediction Over S809 Turbine Blade
The present method is first validated against the experimental and numerical studies over S809
turbine blade with a chord length of 0.267 m performed by Han et al [11]. The Adverse
Environment Rotor Test Stand (AERTS) is designed to generate an accurate icing cloud around
test rotor to validate the capability of the facility to reproduce representative icing conditions for
numerical simulations. In AERTS experiments 17 different ice accretion test cases are considered.
The liquid water content is kept less than 1.5 g/m3. Rime and glaze ice formations are observed.
Reference [11] provides detailed information on the experiments performed.

The test cases considered in the present study are given in Table 1. The numerical results
obtained are presented for one layer of ice accretion calculation including the splash and the
break-up effects. In Figure 3, the predicted ice shapes are compared against the experimental
data of the AERTS for case 19 at the leading edge of the blade sections. It is seen that both
the present study and the Lewice predictions compare fairly well with the experimental data.
Such an agreement is expected since the rime ice shapes are obtained from a simple algebraic
equation.
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Table 1. Atmospheric icing conditions for AERTS WT cases [11].

Variables AERTS WT
case 19
(rime ice)

AERTS WT
case 15
(rime ice)

AERTS WT
case 24
(glaze ice)

Ambient temperature, Ta -9 ◦C -9 ◦C -9 ◦C
Free-stream velocity, V∞ 50 m/s 50 m/s 43 m/s
Liquid water content, ρa 0.05 g/m3 0.08 g/m3 0.3 g/m3

Droplet diameter, dp 20 µ m 20 µ m 20 µ m
Exposure time, texp 30 min 30 min 12 min
Ambient pressure, p∞ 95610 Pa 95610 Pa 95610 Pa
Angle of attack, α 8◦ 4◦ 6◦

Humidity 100 % 100 % 100 %

Figure 3. Predicted and experimental ice profiles on the blade for AERTS WT case 19 [11].

Figure 4. Predicted ice profiles for S809 airfoil for conditions in Table 1

Figure 4 shows the results and comparison with the experimental data for Case 15 and
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Case 24. As seen, ice is mainly collected over the pressure side of the S809 airfoil, which is
attributed to the angle of attack. The results agree reasonably well with the experimental data
for both cases. The ice shape in Case 15 is in the form of rime ice because of the low liquid
water content. In case 24, the extent of the iced region on the upper surface is underestimated
compared to experimental data. The glaze ice shape is usually more difficult to predict, which
may be attributed to the low fidelity of the runback water model.

3.2. Effect of Temperature and Droplet Size on Ice Shape
In this validation case, a 5MW pitch controlled wind turbine blade profile (NACA 64618) is used
to investigate the effects of the atmospheric temperature and droplet size on the ice accretion.
The geometric and flow conditions in the reference study are presented in Table 2. All simulations
are performed in a single time step with splash, break up effects.

Table 2. Geometric characteristics and flow conditions used in the calculations

Airfoils NACA 64618
Chord 1.9 m
Angle of attack 5 ◦

Relative air speed 25.7 m/s
Liquid water content, ρa 0.2 g/m3

Droplet diameter, dp 12, 17, 30 µ m
Ambient temperature, Ta -2.5, -5, -7.5 ◦C
Exposure time, texp 120 minutes
Ambient pressure, p∞ 101300 Pa
Humidity 100 %

The results obtained are compared against the numerical study of Homola et al.[12]. In Figure
5, 6 the computed ice shapes are in agreement with those obtained numerically by Homolo et al.
(Turbice). Results in Figure 5 suggest that the ice shapes for Ta = -5 ◦C and -7.5 ◦C are quite
similar and exhibit rime ice characteristics. On the other hand, the ice shape obtained for Ta
= -2.5 ◦C is typically of glaze type and is significantly different from the other two since it has
a horn on the upper surface just downstream of the leading edge. These results are expected
because rime ice typically occurs at low temperatures and low liquid water contents, as in this
first case where Ta = -5 ◦C and -7.5 ◦C. However, Ta = -2.5 ◦C is a significantly high temperature
in terms of ice formation and hence yields a glaze ice formation. Results in Figure 6 demonstrate
that as the droplet size increases, both the ice mass and the extent of the iced region grow up.
Large droplets yield higher collection efficiencies by following more ballistic trajectories. Such a
condition generates a wider and a larger ice accretion as seen in Figure 6.

3.3. Power Production Losses on the Aeolos 30 kW Wind Turbine due to Icing
In the last case, the momentary power loss is investigated for a selected icing condition by com-
paring the local power production of the Aeolos 30 kW wind turbine for both clean and iced
blades. General characteristics and operating conditions for this virtual case are given in Table
3 and geometrical properties are represented in Figure 7. The blade geometry, the sectional
airfoil polar data and the test results are given in the reference [13].

Initially, the power production of the Aeolos wind turbine at various wind speeds is computed
by using the BEM tool developed. In the computations 9 blade sections are employed. The power
production figures obtained are compared with the test data in Figure 8. As seen, the power
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Figure 5. Predicted ice profiles for NACA 64618 airfoil for conditions in Table 2 (dp= 17 µm)

Figure 6. Predicted ice profiles for NACA 64618 airfoil for conditions in Table 2 (Ta= -2.5 ◦C)

Table 3. Wind turbine general characteristics and atmospheric icing conditions

Airfoils DU93-W-210
Rotational speed 120 rpm
Root chord 0.703 m
Tip chord 0.02 m
Turbine diameter ,R 12 m
Root extension 0.5 m
Twist 17.45 degrees (max.)
Mode of power control variable speed/yawing
Liquid water content, ρa 0.05 g/m3

Droplet diameter, dp 27 µ m
Ambient temperature, Ta -8.0 ◦C
Exposure time, texp 3 hours
Ambient pressure, p∞ 95610 Pa
Humidity 100 %

productions predicted with BEM tool agree rather well with the test data. The aerodynamic
loads based on the XFOIL solutions and the experimental data agree well at low wind speeds.
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Figure 7. Blade properties of Aeolos 30 kW wind turbine.

Figure 8. Power curve for Aeolos 30 kW wind turbine

At wind speeds greater than 12m/s, the XFOIL based solution slightly underpredicts the power
production. This is attributed to the empirical stall correction used at high angles of attack
greater than 20 degrees encountered at high wind speeds.
Ice accretion prediction methodology developed is then used to predict the 2D ice profiles on

the blade at nine different span-wise locations. Firstly, the sectional inflow velocities and the
angles of attack are evaluated with the BEM method. Then, these local flow properties are used
as input parameters to predict the ice shape for each blade section under the given atmospheric
icing conditions.

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 022022 doi:10.1088/1742-6596/753/2/022022

8



Figure 9. The Aeolos 30 kW wind turbine blade profile and predicted ice profiles along the
blade span at 11m/s wind speed

The predicted ice profiles at five span-wise locations along the Aeolos 30kW wind turbine
blade are given in Figure 9 for a wind speed of 11m/s. As expected, the ice formation grows
along the span due to the increasing sectional inflow velocity and the decreasing sectional chord
length. It should be noted that the ice accretion significantly modifies and distorts the sectional
airfoil profiles, especially near the tip section. Such a distortion degrades the aerodynamic
performance of the blade. The power production for the clean and the iced blades are evaluated
to be 43.78kW to 32.96kW , respectively, which corresponds to a 24% momentary power loss for
this icing event.

The 24% power loss prediction is in agreement with the similar studies [14, 15, 16], which are
performed for various wind turbines under similar icing conditions and predict power losses in
the 20−30% range. It should be noted that the power loss heavily depends on the icing severity
due to liquid water content, droplet diameter and icing time.

4. Conclusions
The Blade Element Momentum methodology coupled with an ice accretion prediction tool
is employed to estimate energy production losses of wind turbines. The computational tool
developed is first validated and then employed to predict momentary performance losses for
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horizontal axis wind turbines in icing conditions. An icing event which results in 24 % power
loss for the Aeolos 30 kW wind turbine is successfully simulated. It should be noted that the
present study is based on 2D flow analysis. For more accurate performance predictions 3D effects
should be considered.
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