3755

ESTIMATION OF RELIABILITY INDICEES BY MONTE CARLO

SIMULATION IN ELECTRIC POWER GENERATION SYSTEMS

A MASTER'S THESIS
in
Statistics

Middle East Technical University

By
Ayse Sevtap SELCUK

September 1988

w‘ Go .
Yikseksgretim Kurule
Dokitimantasyon Merkez{



Approval of the Graduate Schoal of Natural and Applied

Sciences

¥

PrG?T/D;Zozalpay Ankara

Directar

I certify that this thesis satisfies all the requirements as
a thesis for the degree of Master of Science in Statistics.
» é%%ﬁa__—
Assoc. Prof.Dr.Umer L. Gebizlicglu

Chairman of the Department

We certify that we have read this thesis and that in our
apiniaon it is fully adequate, in scope and quality, as a
thesis for the degree of Master of Science in Statistics.

hhet_Sahinoglu

Rssgc. Prof.Dr.
Supervisor

Examining Committee in Charge

Assoc.Praof.Dr. Mehmet Sahinoglu (Chairman)
Assoc.Prof.Dr.Umer Gebizlioglu Ly fo:

Praof.Dr.Semih Ydcemen (7(



~ABSTRACT-
ESTIMATION OF RELIABILITY INDICES BY MONTE CARLO SIMULATION

IN ELECTRIC POWER GENERATION SYSTEMS

SELCUK, Ayse Sevtap
M.S. in Statistics
Supervisor: Assoc. Prof.Dr. Mehmet Sahinoglu
September 1988, 80 Pages

An electric power network is a major example of a
system where a rather high level of reliability is expected.
Reliability indices have been introduced to facilitate the
predictions such as loss of load probability and frequency
of loss of load and unserved energy. Objective of this study
is to calculate indices which describe the reliability of
power generating systems by using Mante Carlo Simulation
method .

Simulation methods provide the greatest capability for
including operational considerations for such problems in
which it is hard to model the system analytically and hence
these methads are attractive from time and cost
viewpoints. The reliability indices obtained from Monte
Carlo Simulation Technique are compared with the ones
obtained from analytical solution of a sample gernerating
system containing 32 generators where the generators,
functionally dependent on each other, fail with respect to a

Multivariate Exponential Distribution structure. The
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favorable comparison is observed betwsen the two methods;
a~alytical and simulation methods. Then the simulation
mcdel is to be generalized for larger systems and the
Fartran coded version is adapted to a Pascal written version
far faster convergence.

KZYWORDS: Monte Carlo Simulation, Multivariate Exponential

Cistribution, Electric Power System Reliability Indices.



~UZET-
MOMNTE CARLO BENZETIM YUNTEMIYLE ELEKTRIK GUC URETIM SISTEMQ
GUVENILIRLIK ENDEKSLERIMNIN TAHMINE
SELCUK, Ayse Sevtap
YGksek Lisans Tezi, tstatistik Bdlami
Tez Yoneticisi: Dog.Dr. Mehmet Sahinojglu
Eyldl 1988, 80 Sayfa

Elektrik enerji sebekesi, ylksek dizeyde givenilirlik
beklenen sistemlerin basinda gelir. Givenilirlik endeksleri
yik kaybh:i glasili§: ve yiik kaybinin frekansi, verilemeyen
enerji gibi parametrelerin dnceden tahmini igin
gnerilmislerdir. Bu calismanin amaci, Monte Carlo benzetim
yonteminli kullararak, enerji Gretim sistemlerinin
givenilirligini tanimlayan endeksleri hesaplamaktir.

Benzetim ydntemleri, isletme gerceklerini yansitmak
acgisindan ylksek bir beceriye sahip olup, zaman ve maliyet
yoninden de caziptirler. "32 jenerattrlik biv Griek dretim
sisteminde” Monte Carlo Benzetim ydintemiyle elde edilen
endeksler yine ayni sistemden elde edilen analitik
cozdmlerle karsilastirilmistir. Bu jenerattrler
birbirleriyle fonksiyanel olarak bagiml:i olup Cok Degiskenli
Ustel Dajilim kuralina gtire ariza yvapmaktadirlar. tki ybntem
arasinda yapirlan karsilastirma sonuclari olumludur. Daha
sonra,; aynl yontem daha genis sistemler igin
genellestirilmis ve Fortran kodlu anlatim Pascal kadlu
anlatima daha hizli sonuclandirma icin uvarlanmistir.
Anahtar Sdzcukler: Monte Carlo Benzetimi, Cok Degiskenli

Ustel Dailim, Sistem Glvenilirlik Endeksleri.
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N : Number of units in electric generating power system

ny : Mumber of times component i is observed to fail before
the last failure

No : Number of times simultanecus failure of at least two
component is observed

Na=?: Number of times component i is observed to fail last,
but not simultaneously with any aothec component

ne{i): Number of times component i1 is observed to have
failed simultaneously with one or more of the other
components
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F(x) : Cumulative distribution function

E(x) : Survival function
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t(x) = Majorizing function
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FLAG!I : Independent case( Q. is small)

FLAG2 : Qo = First order statistic

FLAG3 : Qo = First gquartile

FLAG4 : Qo = Average rates of 2. 3 i=1,25,...1

FLOL : Frequency of Loss of Load
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LOLP : Loss of Load Probability
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TOTCAP : Total Capacity

TTF, : ith Time to Failure
TTR, ¢ ith Time to Repair
Use : Unserved Energy

VFLOL : Variance of Frequency of Loss of Load

vLOL = Variance of Loss of Load

VUSE : Variance of Unserved Energy
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1. INTRODUCTION

1.1. General Perspective

System reliability problems arise in areas such as
communication networks, electrical power systems,
transportation systems or manufacturing systems. In recent
yearss the assessment of the reliability and availability of
these complex systems has played an increasingly important
role in the analysis, design and operation of these systems
{(2:5,11-13,16-19,22-25,28-301. A very important element in
the design and operatiaon of a system is the estimation of
the impact of the unreliability measure which must be

guantitatively defined.

The reliability of an electric supply system has been
defined as the probability of providing users with
continuous service of satisfactory gquality within prescribed
tolerances far the time-period envisaged under the
conditions encountered. In order for a reliability index to
be more representative of real world, the interdependence of

the generation and load must be recognized.

The objective of this study is to calculate the indices
which describe the reliability of power generating systems

by Monte Carlo Simulation Technique and then to compare it

T. C.
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with those of the established analytical results which are
described in [11,12]1. Simulation methods provide the
greatest capability for including operating considerations
but alsec require the commitment of excessive time and cost.
However, recent advances in simulation technology including
fast random number generation techniques, maore eff{cient
file managements and advanced computer technolegy, have made
simulation much more attractive from time and cost stand

points.

Monte Carlo Technique is applied to the energy model to
simulate random occurrences of outage which may result from
i- unit forced outages,
ii- demand through hourly load forecast,

iii- system operational constraints.

The model proposed, simulates the randaom events
that occur and the operational decisions taken. Thus, the
generating system is operated and plammed through a model in
a manner which closely simulates the reality. The actual
system events are simulated hour after hour. If a digital
computer is used, this simulation is accomplished at
relatively high speed. The simulation model is perfarmed for
a sample system having 32 generators for study periods of
16 and 28 hours and then, it is to be generalized for

larger systems.



1.2. Review of Literature

In the past decade the techniques developed for
calculating the various measures of the reliability
perfaormance of the generating systems have assumed a
deterministic outage data and thus the reliability index
calculated is quoted as one number [11,12,131. The variation
of the reliability index around its mean has been
investigated by employing various algebraic expansion
techniques such as Taylor’s series to approximate the
expected value and variance of index without any statistical
closed form representation. Later on, a statistical closed-
form density function for the random variables of interest,
Loss of Load (LOL) index in hours and Unserved Energy (USE)
index in MW-Hour are developed [16,171. The density
functions are especially useful when the effects of LOL and

USE are nonlinear [171.

In this part, some recent studies related to the
modelling the system performance in terms of reliability

indices will be presented.

In 1999, a mathematical model for use in the simulation
of power generation outages was developed by Baldwin et al..
{2]1. They described outages as random variables and compared
the past model with a stochastic model that they proposed by
means of simulation. This paper was followed by many more

others in which stochastic models for power systems were



improved [11-13,16-19,22-25,28-301. Wang in 1979 estimated
the parameters of unit cutage data from recorded outage data
£183. In 1981, Sahino3jlu developed statistically asymptotic
closed-form density function for the random variable, Loss
of Load index by using both classical and Bayesian approach
after which Sahincglu et al. proposed an algorithm for
major generating reliability indices by an analytical
approach in 1983 [16,171 . Also, the paper of guidance in
this study is presented by Patton et_al. (12,131 in which
operating considerations in reliability evaluation were
presented through analytical and simulation methods
respectively. The main analytical contribution in this
thesis to the model is the assumption of natural dependency
among units, Multivariate Exponential Distribution which is
selected as hypothetical distribution for up and down times
has been primarily introduced by Marshall =t al. {101 in
19467. In 19746, Proschan et al. derived the Maximum
Likelihood (MLE) and Intuitive(INT)-estimators of parameter

vector Q to represent the failure and repair rates [151.

1.3. Some Basic Concepts and Definitions

1.3.1.System Reliability Concept

Equipment or system reliability is often expressed as
the probability that the device or system will perform its

intended function in the required mode for the time period



envisaged under the specific conditions encountered [231.

Generating unit capacity reliability has two basic

forms; i) Static Reserve and ii) Gperating(Spinning}) Reserve

Static reserve studies are concerned with determining
the installed reserve capacity sufficient to provide for
unplanmmed and planned ocutages of generating units and is a
capacity that must be available to meet the lead changes and
also capable of satisfying the loss of a certain portion of
generating capacity. Operating(Spinning) reserve varies by

the lapse of time during system operation according to need.

A forced outage describes the state of a component when
it is not available to perform its intended function due teo
some chance event directly associated with a component,
requiring that component will be taken ocut of service
immediately or it may describe an outage caused by improper
operation of equipment error. A scheduled ogutage is an
ocoutage that results when a component is deliberately taken
out of service at a selected time usually for purpaoses of
construction or repair £171. A system comprising such
individual generating components assigned to generate
electric power to meet a given load forecast is the model

under study.
The paower reliability indices to be calculated are:

a. Loss of Load Probability (LOLP): It is the probability

that system load exceeds the available generating caparcity



under assumption that peak load of each haour lasts all

hour; that is, load level changes fraom hour to hour.

b. Frequency of Loss of Load (FLOL): It yields how often
per hour the system is expected to experience a Lass of Load

on the average.

C. Unserved Energy (USE): It is the expected magnitude of

loss aof energy in MW-hr for given period of study.

d. LOLP multiplied by the period of study gives the
expected number of hours in which capacity deficiencies
exist in a single area network, not interconnected with
others. Loss of Load Probability is the major index which is

most representative of the system reliability measures.

1.3.2. System Simulation Concept

Tﬁe model developed here contains an application of
Monte Carlo Simulation Techniques far calculating the
reliability indices of an electricity power generating
system. The simulation approach is consequently simple. In
this probabilistic simulation approach, the stochastic
elements of the system are represented via probability
distributiaons and random observations are drawn from these
distributions. Simulation analysis may be regarded as a
natural and logical extension to the analytical and

mathematical models [14]. There are many situations which

o~



cannot be represented mathematically due to the stochastic
nature af the problem under study. For many situations
defying a convenient mathematical formulation, Monte Carlo
Simulation Method is the only tool that might be used to
cbtain relevant answers. This process is repeated in such a
manner as to mimic the flow aof time and hence, statistics on
the simulated operation of the system are collected

throughout this process for subsequent analyses [13,141.

Though this method may appear crude, it has been shown
to be one of the most powerful and effective tools of system
analysis. Currently &0% orc maore of the operations research
systems studies in industry employ Monte Carlo Simulations
as a method of analysis [8,7]1. The primary criticisims
of the methad are that it is expensive both in modelling and
computer costs, and that one must often be skillful in
collecting and analyzing the resultant data in order teo

obtain valuable information £5,8,9,141.

In a digital computer simulation, representation of
system is accomplished thraough the construction of a
computer program which describes the system under study to
the appropriate computer configuration. This representation
will be in the form of &8 Fortran and Pascal digital
programs. Especially in our study, Pascal is suggested for
further usage since it has some goad facilities such as

speed and systematic programming in usage [351.



1.3.3. Analytical System Madelling

Along with the so far obtained historical ocutage data
caoamprising times to failure and repair of the generating
units, a number of unit and system ocperating considerations
have important influence on system reliability. Hence, they
must be modelled for accurate reliability index calculation.
The most important of these operating considerations are:

1. Spinning Reserve Policy on real-time basis. Explicit
maodelling of unit start-up faillures distinct from running
failures.

2. Upit start-up and shutdown in the course of
operation to satisfy operating reserve policies and unit
commitment priorities and rules.

3. Interdependence of the generating units through what
is called "duty cycle"” of each generator. Piroper treatment
of unit duty cycles permits accurate consideration of unit
exposure to unit failure due to rumning failures and
starting failures. Relevant information on "duty cycle" is

available in Reference [121 on p.2856 to detail.

The system model should include both elements of
capacity and elements of load. Furthermore, i1t must be
capable of developing on hourly basis the forecast system
loads and it must provide for a hourly disposition of the
generating capacity. The performance of a single generating
unit may be described in terms of a sequence of periods of

time i.e. up periods that alternate with down periods. The



system goes from up state to daown state with a constant rate

Qy from down to up with rate B as in Figure.l.

Figure.l. Two-state Model of a Gernerating Unit

During the up-period, the unit is available to meet
the load, while during a down period the unit is to be
repaired and hence it is unavailable. Units may be idle for
economy reasaons,; but these ecaonocmy outages need not be
included in the forced ocutage model. A single unit has a
capacity that is entirely available or entirely unavailable.
Thus an available capacity history of the unit can be
graphically expressed as a function of time "t" that has
elapsed as of a certain initial instant as in Figure.2. A
single ocutage history contains recursive occurrences of Time
to Failures (TTF) and Time to Repairs (TTR). First Time to
Failure (TTF,) includes the time periocd from O to t.. The
camponent is in up-state and it works properly with capacity
Cap: up to the time in which first gutage occurs. Similiarly
first Time to Repair (TTR,) includes the time period from t,
to t=. In this interval, the component is in down-state and
it should be repaired immediately. Therefore random
occurrences of such TTF’s and TTR’s constitute an “outage
history"”. The collection of all poassible such historieg is

called a stochastic (chance or random) process.
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Figure.2. A Single Outage History

1.3.4. Choice of the Exponential Model for Outage Data:

In late fifties and early sixties (1959), C.J.Baldwin
et al, Tfor the first time have extensively studied the
mathematical model for the failure and repair times in their
Pioneering paper series " Mathematical Models for Use in the
Simulation of Power Generation Outages, I-Fundamental
Considerations II-Power System Forced Outage Distributions"
C21. In this leading ﬁiece of work, the authors suggested

the use of Exponential Distribution model for the up—-period



and down—-period durations in Part I on p.1856 and in Part
I1 on p. 1258, in addition to which they proposed and
justified a number of "convenient checks of the suppositon
that a set of data comes from an exponential population”. A
decade later in the late sixties in 1968, A.D. Patton, in
his paper "Determination and Analysis of Data for
Reliability Studies” [19] studied the "persistent-cause
forced outage durations" of the various system components
such as generators and transmission lines to suggest the use
of Exponential model, in which he stated the upper and lower
confidence limits of the Expanentially distributed outage
durations, due to Epstein’s (1959) papevr entitled
"Estimation from Life Test Data", Wayne University, Detroit,
Michigan. Assumption of exponential maodel for up and down
times was also considered by Gaver and Mazumdar in 1967
£231. In late seventies and early eighties (1979), Wang
conducted Statistical Goodnrness of Fit Tests in his paper
"Estimation of Generation Unit Outage Parameters From
Recorded Outage Data” [181 on p.3-5. As a result af his
analyses, he concluded that "in-service" (TTF) data behaved
unanimously with respect to Exponential Distribution whereas
"forced—outage” (TTR) data indicated Exponential and Uniform
Distributions as candidate models among which the former was
preferred due to its convenience and constant rate. In 1981,
Sahinoglu in his Ph.D. dissertation [16] on p. 12-15,
pointed out the Goodness of Fit Tests he carried out for

twelve different generating stations provided by Public

i1



Service Electric and Gas Company [21]. As a result, the
Exponential density model proved most favorable as a vresult
of employing Statistical Software (GOFT) of Goodness of Fit
Tests in which Kolmogorov-Smirnov and Cramer-von—-Mises
nonparametric tests were employed to judge whether a
hypothesized candidate distribution was a good fit or not.
It is worth to mention that other candidate distributions
were sometimes eligible such as LogNormal or Weibull along
with the Exponential. However, due to its mathematical
convenience and memoryless property, the Exponential failure
madel was preferred far the mentioned analytical studies.
Moreover, in 1983 and 1984, a series of Goodness of Fit
Tests were conducted by Sahinoglu and Gebizliodlu on several
coal-gperated power plants in Turkish Interconnected Power
System using the same Software (GOFT) as a result of which
most of the power plants displayed Exponential behaviour
along with some other candidate models such as LogNermal and

Weibull £221.

Hences, by the virtue of literature reviewed above,
failure and repair times are reasonably assumed to vary
according to a Negative Exponential Distribution with rates

Q@ and H respectively. The following natation holds true:

Q: failure rate
B2 repair rate
m: Mean Time To Failure(MTTF) :1/Q

r: Mean Time Ta Repair(MTTR) :1/4



Then the time dependent solution for up and down times are

given £2,251 as in the below equations.

P(Up)= ~————- + —————— exp{-(Q+prt2 (1)

P(Down)= ————-—= - —————— expl{-(Q+p)t> (2)
H+Q Q+p

In the long-run,; as time t goes to infinity (@),

P(Up)=~————- = Availability (3

P(Down)=————- =Unavailability 4)
p+Q

Each component can have different failure modes. Each
failure maode follows a particular failure distribution
function. Since, the failure and repair time density

functions are Negative Exponential, then @ and p are taken

13

constants so that the system can be modelled as Markov Chain

with discrete states (up,down) and discrete index space (in

discrete hours). Some properties of Exponential Distribution

are outlined as follows:



la

1. Memoryless property of Exponential p.d.f. renders the
failure time naot to depend upon the length of the unit in
service.

2. The average of any exponentially distributed random
variable is equal to the reciprocal of rate parameter. Thus
the failure rate is inverse of MTTF. The single parameter

convenience is a recognized mathematical convenience.

It should be noted that the failure and repair rates of
the generating units are the most important input quantities

required in power system reliability analysis.

As it can be observed in Figure.3 the system model
contains N many generators having corresponding failure and
repair rates respectively. The following figure is the
configuration of a set of components where each companent
has an individual outage history. But these outage histories
are not independent and occuirrences of individual outages
will affect the whole system. Therefore vectors of TTF and
TTR to represent failure and repair times for N many
generating units are drawn from Multivariate Exponential
Distribution (MVE) as a cansequence of discussions in
Section 1.3.4 where the individual units possess Exponential

Density for their respective times to failure and repair.
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Figure.3. Outage History for M-units

The units whose capacities are prescribed, start
independently at time zero. Peak load at each epoch of time
(hour) is known. The model reasonably assumes that load
changes discretely on the hour and is constant throughout
the hour [11,128]1. Thus the system load is currently depicted
in the model by specifying an’hourly load cycle for the
specific study period to be simulated. The system does not '
consider preventive maintenance in this study for simplicity
although it can be incorporated in further research. Thus,
each component is left in the service until it fails.

Component repair is assumed to bring the component intoc a
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state as good as new according to "useful life period”
characteristics described in the form of a bath—tub curve

£t231.

1.4. General Purpose of the Study

In this research, the aim is to estimate the
reliability indices of an electrical energy producing
system by using Monte Carlo Simulation Method. The system
caontains N generating units with kinown failure and repair
rates and capacity values. Random occurrences for the
generating units of consideration are the failure and repair
times which are cbtained fcom Multivariate Exponential
Distribution (MYE) by means of simulation techniques. The
MVE is the general multivariate law to present N many
dependent (independence is special case) generating units
with the presence of dependence among units. Also. some
operational constraints such as spinning reserve level and
start—up failure probability are introduced and the system

is modelled according to these new constraints.

Main contributions conducted in this study are threefold:

i to consider the dependence stiructure between
generating units in the form of a Multivariate
Exponential Distribution,

i) to model the system by Monte Carlo Simulation Method
as compared to an analytical method [11,121.

iii) to execute the simulation programs in Pascal



pragramming language [3,7]1 for larger power systems
with programming case and speed as compared to

Fortran results.

An examplary and illustratory system is chosen to
demonstrate the validity of the simulation technigque and

the existence of interdependence among units.

17



IT. STATISTICAL METHODOLOGY

2.1. Random Number Generation and Monte Carlc Simulation

Simulation is a technigue for using computers to
imitate the operatione of various kinds of real-world
facilities or processes. The facility of interest is usually
called a system, and in order to study it scientifically, we
often have to make a set of assumptions about how it warks.
These assumptions, which usually take the form of
mathematical or logical relationships, canstitute a madel
which is used for trying to gain some understanding of how
the corresponding system behaves. In Simulation, «~& use a
digital computer to evaluate a model rumerically over a time
period of interest; and data are gathered to estimate the

desired true characteristics of the mcdel.

In gther words; Simulation is a numerical technique for
conducting experiments on a digital computer, which inveolves
certain types of mathematical and logical relationships
necessary to describe the behaviour and structure of a
complex real-world system over the extended periods of time
[?1. Simulation has often been described as the process of
creating the essence of reality without ever actually
attaining the reality itself. Simulation can serve as a
"preservice test" to try aout new policies and decision rules

for operating a system, before running the risk of

13



experimenting on the real system. It can be used to
experiment with new situations about which we have little or

no information, so as to prepare for what may happen [l41.

Monte Carlo Methods comprise that branch of
experimental mathematics which is concerned with experiments
on random numbers. The simplest Monte Carlo approach is to
observe random numbers, chosen in such a way that directly
simulate the physi;al random processes of the aoriginal
problem and refer to the desired solution from the behaviour

of these random numbers.

The term random number or variate i1s used to mean a
real-valued function defined over a sample space associated
with the outcome of a conceptual chance experiment. Randam
numbers are stochastic variables which are uniformly
distributed on the interval £0,11 and which show stochastic

independence.

There exists many random number generators in the
literature. In order to obtain a random sample which is
generated without having any repetition or biasedness in the
process of generation, it is important to use a reliable
Uniform (O,1) random number generator with a very long
cycle. The simulation model in this study employs a powerful
random number generator called SUNIF [11. It starts with a
specified initial seed. Changing the value of initial seed
restarts the generation of random numbers. Subroutine SUNIF

is available in the Appendix.3.



Random aspects of simulatian results in considering the
generation of random variables from a statistical
distributicon. There exist some techniques far generating
random numbers which depend on the distribution from which
we want to generate. But for simplicity, the one that is

used in this study will be explained [9?]1:

Inverse Transformatiaon:
This method requires that the random variables are
continuous and cumulative distribution function is
invertible., This is simply relating the Uniform randam

variable "u" to the target distribution F(x) under question.

Then the random variate X*=F-1{u) is calculated,
where u is the number drawn from Uniform(0,1) distributiaon

by simple inverse transformation.

Since the attention in this thesis is focused on
Negative Exponential Distribution, we will concentrate on
how to draw Exponential deviates [81. Negative Exponential

Distribution has density function

{ R exp{-Qx2 x20 , Q>0
fix)= (S
{ O otherwise

Hence, the cumulative distribution for Exponential Density

is given by,



Fix)=l-exp({(-Qx2 (&)

Applying inverse transformation method which means to relate

F{x) to the random number u and solve for X*,: i.e.s

u = l-exp{-Qx2?

X*=—(1/)1In{1—-u)

where u is random variate generated from U(0O,1) and X* is
the exponential random variate. Since u is a value between O
and 1, then (1l-u) will also have the same range: between O
and 1. Therefore (l1-u) has also Uniform(O,1) probability

distribution and finally the desired target random variate:

Xe==(1/02)1ntua) {7)

The algorithm for Exponential Distribution is

straightforward. Firstly, a uniform random number is drawn

fram Uniform(0,1). Taking the logarithm of this number and

dividing by -Q gives the Exponential random deviate.

2.2. Multivariate Exponential Distribution

In many reliability situations, it is more realistic

to assume some form of positive dependence among camponents,



although most commonly they are accepted to function as
independent. This positive dependence among camponent life
lengths arises from common environmental stresses and shocks
due to components depending on comnon sources of paower
[3,10,151. For examples let us consider an electrical power
generating system where the units start independently.By the
lapse of time, their failure times become influenced by each
other because of interdependence. Another example is oil
wells on a petroleum search area. The wells seem to produce
0il without having any connection to the others, but it
should be considered that they have dependency through the
oil stream underground. Machines in an assembly of a
manufacturing plant may well be functioning in an
intervrelated mamer as far as failure times are concerned.
Therefore, the system that we consider in this study is
assumed to have interdependency among units. And then,
failure and repair times are assumed to behave with respect
to the Multivariate Exponential Density which contaiuns a
random vectar of all units with their respective rates and
additionally, a dependence parameter Qo defined as follows

£3,10,191:

DEFINITION.2.2.1

tet T=(T:3T=3...2T.} be a random vector with rnonnegative
companents and s. the set of vectors {(s=(5.3Ses.«35}? in
which each s.=1 or O but s£(0,...,0). Let 9=(Qo: s€5.) be a

(2¥—-1)—-dimensional parameter vector such that 0£{Q.<= for
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s€ S., but, for each fixed i, 1=1,...sk;s Q20 for at least
one s such that s.=1. Then T has the (2“—-1)—-parameter
Multivariate Exponential Distribution if the joint survival

probability is:

P(TeotrsTadtaseensTudtu)= F(E) (8)

F(t)y = ExpE—Z Qiti“ z Q‘J max(t;,ta)— p 9141 max(t,,tj;t1)—
.

ERRt) LTk

" e na —Qg max(t;,ta;..,tk)] t;zo; i=19.-.-yk
where t=(t1,te,.-,tk}-

The k-dimensional distribution defined in Equation.8
contains (2%-l)-parameters. But, (k+l)-parameter version is
mainly caonsidered since the estimation techniques can be
more clearly presented and understood. Also, results are
slightly more caoamplete for the (k+l)-parameter case.
Specifically, (k+l)-parameter MVE is defined as follows

£191:

DEFINITION.2.2.2

Let T=(Ti:sTesrec.xT) be a random vector with nonnegative
components. Then, T is said to have a (k+!l)-parameter

Multivariate Exponential Distribution if

P(Tedt:sTedtes..asTudtud)= F(E) (9)



F(t) = expl-L O, t, —Qomax{t, stes.-stu)] £,203 i=l,....3K
- 3

QEF 3 A=(N1302rsece.-30u3Rc) 3 EF=LQ 2 0L Q, £ @y Qa+Q:202.

]

where F(t) is a joint survival probability functian.

In more detail, suppose that the compornents of a k-
component system die after receiving a shock which is always
fatal. Consider the shock from source “i" as governed by
Poisson Process (2i(t), t20, i=1,28s...3k? with parameter Qi,

2

where the number of shocks from source "i"” is experienced
during LO,tl. A shock in Z,(t) which is a mutually
independent Poisson process is selectively fatal to
caomponent i, while a shock in the Z2o{(t) process is
simultaneocusly fatal to all k-components. If Uostlya. ..t
denotes first event times in Zal(t)sZ(t) s Z(t)
respectively; then T.=min(U,,U:)s where Uo,U, are
independently distributed identically Expaonential and T.
denotes the failure times. This property results in the
Theorem.2.1.1 [15] to follow which is a repfésentation of
Us*s in terms of independent Exponential variables for

{k+l)-parameters even though a (2*-1) version has been

derived in {31 but nat used here.
THEOREM.2.2.1

T is distributed as MVE(k+1,Q) iff there exists (k+1)
mutually independent Exponential random variables

| 24
U,2 with corresponding failure rates Q, such that

L=

x=min(Uo,U;) i=1,E,....,k.
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This theaorem reflects a very impartant praoperty of MVE
in the sense that the maodel is represented in terms of
independent Exponential random variables. In particular,
one-dimensional marginals are Exporential and two
dimensional marginals are Bivariate Exponential where these

facts are proved and de%ived by Barlcw and Praschan in [31.

In the case of a series system (which functions anly
when all items function), system survival probability is
greatest in the case of dependence. On the ather hand, in
the case of a parallel system (which fails only when all
items fail), system survival probability is greatest in the
case of independence. That is, the correlation ceoefficient
which is an implication of dependency among units is also a
function of dependency parameter Q.. Correlation
coefficient, denoted by & highly depends on dependency

parameter Qo. That is,
P(Us € min(U; st=sUsy. .. b)) )= = ————- (10)

where Q= Q; +l=+0x+.. ..+ +a

By the virtue of Equation.10, it can be observed that
as "k" number of generating units goes to a large number,
the sum Q also goes large as a result of which the
correlation coefficient 6?0 becomes smaller and smaller

eventually converging to a bound; hence so does the
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relationship between k and &§ . A thearetical development
beside this heuristic relationship is beyord the scope of
this thesis. On the other hand, as the number of the
observations "n" collected on each of the k constituent
units is increased, i.e. the more observation is sampled,
the more information on Qo and on Q. will be acquired
yielding more precise information on Q and &§. Thus, the
numerator and denominator terms of the § will equally be
affected in terms of increase or decrease, as a result of
which the “n" does not bear any positive or negative
responsibility on the magnitude of the correlation
cogefficient &, whereas "k" does. In brief, dependence will
reduce to an upper bound if the number of compaonents in the
system is ircreased, and so will the caorrelation coefficient
converge to an upper bounrd. However. correlation coefficient

will not be affected by the number of observations.

If the failure times of the system are available,
parameters in the vector Q can be estimated by using derived
INT(Intuitive)-estimator formulas [13]. Alsc maximum
likelihood estimators are available. But the solution of
MLE’s reguires same iterative techniques since they cannat
be expressed in closed-form. Alternatively, INT-estimators
are developed from intuitive considerations faor both types
of Multivariate Distribution. The following is the formulas

for (k+l)-parameter model where INT-estimator of "i" is
denoted as 2,7’ and INT-estimator of dependence factor is

denoted as Q<7 7,
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The sample values t, where j=l,....n, as '"n” k-tuples
aof failure times from n many k-component parallel systems on
test are considered. For the statement "Component p fails
due to an event in the Z,(t) process in the underlying fatal

shock model"”, definitions in the estimators are as follow:

n,= number of times component i aobserved to fail before the

last failure.

Ne= number of times simultaneous failure of at least two

components is observed.

Y

Nol{i)= number of times component "i" is observed to have
failed simultaneously with one or more of the other

components.

n-¢=’= number of times component "i" is observed to fail

last, but not simultanegusly with any other component .

Then INT-estimators derived by FPiroschan and Sullio £131 are

Ny
Q, ¢T2= [nx“' ________ ng<s> ]/ Tt,,
Natnol(il
Na
= et e - n / z tk’ i=1,-n-’k (11)
n._ni(c)
b No(i)
Qo¢T2= [no + X Nyt¢=? ] / T tiwry
ny + nNo(i)



o (LY
= [n - L e Ny <=’ ] VAR Y AP TR (i)

In fact, INT coincides with MLE for the special case
n,=0. Regarding asymptotic properties, it can be shown that
INT-estimators converge to Q almost surely in the quadratic
mean that is INT-Estimator is strongly and mean square
consistent. This estimator has potential use as an
alternative means of estimation and it is the first iterate
in the iterative procedure. Also the limiting distribution
of INT-estimators follow straightforward application of
multivariate central limit theorem. Infact, INT(k+1) is not
a special case of INT(2%-1) for k>2. Calculation of the
limiting distribution and efficiencies of INT relative to
MLE seem impractible for MVE(2%-1). As it is mentioned
before, these estimators require recorded failure and repair
times. But, a real-world example taken from IEEE Reliability
Test System [&6]1, is considered in this thesis where the
inputs of the system are the failure and repair rates and
capacity values of the generators. Available information on
this data set is given in Qppendix.h. Therefore, the
estimation of parameters is out of scope of this study and
the parameters which are given as failure and repair rates
of the generators with an inherent dependency parameter are
simply input. Hence, unknown dependency among units will be

controlled by assigning a range of values to dependency

23
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parameter Q. which is in the range from minimum value to
maximum value of rates of the generating units. Otherwise,
given certain system data containiag "n" failure and repair
times for "k" units, the individual rates ard dependency

parameter can be smoothly calculated by the INT-estimators.

After defining the multivariate distributional law
used in the model,; we will consider how to generate random

sample from a target multivariate distribution.

2.3. Random Variable Generation firom M.V.E.

A simulation having any randam aspects at all must
involve sampling or drawing random variables firom one or
more distributions. In this study we assume that the
distribution has been alieady specified as Multivariate
Exponential including the values of parameters and we
address the issue of how we can generate random variables
with this specific distribution in order to run our

simulation model.

The basic ingredient needed for every method of
drawing random variables from any distribution aor random
process is a source of i.i.d U(Q,!) 1 andom variables. For
this reason, it is very important that a statistically
acceptable and reliable U(0,1) random number generator be
available. Without an acceptible random number generator, it
is impossible to generate random variables correctly from

any distribution. In this study, the random numbers are
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obtained from a generator called SUMIF (11 in which it is
required to start with an initial seed. For different seeds,
the simulation is repeated to converge to a value and obtain
a measure of variance for accuracy check. The choice of the
seed value does not depend on any crule. Arbitrarily chosen
seed values are considered to indicate the sensitivity of

results with respect to different values of seed.

There are many technigues for generating randam
variables, and the particular algerithm used must, aof
course, depend on the distribution form which we wish to
sample. lnverse transformation which is used most frequently
when distribution function has a closed form and is
invertible will be dealt with [?1].

In this study, an algorithm for generating randam
deviates from MVE is developed. Since it has a dependence
parameter and maximum term in the survival function it would
be hard to derive the inverse aof the distribution function.
Then by Theorem.2.2.1 which chooses the minimum of
independent random variables from Exponential Distribution
(U,) and the variable generated firom dependence pairameter Q.
{(U>) is used to have, for example, M variates from N-
generating units with respective failure and repair rates.

An algorithm for simulating MVE given by Theorem 2.2.1.

1. Set iteration number IT=1
2. Generate random deviate u from U(0,1)

3. Set Uo=—1n{u)/Qa
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4. Set U,=~1In(u)/Q, for i=1l,...sN=Number of units
5. T.=min{Uo,U,) for i=1,...sN=Number of units
. IT=IT+1

7. Go to step 2 if IT<KNIT=Number of itevations

This is a reasonably fast algorithm so long as
depending on the value of Q.. If Qo is chosen as a very
small number which implies the independence of generating
units. Hence; Uo=o exp{—-Q«x? is large and min(Uos,U.) will
always have the value obtained from U,. Increase in the
value of dependency parameter Q. will lead to increase in
the dependency since min{U,,U;) will not always yield U, but

may also yield U..

2.4. Monte Carlo Simulation of the Electric Power System

The natural dependence of units on each other in
meeting the load cycle, influences the units”™ forced outage
rates during the real system operation. Operational
constraints such as spinning resel ve, unit start-up failure
probability and unit interdependence are incorporated to the
physical model of electric power generation. Alseo, Monte
Carlo Simulation method offers an alternative means of
reliability index calculation which may not require the
simplifying rigid assumptions needed in analytical methods

such as the exponentiality assumption of TTF and TTR.
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The system consists of N different generating units
with prescribed failure and repair rates. Demand occurs
every hour and the level of demand, given in an historical
array » is assumed to persist for the entire hour [1l1,121].
In the failure case the generator is shut-down because of a
forced ocutage and then repair time is drawn. The residence
times for down period may follow any desired p.d.f Gamma,
Weibull, Erlang. However, Goodress—of-Fit tests performed to
a set of collected data taken from generating systems has
indicated that Exponential Distribution is the best choice
for both repair and failure times as it is mentioned to
detaillbefore [161. The problem is then one of multivariate
situation by generating the sample fram MVYE when the whole
system is considered. Then, one main contribution to the
system reliability calculation is the assumption of a
multivariate distribution which is not possible to
incorporate in analytical formulae [12]1 as directly as

facilitated, for example, by MVE in this study.

The sensitivity of generating system reliability
indices to various coperating considerations and constraints
are investigated. A set of three cases is studied for the

sample system [121.

Casel contains the classical idealizing assumptions and
igs the basis for comparison of the other cases which

systematically replenish other operating considerations. It
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assumes that all units run continuously except when in a
state aof total ocutage. In the simulation process, each one
hour is divided into more refined increments. Indices are
calculated by scamning the time period with these small
increments. For obtaining more accurate results, the system
is simulated thi'ough many iteratious. More precisely, a
multivariate exponential vector is generated for attaining
the failure times. Similiarly 1epaiv time vector is dirawn.
Up to the time to failure(TTF) the available energy {(in Mw)
is equated to the capacity of each generatoy respectively.
During the time to repair(TTR), available power is regarded
as zera. This process is repeated until the period length is
finished. The assigned study period is divided into mutually
exclusive time inciements. For each "1/200%*"" incremental
hour, it is checked to see if there exists enough capacity
available to meet the demand of the system customeis, i.e.
if "Total Capacity - Capacity on Forced QOutage” at that
incremental hour is still greater than the load demand. When
number of increments in such defined situations are summed,
Expected Loss of Load (ELOL) is obtained. Loss of Load
Expected divided by the total period gives Loss of Load
Probability. If the number of times that LOL occurs is
counted, then Loss of Load Frequency is determined. Finally
expected unserved or unsupplied eneigy(USE) in Mw—Hr
yielding the magnitude of severity of LOL is calculated by
calculating the area of deficiency ini Mw x hour.

In Casea2, the hourly peak load is increased by
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spinning Megawatts as well as interdependence of

generating units is introduced. The spiuning reserve is

assumed to be distributed over all operating units, but

the specific load carried by each individual unit is not

defined. The effect of spinning reserve level is for the

sample system to examine the irelationships between

spinning reserve level and long-term average system

reliability. The simulation model is performed according to

the new level of hourly peak load. Loss of load on the

average, frequency of loss of load, and unserved energy on

the average are calculated in the same manner as in Casel.

Figure.4 is the pictorical representation of spinning

reserve level onto the load. The original hourly peak load

level is increased by X which rep) esents the value of

spinning reserve level MW units at all increments of hour

shown as dotted line in Figure.4
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Figure.4 Spinning Reserve Level for Generating System



Cased contains start—up failure probability and start-up
failure delay due to each start-up repair. It is assumed
that units may fail on start-up and further failure
mechanism prevails for units already in service. Whenever a
unit is started to replace a failed unit, a start-up failure
delay may be imposed. In the simulation process, given
the start-up failure probability, a uniform randem number
identifies that there exists a start-up failure. If the
uniform random number drawn is less than the start-up
failure probability, the repair time is prolonged as much as

the start-~up failure delay time which is an input data.

Another sensitivity study is included simultaneously on
the degree aof dependence from no-dependence(fo=toc small) to
more dependence gradually enhanced; Qu=0Rci>31 Qo= «>
Qo=mesn to denote first order statistic or equivalently
minimum value of rates, first quartile and the average of
rates of Q. respectively, corresponding to the constituent

generating units in the electric power system.



ITI. APPLICATION AND DISCUSSION

[n this chapter, we present a rreal system application
of the so far mentioned and suggested methodology for power
system reliability indices of the aperating system
compased of 32 units and 28 hours of operating time with
corresponding failure rates Q. repair rates P.», capacities
of each generatar, start—-up probabilities and start-up delay
times of each generator. Spinning reserve lgad value is S0
Mw and start—-up failure occurs with probability 0.03. System
peak loads prescribed for 28 hours are considered for the
sample system. The data, taken from IEEE Reliability Test

System (6], is explained in more detail in Appendix.&.

Demand accurs every hour and the level of demand given
in an hourly array is assumed to persist for the entire
hour. Whenever a failure which denotes shutdown of the
generator by a trouble occurs, repair is necessitated.
Simulation model is applied to two examples. Examples depend
arn the same input data except that one contains the first 1é&
hourly peak load values of ariginal data listed in
Table 3.9 and the second has the total of 28 values. Main
reason to present the same problem with different number of
hourly peak load values is to show the improvement of

simulation results when the period of study is prolonged.



By analytical methaods this sample system has been
modelled and the reliability indices have been calculated
through a caomputer program which is programmed according to
the analytical model presented in [121. Analytical values
written in the first columns of the tables are obtained
along with the simulation study from a digital computer
program written in Fortran-IV, programmed by Sahinoilu =t
al. 113, In this studys for the same system, favorable
index values are obtaimed by Maonte Carlo Simulation Method
in which MVE distribution is utilized as a basis of

dependency.

Two praoblems are considered. One contains the first 16
hourly loads of total 28 hours and another includes all 28
hourly peak loads. Convergence in the simulation results is
then observed. Main comparison is based on the proximity of
simulation results to analytical results for different
combinations of seed values and degree of dependency. For
Casel, Case2 and Case3 the values of reliability indices are
tabulated. Each case is simulated for different values of
dependency parameter Q. from least dependent to mare
averagely dependent case where Q.—average is taken as the
mean of all rates. Tabulated simulation values are plotted

and comparison is conducted according to observed trends.

Simulation technique for the sample system is
praogrammed in Pascal language to save execution time and

cast. Compared to Fortran—1V in the main frame, Pascal has
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superiority of speed (even more with Turbo-Pascal) on
Fortran—-IV and is more systematically programmable (5,71.
Then it will he possible to increase the number of
iterations in the simulation to get a satisfactary
convergence. Advantages of Pascal in the simulation model
will be explained in more detail in the next section.
Tables 3.2 to 3.4 and Tables 3.9 to 3.7 cantain bath
simulation and analytical results. Figures 3 to 7 and Tables
8 to 10 are the pictorial representations of Casel,Case2,
Caseld for 16 hours and 28 hours respectively. Notations in
the tables are as follows:

EFLOL is for expected value of FLOL and SFLOL is for
standard deviation of FLOL. Similarly, ELOL denotes expected
value of LOL and SLOL is for standard deviation of LOL. EUSE
denotes expected value of unserved energy and SUSE denotes
the standard deviation of USE. Different levels of
dependence are represented by keyword FLAG: Hence, FLAGL
means that there exists independence among units which is
supplied by taking the value of dependency rate (L. toa
small. FLAG2 represents minimum of the rates of generating
units. FLAG3 is the first quartile value of these rates and
FLAG4 denaotes the average value of the same rates. Seed
values in the table are related to the i.i.d. uniform U(O,1)
random number generator. A subroutine SUNIF generates
i.i.d unifaorm random numbers. &SUNIF requires an initial

—— seedto start-—It takes a maximum of 2=° and minimum of 1 as

initial seed value. To check the accuracy of simulation
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results to the analytical ones, a reasonable range of seed
values are employed. The graphs of reliability indices
versus seed values indicate the various fluctuations of

convergence to analytical results schematically.

Example.3.1

In this example, the number of hourly peak loads is
reduced to 16 hours listed in Table.3.1. Problem contains
the first 16 hourly peak load values as the test system from
an electric power generating system [&61. Inputs are listed

in Table 3.1.

For Casel, Table 3.2 contains both analytical and
simulation results. In the first cases; like a default run,
there is anly one level of dependency parameter which
represents the independent case, i.e. the dependency
parameter is chosen a such small value that the random
number drawn always will be the one obtained from
correspaonding rate Q,. Different values of seed are used to
cantral the accuracy. All approximate values in Table 3.2
are averaged to the exact results although they tend to
decrease when the value of seed is increased. Also, their
variances should be considered since there may exist * 3¢
deviatiaons from the analytical solution. Pascal results
executed for seed value 2'*-1 and for independent (FLAGL)

are very claose to results obtained by Fortran-IV.



Figure.3 shows haow much fluctuations occur around analytical

value for all indices.

All indices underestimate the analytical values, but

there do not exist large deviations from analytical ones.

The results of Case2 are shown in Table 3.3
which consist of both simulation and analytical results
with different values of seed and different levels of
dependence parameter which ranges from smallest to average
value of rates. For different seeds, the simulated values of
indices average out to the analytical solutiocns. That is,
for any particular index obtained by simulation technique,
if the approximate values are averaged ogut with respect to
seed values, this average value will converge to the desired
(analytical) value in a close order of magnitude as shown in
the average row of the tables. When the dependency parameter
is increased to the value of first quartile, the simulation
results get closer to the analytical. This indicates that
one can omit a certain degree of dependence amaong the units.
But if the dependency parameter is increased more, the
values get larger than the previous results obtained in
FLAGL & FLAG2. Table 3.3 alsc contains Pascal results
obtained for Case2. It can be observed that the reliability
indices have close approximations to Fortran—IV simulation
results. Figure.b6 contains the plotted values of simulation
values for all indices and all flags. Faor EFLOL, FLAG2 and

FLAG3 converge to analytical caonstant-line. The other flags



have more fluctuations. For ELOL, FLAGZ2 and FLAG4 converge
up to the seed value 121, but they deviate between 12! and
2t'—1. Another seed value between these two can give a

better fit. Same conclusion for the graph of EUSE is

reached.

Similiar scheme is set up for Case3d in Table 3.4.
which has the same argument as in Table 3.3. Again, this
table consists of simulation results obtained for different
caombinations of seeds and flags. Although all combinations
produce favorable results, dependency parameter having value
around first quartile value will give relatively maore
accurate results indicating a subtle existence of dependence
structure. For different values of the seed, Pascal version
of Case3 gives the similar results with respect to the
Fartran—-IV version. Figure.7 is plotted for this case.

In the figure, EFLOL has relevant fit to analytical result
when dependence value is equal to mean value of rates i.e.,
FLAG4. Also FLAG3 has convergence to the desired line. For
ELOL, FLAGL and FLAG2 are claose to analytical line. Also.

FLAG3 gets closer to the said line.

For all cases the study period is divided into 200
incremental hours and the simulation is repeated 100 times
for obtaining convergence to analytical. This can be
enhanced for more accuracy if more computing resources such

as time and storége space are available.
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Example.3.2.

Mow the problem contains the total of 28 hours instead
of the first 16 hours as in Table 3.1. Different values of
seed and different values of dependency parameter for Casel,
Case@ and Case3d are simulated. Closer approximations than
Example.3.1. are obtained for each case. Simulation is
repeated 100 times and study period is scanned at "1/200 "
incremental hours.

Results for Casel are listed in Table 3.5. This table
contains both analytical and simulation results of the
digital programs in Fortran-IV and Pascal like in the
previous example and different values of seed are used in
the simulation. Figure.8 shows the plotted values for
ELOL,,EFLOL,EUSE. For EFLOL and ELOL simulation line is very
close to the analytical caontant-line. EUSE has also a strong
convergence to the analytical result compared with the
previous example.

Similiarly, for Case2, Table 3.é& and for Case3, Table
3.7 are constructed. These tables contain the simulation
results for different combinations of seed values and
dependency parameters, such as the pair (Seed=15, FLAGZ)
etc.» obtained in both, Fortran-IV and Pascal languages.
Same conclusions as in Example 3.1 are valid for Cased and
Case3. That is, dependency should be taken into account and
results of simulation for different seed values average out
to yield satisfactorily close to exact results. For Caseia,

Figure.9? is plotted. FLAG2 and FLAG3 give better convergence
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to analytical constant-line for EFLOL. For ELOL, FLAGL and
FLAG3 are not good fits, but FLAGZ and FLAG4 have very close
convergence to analytical resuylt shown as caonstant line.
Especially average value aof FLAGAG is almost equal to
analytical result. For EUSE, FLAG3, FLAG4 have good
convergence. Also, average value of FLAG3 is very close to
the analytical result.

For Cased, graphical representation is given in
Figure.10. For EFLOL, FLAG2 and FLAG3 give good convergence.
The other flags fluctuate much fraom the analytical line,
this is because neither too much nor too little dependence
is appropriate. Also, average value of FLAG2 is close to
analytical result indicating subtle content of dependence.
An interesting situation happens for ELOL. In the figure, as
it is observed, all flags have scatterred arcund the
analytical line. But, FLAG2, FLAG4 seem closest to the
analytical line. Meanwhile, FLAG3 has average value being

equal to the analytical result.

This two-step approach for the sample electric paower
generating system is performed to indicate how satisfactory
the convergence to the exact values are realized when the
period of study is increased. Comparison is exhibited by the
way of tabulation and figuration. Tables and figures in the
second example have shown that a better convergence will be
achieved if any increase in the period of study is

considered like that of ane year (87580 hours), usually



designated as the period of study in annual reliability

studies.

Casel differs from Case2 in the sense of reduced
generator running time since in Case2 units are cycled an
and aff to maintain the spinning reserve rather than
running continuously and being exposed to more fallures.
Also, start-up failures may have an adverse effect on
reliability indiceg in Case3 different than Casel and Case?2.
But the aim in this study is different, it is not one of
comparing the effects of constraints on system performance
but that of comparing analytical(theoretical) and simulation
results. It is proposed to prove the reasonable accucacy of
simulation with respect to analytical results for some
beneficial reasons such as, simplicity in modelling when
distribution is different from Exponential. Sos in general,
simulation results in three cases are relatively clase to
analytical results in "the order of magnitude"” sense.
Sensitivity of system performance is controlled by
simulating system for various seed values and various values
of dependence parameter. When the performance of the
simulation results after implementing some sensitivity
studies are compared with independent case, dependency
phenomenon among the units seems to have gained more
significance in the model. Especially Case2 and Case3 will
definitely require to have a dependency structure among the

units since it is studied in the analytical model [11,121.



Pascal is used as programming language for the
simulation model as stated before. Several simulation
languages such as GPS5S, SIMSCRIPT,GASP IV, SIMAN etc. for
modelling the reliability and availability of large scale
systems are available. But they present disadvantages as the
development of modelling is too time demanding and input -
output formats are not suitable for reliability problems.
Finally, the user must write some additional subroutines in
another computer language to take into account some events
that cannot be modelled with the simulator. The comparison
of Fortran—-1IV¥ and Pascal will not be in the sense of
comparing them in a general case. Caonsideration will be
focused on programming this specific simulation model

presented in this study for the particular given data.

Although Fortran-I¥ is the ocldest orne, Pascal is
currently developed and most widely used language for
teaching programming. Its popularity is due to [(5,7,8,%21:
i} The syntax of Pascal is relatively easy tao learn
ii) Pascal facilitates writing structured programs

that are relatively easy to read, understand and

maintain and hence reduce the required programming time.

However, Fortram—IV version of the model is written and
run to indicate the validation of Pascal in terms of speed
and saving cost. It has been indicated that Pascal which is

easy to be programmed and which supports structured

At



programming techniques are faster than Faortran—IV even if
main—-frame is used. Pascal preogramming of the simulation

model supports the results obtained from Fortran-IVY.



TABLE3.1. Values lnputted into the Original Model (111

———— — - — — o — o —_—— ot ot} o ot o o i s ot o At ot T Tt . m fhm m n  — = W it oA e e T e B v -

Generrator |[Failure |Repair Capacity jHour Load Demand
Number Rate Rate Value far 28 hours
(per hr)|(per hr)l (Mw)
1 Q.02 .98 = 1 2630.50
=] 0.02 0.98 12 2 2850.00
3 0.02 Q.98 12 3 2793.00
4 0.02 Q.98 1a 4 2736.00
5 0.02 0.98 1a 3 24647%2.00
& 0.10 0.70 20 & 2174.00
7 0.10 2.90 20 7 2137.0Q0
8 0.10 Q.90 20 B8 2523.28
? 0.10 0.90 20 q 2713.280
10 0.010 0.99 30 10 2658.%4
11 0.010 0.99 30 11 2604.67
1e 0.010 Q.99 50 12 2550.41
13 0.010 Q.99 S0 13 208%.146
14 0.010 0.99 30 14 2034 .90
15 0.010 0.99 30 13 2284.73
16 0.020 0.98 74 16 2456.70
17 Q.0290 .98 74 17 2407.96
18 0.020 0.98 74 18 2398.43
19 0.020 Q.98 76 12 2309.30
20 0.040 0.%6 100 20 18791.664
a2l 0.040 0.96 100 =81 1842.92
a2c 0.040 0.94 100 22 2385.45
23 0.040 Q.94 155 23 2365.00
a4 0.040 0.96 159 24 23513.70
23 0.040 Q.94 153 25 2642.40
a6 0.040 0.946 155 26 24l1l.164
27 0.050 0.95 197 27 1275.05
28 0.050 Q0.93 127 | 28 1923.79
29 0.050 0.95 197
30 0.080 0.9 +357
31 0.120 0.88 400
cr=d 0.120 0.88 400

. — T —————— — _————" — — —— — T — — _— — —— —— — T — — — — o, S o} Wkt ] i s Tt ot T AP T D " VD T W st W e



TABLE.3.2 Results for CASEl with 146 hourly peak load values

THE RESULTS OF ANALYTICAL FORMULAE REPORTED IN C1113:

e o - — o —— —— ——— - — ,  — ——— — A" e - — v P e S A et v A s S o AT P Tt Bl s o

o e e e e TS o S e e A T T i S S e e N S i S e e A e S e SRS W e T AR S S Gk T A e A A e e e e e e TR TS O TR TN T
4 g 2 Lt 4 1t A b P R S

- et e T —— — o ————— . — ) ——a o — — Y -t " . o it o Vo — — — T~ Tt i VT o ot e

SEED |INDICES |PASCAL FORTRAN~1V ‘
VARLUE} = |- e e e e e e e
FLAGL FL.AG1 | FLAGE | FLAG3 | FLAG4

___________________________________________________________ :
EFLOL .72 0.87 NONE NONE NONE
SFLOL 0.928 1.026

15 ELOL 0.279 0.390 NONE NOMNE NONE

sLol 0.49&6 0.52
EUSE 39.409 48.695 NONE NONE NONE
SUSE 82.1 71.28
EFLOL 0.30 0.76 NONE NONE MONE
SFLoL 0.775 0.954

295 ELOL 0.392 0.3394 NONE NONE NONE
sSLoL 0.386 0.37
EUSE J0.2689 49.409 NONE MNONE NONE
SUSE 50.63 80.31
EFLOL 0.71 0.62 NONE NONE NONE
SFLOL 0.84&2 0.87

121 ELOoL 0.369 0.309 NONE NONE MONE
SLOoL 0.712 0.3935
EUSE S57.469 45.307 MNONE NONE NONE
SUSE 53.51 57.89

R ST N S S S S S S S S S S S S R S T T T T T e T S S SR EE SRS EEEIEEEEE :
EFLOL 0.703 0.47 NONE NONE NONE
SFLOL 1.219 0.813

2**~-1 ELOL 0.397 0.348 NONE NONE NONE
sLoL 0.752 0.417
EUSE 50.167 468.8570 NONE NONE NONE
suUsE 83.14 89.42

AVERAGED |EFLOL 0.64587 0.73
VALUES ELOL 0.3592 0.3466
EUSE 49.3827 48.1169
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TABLE.3.3 Results for CASE2 with 16 haourly peak load

THE RESULTS OF ANALYTICAL FORMULAE REFORTED IN C(111:

P e D T D T e T O T e
P e 2 T S A R

SEED | INDICES|{PASCAL FORTRAMN-IV i
VALUE] e o e e o
FLAGL FLAG1 | FLAGZ | FLAG3 | FLAG4 t
EFLOL 0.865 0.87 0.71 0.98 1.08
SFLOL 1.126 1.018 1.0 1.272 1.262
15 ELOL 0.349 Q.377 0.277 0.3a7 0.194
sSLOL 0.4658 0.607 0.387 0.383 0.a%9a
EUSE 97.27 S9.93948 31.2824 33.5640 37.3508
SUSE 112.47 93.15 50.31 55.33 68.11
e e E L e e e L i
EFLOL 0.671 0.35%9 0.85 0.72 1.48
SFLOL 1.117 0.873 1.130 0.895 1.411
25 ELQL 0.361 0.290 0.280 0.162 0.29
SLOL 0.764 0.48616 0.267 0.239 0.374
EUSE 45.443 39.01a8 32.7236 42.4177 39.3516
SUSE 36.2 P4.66 350.35 Sl.66 &9.17
EFLOL 0.884 0.89 1.23 1.103 1.48
SFLOL 0.184 1.003 1.377 1.329 1.406
121 ELOL 0.2%96 0.308 0.a5%9 0.4351 0.32
SLOL 0.734 0.678 0.610 0.758 0.637
EUSE 42.145 40.109 37.712 35.956 43.211
SUSE 100.4 77.00 61.89 £3.65 66.13
EFLOL 0.881 0.99 0.469 0.87 1.51
SFLOL 0.926 1.18 0.834% 1.1658 0.3323
ar*—1 ELOL 0.453 0.383 0.229 0.398 0.348
sLOoL 1.27 0.3201 0.0441 0.2587 Q.1882
EUSE 32.099 50.1639 33.77619 43.9576 47.336
SUSE 74.01 35.21 34.08 ?0.78 79.49
AVERAGEDIEFLOL 0.8257 0.83 0.87 0.718 1.387

VALUES ELOL 0.364 0.3399 Q.as6le 0.3993 0.2885
EUSE 49.23 46.21 34.42 38.877 41.892
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TABLE.3.4 Results for CASE3 with 16 hourly peak

THE RESULTS GF AMALYTICAL FORMULAE REFORTED IM

load

£11d:

I e L T e - T T T T+
4+ F 3 3 3 3 -3 F F 5+ 1S F 22 F 2 P2 2 R PR R 2

SEED
VALUE

135

S N A o . i T D AR S S S T D E e A e e WA S i R i R e S S e Mt e S W Mt o W e dmm AR T Ve G s S T R S Mo omm S Tem e W T T

121

- — iy T S " o T S T s ot S T T D WA S S S i S e P St WS S ) e S it S S S S MM <we SND TAS SUS Wl MMM A AN S S T am eme e M ot T

AVERAG
VALUES

INDICES | PASCAL
FLAG! FLAG!L
EFLOL 0.%961 0.92
SFLOL 0.353 1.08064
ELOL 0.3%4 0.367
SLOoL 0.791 Q.52
EUSE 99.48 S54.1857
SUsSE 164.8 106.15%
EFLOL 0.841 0.83
SFLOL 0.824 1.020
ELOL Q.3001 ©.3a8
SLOL 0.387 0.3546
EUSE 51.04 D56.6243
SUSE 43.864 38.01
EFLOL 0.833 0.85
SFLOL 0.871 1.0621
ELOL 0.394 0.3860
SLOL 0.609 0.452
EUSE 41.26 33.6144
SUSE 38.42 8&.186
EFLOL 0.8589 0.87
SFLOL 0.344 0.813
ELOL 0.4361 0.448
sLoL 0.868 0.864
EUSE 59.264 38.8S57
SUSE 65.38 89.43
ED|EFLOL 0.876 0.867
ELOL 0.3860 0.375
EUSE °2.76 950.82

0.4179
0.288

93.990
36.91

29.47

95.655
73.14

0.8%6
0.43%6
S50.07

35.71
46.38

1.045
0.4322
42.80

- - — - —— e — - . —— =~ \—— - — e —; = S W Smk MY S e S — ———

32.27

65.20

B e I T T T T T T T T T T T T T T T T S T T T T X &3

45.34

53.8841
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TABLE.3.3 Results for CASEL with 28 hourly peak load
THE RESULTS OF ANALYTICAL FORMULAE REPORTED IN [1l11:

SEED
VALUE

INDICES

15 ELOL

T e S W D Y e MU Gom MY AU Pt ket e A o e S Gt i o e o T e e e S e e
-+ 4+ 4+ 1 3t 3 - 2 1 F 2 - 3 25

121

—— - L —— ——— ——— ——— — — oot ot ] S i S, e e, S . S S, S

EFLOL
ELOL

AVERAGED
VALUES

PASCAL

126.17

0.3614
0.601

&£0.5587
162.06

0.35953
0.499

4% .45359
100.7

58.6911
126.13

0.407

ELOL EUSE
0.454798 &6.4478
FORTRAN-IV
FLAGL | FLAGZ | FLAG3 FLAGS
1.15 MNOMNE NONE NONE
1.194
0.413 NOME NONE NONE
0.582
97.46843 MONE NONE NONE
38.225
1.27 NOGNE NONE MHONE
1.3408
0.527 NOME MONE NONE
0.71%9
60.6776 MONE NOMNE NOME
151.0
1.14 NONE NONE MNONE
1.197
0.399 NOME NONE NONE
0.538
S1.1931 NONE NONE NONE
?1.09
1.03 NONE NONE MONE
1.409
0.497 NONE NONE NONE
0.3%97
97.9882 NONE NONE NONE
80.89
1.1475 NONE NONE NONE
0.4359
97.38&3

EUSE

99.375
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TABLE.3.4 Results for CASEZ with 28 hourly peak load
THE RESULTS OF AMALYTICAL FORMULAE REPORTED IN [111:

EFLOL ELOL EUSE
0.7929 0.33023% 46.4588
SIMULATION RESULTS:
SEED |INDICES |[PASCAL FORTRAM-IV |
VALUE| e [ mm e e e e
FLAGL FLAGL | FLAG2 | FLAG3 | FLAGY
EFLOL 1.33 1.5 0.94 0.73 0.91
SFLOL 1.295  1.390 1.276 1.138 1.584
15 ELOL 0.6362 0.588 0.487 0.304 0.361
SLOL. 0.7a276 0.7067 0.297 ©.a98 0.5014
EUSE 57.4815 S2.666 43.051  37.089 54 .069
SUSE 156.85 147.14  42.56 S51.24 90.56
EFLOL 1.12 1.01 0.976 0.865 1.16
SFLOL 1.27 1.568 1.273 1.338 1.344
as ELOL 0.4438 0.580 0.350 0.320 0.312
SLOL 0.639 0.852 0.387 0.482 0.331
EUSE 50.9748 &£1.2495 38.1421 42.6743  41.0217
SUSE 196.86 186.55  90.60 68.14 58.39
EFLOL 1.31 1.23 0.87 0.714 1.30264
SFLOL 1.186  1.359 0.912 1.303 0.858
121 ELOL 0.5033 0.552 0.284 0.4761 0.353
sLoL 0.6422 0.713 0.268 0.5302 0.3745
EUSE 67.9884 55.0535 41.1388 Sa.517 50.0391
SUSE 123.83 118.76 38.62 42.47 34.55
EFLOL 0.8218 1.212 0.68 0.6631 1.1216
SFLOL 0.372 1.344 0.747 0.352 0.9587
a2r1-1 ELOL 0.3915 0.4765 ©0.354 0.5276 0.296S
SLOL 0.717 0.5&64 0.234 0.406 0.379
_____________________________________________________ :
EUSE 49.68 57.91 39.80 48.182 52.556
SUSE 48.66 120.67 44,15 40.49 79 .49
AVERAGED |EFLOL 1.145 1.238 0.866 0.743 1.12
VALUES |ELOL  0.4937 0.549 0.3687  0.404&9 0.3306
EUSE 56.53 S56.71 40.289 45.599 49.621

l<,n
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TABLE.3.7 Results for CASE3 with 28 hourly peak load
THE RESULTS OF ANALYTICAL FORMULAE REPORTED IN (111:

ey i " - o o T e M ot T —— ot St " o e oyt Ay S o D kS o o P o P et A Tt S T — — o o — n — t r

T . e et et e - o o A ik i o . (PO o St i o S s Sy Syt e e it o A ke e i o ke o o e A s e S ‘i, S o o o o b o o ot

e T T e T T T T T I M e e S o I M N v Tt S e T iy S i A e e T o oy e —r e T T S e L A S = i T i e o e e =

T " - — o — " — — o ——  ————— A" — - 7 o . e ol —— i e R o . " -

SEED |INDICES |PASCAL FORTRAN-IV |
VALUE| e e
FLAG1 FLAGL | FLAGZ | FLAG3 | FLAGSY
EFLOL 0.961 0.92 0.89 0.97 1.34
SFLOL 1.227 1.156 0.8623 0.749 1.188
15 ELOL 0.514  0.357 0.140 0.161 0.24
SLOL 0.659 0.4044 0,2853 0.3054 0.3377
EUSE 65.49 S51.602  78.1149 76.763 67.7416
SUSE 111.68 109.34  37.675 35.37 36.040
EFLOL 0.867 0.85 0.76 0.958 1.121
SFLOL 1.215 1.411 1.078 1.302 1.182
25 ELOL 0.421 0.383 0.364 0.5417 0.4951
SLOL 0.139 0.480 0.317 0.45 0.61
EUSE 72.98 69.167 79.6979 87.65 81.27
SUSE 140.09 49,015  44.89 47.90 48.123
EFLOL 0.965 1.08 0.69 0.91 1.003
SFLOL 0.259 1.5537 0.95 0.6134 1.4761
121 ELOL 0.4956 0.436 0.531 0.476 0.345
SLOL 0.671 0.401 0.225 0.492 0.321
EUSE 65.43  62.06 75.30 71.611 57.614
SUSE 145.65 156.0 37.488 50.146 &7.178
EFLOL 0.714 1.05 0.65 0.89 1.27
SFLOL 1.063 1.215 0.8418  0.600 1.3848
2ri-1 ELOL 0.49285 0.419 0.502 0.504 0.441
sLOL 0.9006 0.571 0.356 0.955 0.3212
_____________________________________________________ :
EUSE 74.2368 59.017 &3.2289 54.183 68.963
SUSE 40.30646 106.53  64.0932 6443096 57.032
___________________________________________________________ :
AVERAGED |EFLOL 0.8745 1.087 0.7473 0.932 1.463
VALUES |ELOL ©0.4808 0.3987 0.3492 0.4706 0.456

EUSE 69.33 &0.46 74 .083 72.951 68.897
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Iv. COMCLUSICN

This study presents a simulation mode! programmed in
Turbo-Pascal capable of modelling large scale reliability
systems in terms of reliability indices. The main idea is to
investigate the sensitivity of generating system reliability
indices to various operating considerations such as spinning
regsecrve level and start-up failure , by using Maonte Carlo
Simulation Method which permits the testing amd evaluation
of current proposed systems without risk to current system
performance or need for costly real-world experimentation.
It also permits the study of complex prablems where direct
solution is not possible. Different than the simulation
approach displayed in the paper by Patton et al. (133, it is
assumed that the units have a natural dependency among
themselves. Multivariate Exponential Distribution is used to
generate the failure and repair times with a depeundency
factor Qo which does not exist in the analytical model and
in any study performed on such systems and it is an
important contribution of this study. The reliability
indices (ELOL,FLOL,USE) in terms of their respective mean
and variances are calculated and tabulated. And the
comparison of results is considered in the base of sample
means and standard deviations. Additionally, the tables are
presented schematically. Figures contain the plots of
simulation values with respect to seed values for each of

the cases and flags. These graphs are visual



b1

representations indicating how much deviation is observed

from the analytical results.

The tables and the graphs performed to compare the
simulation results with the analytical results indicate
that the Monte Carlo Simulation Technique gives relatively
close results to the analytical onesj; especially if one
focuses on a mare representative reliability index as Loss
of Load Expected. A sensitivity study is done by changing
the dependence factor and the values of seeds. Tables show
the influence of varying dependency factor among the units.
Graphs support tables schematically and indicate the
deviations from the desired constant-line, i.e. analytical
result. Also, usage of Pascal speeds up the execution time
rendering the simulation model prone to longer study
periods. Different from other studies performed on this
area, Pascal Langquage is firstly used in simulation,

although there exists many efficient simulation languages.

The simulation model is also advantageous if we have
failure and repair distributions different than Exponential
Density. In analytical case it will be very tedious and
difficult to formulate the model when the distribution, for
example, is Lognormal or Weibull even if multivariate case
is in consideration. As a matter aof fact, the theory for
other distributions is not yet clearly developed. Hovewer,
by proposed method it is only required to change the

subroutine that generates the failure and repair times.



Rlso, it is possible to increase the number of generators
and hours of load to enlarge the system by latter method.
Certain sensitivity studies by varying failure or repair
rates of generators or spinning reserve or start-up failure

probability and start—-up failure delay can be incorporated.

As future recsearch, some other constraints can be
approximated by using Monte Carlo Simulation Method such as
outage postponability and start-up delay (lead-time) which
are alsa considered by Patton, Hogg and Blackstone in their
corresponding paper {131. Most unit outages are postponable
to some degree. It supplies the system reliability safety
margin and flexibility. The generator may be shutdown
immediately or it may continue to run for a time less than
or equal to a maximum postponement time which is treated as
random variable with specified probability distribution. In
the start-up delay case, 2ach start-up is prolonged as much
as start-up delay value as a preliminary warming—-up or lead
period and generator is accepted to be unavailable before it

is fully running.

@

Also, maintenance of units, beyond the scope, can be
cansidered for all cases. Beside the forced cutages,
maintenance ocutages such as preventive maintenance and

reserve shutdowns can be incorporated into the model.

The model which has two-states, up and down in this
studys can be assumed to have one additional state called

derated state. The event in derated case is similiar to a

&2



failure except that the unit does not go out of service, but

rather it continues to operate with some reduced capacity.

The above suggestions for future research can be
modelled by the proposed Monte Cairlo Simulation Method.
where the same assumptions will also be operable simply by
adding one or more special requirements in Pascal

programming language.

As a result, a statistically feasible approach
utilizing certain multivariate distributions to model the
correlation of generator forced cutage rates with each other
and then the convolution of the generation with the load
forecast data through Monte Carlo Simulation Method, will
contribute to the proper representation of the practical
real-world situation in power netwaorks. The flexibility and
versatility of the method both from statistical and

engineering viewpoints has much to promise.
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APPENDIX. L.

ALGORITHM FOR MONTE €ARLO SIMULATION IMODEL:

In this appendix, the main algarithm for programming
the model will be presented. An algoirithm is defined as the
step-by-step procedure for solving a problem. The following
algorithm outlines the steps in the simulation model which
is the base for both programming language proposed here.
That is, algorithm remains the same for both languages. But
structural differences in these languages may change the
order or farmulating steps without destraying the main

structure in the algorithm.

Algorithm:

Step.l. Read inputs:

No.of generators, initial seed value, flag value, spimming
reserve value, case value, period of time(in days),
increment value, iteration value, failure rates, repair

raates, start-up delay and start-up probability value.

Step.2. Initialize the value of demand to hourly peak load.

If case equals to 2y add spin value to demand far each hour.

Step.3. Start iteration
3.1. Draw vector of failure times from MVE
3.2. Di aw vector of repair times firom MVE
3.2.1. If Case equals to 3, draw a random uniform
number.

3.2.2. If this number is less than start-up probability



prolonge repair time as start-up delay value.
3.3. Repeat the generation up to the end of total periad
length.
3.4. Go to Step 3.2 if number of generators< total numbar
of generatoars
Step.4. Scan the time pericd by small increments
4.1. For one incremental hour sum up the capacity valuss
of generators ruming at that how .
4.2. Check if there exists a difference between total
capacity and hourly peak load.
4.3. If the answer is positive sum up such increments to
calculate LOL and multiply the absclute differesnce by the

incremental hour for calculating USE.

Step.3. Count the nhumber of times that the difference
between total capacity and hourly peak load changes from

positive to negative or vice versa to calculate FLOL.

Step.b} Go to Step 3 if number of iteratiaon is less than

total number of iteration.

Step.7. Calculate simple statistics: mean and variance of

reliability indices.
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APPENDIX.2
FLOWCHART FOR THE SIMULATION MODEL
1:
Read Input Data: Number of generators, initial seed values
flag value, spin value, case value, period of time(in
hours); increment value, iteration value, failure rates,
repair rates, start-up delay value, start-up failure
probability.

S o — " Pt 8 e S o el P e T T S S et e D i . P VA A G Wl S S, A, S " S, ot S S S, S S D i o s T T — T St R o S S o e —

s S T . T T T ol S T o S Bl Sl il e e P St e S T i e il ) S S i T S — T S i T o S S o o D A s o, S S

Initialize value of demand to hourly peak load for each
hour.Ilfcase equals to 2, add spin value to value of demand

T T " o — — T " — " D I~ S P A e e S T i o L g ) Y o i i S T i, S o M i e SO A Y, e Ml S el S S B W St g gy S W o

T e e o T i S S B S S T S —— S T o S ot o T e o P D e S S e S . T S o . o i, ) . o g S 4 ey S

Start iteration: Draw failure and repair vectors from MVE
up to end of time period for each generator. If case
equals to 3, check if there exists start-up failure. For
this draw a uniform random number. If it is less than
start-up failure probability, prolonge repair time as
much as start-up delay value.

i ) P e e U T D (o D e e S e e S T i e e D T il o S Y i G U . S A S i o Py e el M Mt g S e S Ty S S D o o — T W T . =

T o Ty e D e T S i s e S S U e S o A T il e T Al S S Sy S S i S O . S i T S I D St s Y St i S U B Pt

Scan the period length by incremental hours: For
each incremental hour, firstly sum up the capacity
values of running generators at that hour. And
check if this amount is less than hourly peak
load. If the answer is Yes, count such increments
for LOL and multiply absolute difference

by the incremental hour to calculate USE.

S . . S S s o T . S ot e i A S L Sl SO S, S (M S AR e A A e ST R Y et S e W St R P SR Ao A St S T P Tt —— — v

Count the number of times that the difference
changes from positive to negative or vice versa to
calculate FLOL.

YES Add the values of LOL, FLOL, USE.

—€——-——~11g the number of iteration less than total number
of iteration?

—— vt e -~ — — . — — " . ——— 7 T 23 U D Y S W ———— - —

[

Calculate mean and variance of reliability indices; LOL,
FLOL, USE.

6




APPENDIX.3

FORTRAN-IV PROGRAM OF UNIFORM RANDOM HUMBER GEMERATOR: SUNIF

100 REAL FUNCTIOMN SUNIF(R,IR)

200 DOUBLE PRECISION R, FACTOR, TWO2B

300 DATA FACTOR/ 414735557.0D0/, TWO28/258435455.0D0/
400C IR=4%*Kl+1l; R=IR/2#%28; Kl IS INITIAL SEED
400 IF (IR.GE.O) GO 7O 1

500 R=DMOD(R*FACTOR, 1 .0DO)

600 SUNIF=8SNGL (R)

700 RETURN

800 1 R=DFLOAT(IR)/TW0OEH

200 SUNIF=SNGL (R)

1000 IR=-1

1100 RETURN

1200 END



APPENDIX.4.
GENERATION DATA OF THE IEEE RELIABILITY TEST SYSTEM L[61
The study conducted in this thesis an the [EEE
Reliability Test systems demonstrate that both aralytical
and Monte Carlo Simulation results give reasonable agreement
in the computed value of the mean and variamnce of the
reliability indices. The generating system consists of 32
units with a total installed capacity of 30435 MW. The
variance value for each unit forced outage rate was
estimated using the procedure shown in Reference 6. The
study was conducted over a period of 28 hours in which the

annual system peak load is 2830 MW and minimum load is

1842.52 MW.

Unit Size | Number | Installed | |
(MW) of Units Capacity I Q ' K l
12 S &0 .02 0.98
20 4 80 0.10 0.%0
50 b6 300 0.01 0.99
76 4 304 0.02 0.98

100 3 300 0.04 0.96
135 4 620 0.04 V.96

197 3 391 0.05 0.93
330 1 350 0.08 0.92
400 = 800 0.12 0.88

— o — ——— — A f— o — > S— . —— —— ——" F_— " — S —— T ——

TOTAL 32 3409 MW



tocad Data

The hourly peak loads for a peviod of 28 hours are as

follows(in MHd’s):

2650.53 2850 2793 2734 2697
2523.288 2713.2 2658.74 24604.67 2550.41
2ad84.73 24546.7 2407.56 2358.43 2309.3

2383.45 2565 25913.7 2462.4 2411.1

Amual system peak load= 28350 MW

2i94.5

2098.16

1891.866

1275.05

2137.5

2034.9

1842.52

1923.75



APPENDIX.5.

ANALYTICAL TREATMENT OF POWER GENERATIOM SYSTEMS

Based on the study of Patton, Singh, and Sahinoglu as
given in (121, representation of analytical model will be

explained briefly in this appendix.

In large electric power systems, reliability is defined
as the probability of the power generation system supplying
a desired load cycle within a prescribed period of time
under the operating conditions encountered. Loss of Load
Probability (LOLP) index conventionally calculated expresses
the probability of the capacity on forced outage exceeding
the reserve capacity in the generation system for a
specified period of study. At any j*" hour , reserve R, is
defined as the total installed capacity "TOTCAP subtracted
by the Load Farecast L ;" all expressed in Megawatt units.
Hence, LOLP is the probability of the forced oautage X
(random variable) exceeding the reserve generation over
entire period of system operation. LOLP multiplied by the
léngth of study period yields the LOLE, the expected number
of days(hours) of capacity deficiencies.

Oftentimes, however, the cumulated duration of loss of
load which is directly related to the unavailability of the
generation supply and consequently the loss of energys is
not sufficiently descriptive by itself. An annual outage
time of ten hours would have a different impact on the

residential customers; more so on an industrial customer and
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even more crucial on a nuclear power plant concerning off-
site reliability, if it occured ten times a year each of one
hour duration instead of five times a year each of two hours
duration. Thus at least three reliability indices appear
necessary to suitably describe the reliability of a
generation system [24,25,12,28,291. These indices are
therefore the frequency of loss of load (f), the average
duration of loss of load (d) and the product of these two
indices (fxd) that yields the loss of load probability.
Briefly, the loss of load event occcurs at some j*" hour when
the summed capacity of units on forced outage exceeds the
reserve capacity or equally speaking, the capacity margin m,
defined as “Reserve Rj minus Capacity(C) on Forced Outage”
assumes a negative value at hour j from a non—-negative value
at the preceeding hour j-1. The cumulation of such negative
margin hours defines the loss of load expected. Then, the
frequency of loss of load is simply the number of times the
loss of load event will occur, that is, a zero-margin
crossing will materialize from positive to negative margin
within a given period of study. These said indices have
been put forward purely in "expected" sense during earlier
research [24,12] as in the following conventional formulae
for which seperate tables of departure rates from capacity
outage state X to states with more (gc+cx>) ar less (Fcecws)

capacity levels are precalculated:

FiM)= ZPa(X) ([ace(X)=g-(X)IP_(C=X-M)2 + Ff_(C-X-M) (1)
x



P(M)= ZPs{(X) P_(C-X-M) (2)
=

where;

f(M) = Frequercy of margin less than or equal to M, (3

P(M) = Probability of margin less than or equal to M,

P_(C-X-M), f, (C-X-M) = Probability and frequency of load

greater than or equal to (C-X-M),
Po(x})= Exact probability of capacity outage equal to X=x
Tev (%) sTc—(x)=departure rates from capacity outage state x
to states with more(+) or less(-) available capacity

Z = Summation over exact capacity outage states X.

»

In order to help clarify certain definitions of random
variables, it will be useful to study the following

exemplary illustration [301.

m, {margin) Y —2=2=0

. Y=0 = =

. 4 Y =0
100 | .

—t Z==1 Zr—a=1 Zrn=1

39 I I l

<o Sy _ B TV s o} _P—B___MN—@__ -1 i
- I

S50 o l___,

: =

- LA - ¥r=lao.. Yma—-1=1

Figure.l. Illustration of random variables : ms Z, Y

we define misMej....sMs to be the marginal values at hourly
steps where in a physical system, positive margin denotes
operative (nondeficient) and negative margin denotes

inoperative (deficient) state., Margin at a specific



discretized hour 1is defined as the difference between total
assets on one hand and consumption plus chance failures on
the other. The physical system 1is an electrical power
network where the total asset is the sum of the capacities
of all electricity generating units; the consumption is the
load forecast (daily/hourly constant peak load) demanded by
the public and industry, and finally chance failures
indicate the unplanned forced outages excluding the planned

shutdowns.

m. = TOTCAP - X - L, (3)

indicate the power balance at each discrete step "1" where
the realization {(m.,> assumes either a positive margin (0™)
or negative margin (07), in a sequence of independent
Bernoulli trials. Similarly, at each hourly transition,
either a positive to negative margin crossing (2,=1) or
else (Z2,=0) gccurs as in a sequence of dependent Bernoulli
trials.

Concerning the "level event", let the event space E, be
denoted for j=1,2 where j=1 corresponds to O~ negative
level for mi<0 and j=2 correspaonds to 0" positive level for
my20. Hence Y\ =1 ar Y,=0 for i=1,2,sns..N form a sequence af
Bernoulli r.v. in a two-state inhomogeneous Qhain. Thus,
€{Y:3 are independent r.v.’s for i=1,2,;.,n,.N since m., are
taken independent due to assumed independence of L. which

are the load forecasts at each discrete hour [28,p.1401.
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Hence, the non-identical independent Bernoulli trials for
r=0 order chain since at each step the probability of
success is not identical. Therefore, (Y.2? forms a

nonstationary indépendent stochastic chain (process). Namely

1 (success), m,<0 (&)
Y.=(
0 (failure)s m,20
For the "crossing event", let the event space E. be
defined for k=1,2 where k=1 carresponds to positive-to-
negative margin crossing (2=1) when m,<0 given m.-,20, and
k=2 corresponds to otherwise (2=0). Hence Z.=1 or Z.=0 for
i=1;2,.n.,N constitutes a non-identical and non-independent
sequence of Bernoulli trials. Namely, a first order (r=1)
Markov Chain because the system can only go negative
provided that it is residing at positive and an
inhomogeneous Markav Chain due to nonstationary transition

probabilities [26,27]1. In notation :

1 (success)s mi-120 and m, <0 (7)
Zs=(
0 (failure), elsewhere
We wish to compute the probabilities of success at each
step for the Bernoulli r.v. Y. and 2, to also estimate the

mean of the cumulated hours of unavailability U.w=ZY, and

the mean of frequency of unavailability Fu=ZZ..



APPENDIX.6.

QUTPUTS AND LISTING OF PROGRAMS
&.1. Fartran~1V Program

&£.28. Pascal Program

6€.3. Output of Fortran—-IV Program

t.4. OQutput of Pascal Program

7. @
Yiiksekégretim Kuruln
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Outg)ut of Fbrtran-IV Program for Table 3.5

1. .59 23
xxxwexenxx RISILT OF STIIULATION *xxxeewxsnsx,
‘k******"*x******t***************tf********,

=%xF 1AL REJULT oOF 100 MONTE CALO SIMULATIONS *x~
++++  ITH 230 MAJAY [TICREMENTS PZIR STEP LENGTH ++++
ASAd QF w055 9F LIAD= J.4378

VAL JIF LI5S IF LdAO= J1.397

LR S A S A AL B AL R AR ESELIENEALAEES L ELE R RS EREEREEE RS EREREESEXNSE.]
V2A00 OF W55 JF ZTlIR,Y= 59.7332

Jale OF wol33 JF Z0IR5Y= 33437558
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Output of Pascal Program for Table 3,5

PO - . = .Ch ’\ﬁ_ﬂv:*ng ] - .~ - .
¥225= -.JZ?JJJJ£533“ PA§L=T?53C3DO§-00 PARM=1.00J0CCJE=05
HUdSEN= 32 HULLDAD = 23
> w kT X RISILT 2F LSLIULATION x*kxxxdx

FIJAL RESULT JIF 137 MOWTECARLO SIMULATION ,
QETH ; "S535 adY IWdCRENENT PER STEP LENGTH

g FLO3S OF L2Ad= 4.360Q000E=01 VAR. OF i0L= 8.3832J32328-J1
}5:1 %? D333 JF ZNIRGY= 5369.11GQE-32 _WAR. OF LOE= 1:aa14,33533;:+,
123000 9F CO32 OF FRZaaz.0cY= 1.2332000E+30 VAR. OF LOF= 1.557J00J)224

T. C.
Yiiksekogretim Kurulu
Dokiimantasyon Merkez!



