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Abstract

Using the experimental result on b → sγ and theoretical result on

b → sg, a four -generation SM is analysed to constrain the rephasing-

invariant combinations of the CKM matrix and masses of the fourth

generation quarks.
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1 Introduction

Until now no experimental or theoretical proof for the absence of the extra
generations of leptons and quarks has been given. The direct search for extra
generations and tests of their indirect effects will be one of the major goals
of the existing and next generation accelerators. For example, CDF [1] gives
a lower bound of 139 GeV for the fourth generation quark masses assuming
they are stable enough when leaving the detector. If the interaction with the
detector is taken into account this lower bound falls by 30-40 GeV. Thus,
we can barely assume that the lower bound for the masses of the fourth
generation quarks is somewhere around MZ .

The fourth generation quarks and leptons have been considered in current
literature due to various theoretical motivations. In [2] a four generation SM
is proposed to solve αs, Rb and Rc crises of SM at Z pole. As another solution
to these problems, in [3] a four generation supersymmetric SM withmt ≈ MW

is proposed. In addition to these, four generation SM has been used in cal-
culating the neutron Electric Dipole Moment (EDM) (in the framework of
the Kobayashi-Maskawa Model) to break the persisting 10−32e− cm theoret-
ical boundary which is seven orders of magnitude less than the experimental
upper bound.

Note that theoretically the smallness of the electroweak radiative correc-
tions to the LEP1 observables, following Veltman’s arguments, enables us to
conclude that the masses of the fourth generation quarks and leptons must
be almost degenerate. This is the case because large mass splitting in the
fourth generation would induce unacceptably large loop corrections to LEP1
observables.

In this work we shall base our analysis on a four generation SM. We have
two basic aims: 1) Determination of those rephasing invariant combinations
of CKM matrix relevant to the calculation of the neutron EDM. 2) Founda-
tion of some likelihood bounds for the fourth generation quark masses.

Denoting the ’top’ and ’bottom’ quarks of the fourth generation by t′ and
b′ respectively, one can find three independent rephasing invariant combina-
tions of the elements of the CKM matrix: Im[V ∗

tdVtbV
∗

cbVcd], Im[V ∗

tdVtbV
∗

t′bVt′d]
and Im[V ∗

tsVtbV
∗

t′bVt′s]. Other combinations can be expressed in terms of these
and the moduli of the elements of the CKM matrix. As it was shown already
in [4], strange quark dominates in the neutron EDM, and thus a calculation
of ds yields at least an order of magnitude prediction for the neutron EDM.
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In this sense our analysis is focused on the calculation of Im[V ∗

tsVtbV
∗

t′bVt′s].
For purposes mentioned above, in our analysis we shall make use of the

experimental and theoretical results on the branching ratios of the FCNC
decays b → sγ and b → sg.

We will first outline the derivations of the basic expressions for the quan-
tities of interest.

Last section is devoted to numerical analysis and discussions.

2 Derivations

b → sγ and b → sg, being FCNC decays, start occuring at the loop level
of perturbation theory. These decays involve consecutive b → u, c, t, t′ and
u, c, t, t′ → s transitions. Thus decay amplitude has the form

A =
∑

f=u,c,t,t′
λfR(m2

f/M
2
W ) (1)

where λf = V ∗

fsVfb and the function R represents the combination of the
results of the loop integrations and the relevant operators responsible for
b → sγ and b → sg decays. The unitarity of the 4x4 CKM matrix gives

λu + λc + λt + λt′ = 0 (2)

It is known that λu is much smaller than others, so from (2) it follows that

λc ≈ −(λt + λt′) (3)

Neglecting m2
u and m2

c compared to M2
W , combining R’s of different flavors

with the help of (3), and taking the relevant operator structure for the decay
under concern, one obtains the following expressions for the b → sγ and
b → sg decay amplitudes:

Ab→sγ =
GF√
2
[λtC7 + λt′C

′

7]O7 (4)

Ab→sg =
GF√
2
[λtC8 + λt′C

′

8]O8. (5)

where O7 and O8 are magnetic and chromo- magnetic penguin operators

O7 =
e

4π2
mbs̄σ.F PRb (6)

O8 =
gs
4π2

mbs̄σ.GPRb (7)
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Here PR = (1 + γ5)/2 and Fµν and Gµν are photon and gluon field strength
tensors, respectively. The Wilson coefficients C7, C

′

7, C8 and C ′

8 in (4) and
(5) are evaluated at the mass scale µ ≈ mb using renorm group equations
with five active flavours [5,6].

C7(µ) = −1

2
η16/23A(xt)−

4

3
(η14/23 − η16/23)B(xt) +

8
∑

i=1

hiη
ai (8)

C8(µ) = −1

2
(B(xt)− 1.725)η14/23 − 0.9135η0.4086 + 0.0873η−0.4230

−0.0571η−0.8994 + 0.0209η0.1456 (9)

where xt = m2
t/M

2
W , η = αs(MW )

αs(mb)
, and

hi = (2.2996, −1.088, −3/7, −1/14, −0.6494, −0.038, −0.0186, −0.0057)(10)

ai = (14/23, 16/23, 6/23, −12/23, 0.4086, −0.423, −0.8994, 0.1456) (11)

A(x) and B(x) in (8) and (9) are given by

A(x) =
x(x− 1)(8x2 + 5x− 7) + 6x2(2− 3x)ln(x)

12(x− 1)4)
(12)

B(x) =
x(x− 1)(x2 − 5x− 2) + 6x2ln(x)

4(x− 1)4)
(13)

C ′

7 and C ′

8 could, respectively, be obtained from (8) and (9) by replacing xt

by xt′ = m2
t′/M

2
W .

In order to minimize the b -quark mass dependence, which leads to
uncertainities, it is preferable to define braching ratios BR(b → sγ) and
BR(b → sg) by BRexp(b → ceν)/Γtheor(b → ceν) times the decay rates cal-
culated from the amplitudes in (4) and (5) where Γtheor(b → ceν) is given by
[6,7]

Γtheor(b → ceν) =
G2

F | λc |2
192π3 | Vcs |2

m5
bg(mc/mb)κ(mc/mb) (14)

with the phase space factor

g(x) = 1− 8x2 + 8x6 − x8 − 24x4ln(x). (15)
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The factor κ(x) describes the leading order (LO) QCD corrections and given
by

κ(x) = 1− 2αs

3π
((π2 − 31/4)(1− x)2 + 3/2). (16)

Finally, upto two -loop accuracy where αs(µ) is given by

αs(µ) =
4π

β0L
(1− β1ln(L)

β2
0L

) (17)

where L = ln( µ2

Λ2

QCD

), β0 = 23/3 and β1 = 116/3, for five active flavours.

Then BR(b → sγ) and BR(b → sg) can be written as

BR(b → sγ) = Pγ(C
′

7 − C7)
2[(R +R7)

2 + I2] (18)

BR(b → sg) = Pg(C
′

8 − C8)
2[(R +R8)

2 + I2] (19)

where the various symbols introduced for convenience have the meaning

Pγ =
6αe | Vcs |2 BRexp(b → ceν)

πg(mc/mb)κ(mc/mb)
(20)

Pg =
8αs | Vcs |2 BRexp(b → ceν)

πg(mc/mb)κ(mc/mb)
(21)

R7 =
C7

C ′

7 − C7

(22)

R8 =
C8

C ′

8 − C8

(23)

R = Re[
λt′

λt + λt′
] (24)

I = Im[
λt′

λt + λt′
] (25)

It is clear that BR(b → sγ) and BR(b → sg) depend on the combination
λt′

λt+λt′
. Introducing a polar representatinon for λt and λt′ as

λt = seiθ (26)

λt′ = s′eiθ
′

(27)
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a straightforward calculation yields

s′

s
=

√
R2 + I2

√

(1− R)2 + I2
(28)

Sinβ =
I

√

(R2 + I2)((1−R)2 + I2)
(29)

where β = θ − θ′.
A representation of λt and λt′ as in (26) and (27) is independent of par-

ticular parametrisation of the CKM matrix [8]. BR(b → sγ) in (18) contains
theoretical uncertainities coming from Vcb, αs(µ), BRexp(b → ceν) and quark
masses. To reduce these uncertainities one can construct the ratio

r =
BR(b → sγ)

BR(b → sg)
. (30)

First solving (18) and (30) simultaneously for R and I and then using
(28) and (29) one can express s′/s and Sinβ in terms of r and the parameters
defined in equatinons (20-23).

The ratio r in (30) is useful in reducing the theoretical uncertainities. Fur-
thermore, since (18) and (19) are similar equations in their dependence on
the parameters with uncertainities (except for αe → αs interchage) their the-
oretical calculation in any model cannot produce too different error bounds.
It is known already that theoretical and experimental results for BR(b → sγ)
are close to each other assuming specific values for CKM elements [7]. There-
fore, one can safely regard r to be free of theoretical and experimental un-
certainities and it can be indentified with the ratio of the central value of
BRexp(b → sγ) to that of BR(b → sg). The latter is unknown, except for the
SM prediction of BRSM(b → sg) ∼ (2.3 ± 0.6)× 10−3 [9]. Thus throughout
the analysis r will be regarded a free parameter.

¿From these observations one can also predict the uncertainities in s′

and β. ¿From (28) one observes that the uncertainity in s′ is determined
mainly by s, namely the uncertainities coming from BRexp(b → sγ) and
other parameters in (18) contribute negligeably. However, as is seen from
(29) the uncertainity in β is of the same order as that in I.
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3 Numerical Analysis and Discussions

Table 1 shows the values of the parameters used in the numerical analysis.
As is seen from this table BRexp(b → sγ) is uncertain by ∼ 30% which
is much larger than the errors in other quantities. However, as is shown
in [7] the theoretical result for the branching ratio of the hadronic decay
BR(B → Xsγ) is uncertain by a similar amount. Thus, as long as BR(B →
Xsγ) is represented by BR(b → sγ) with the LO Wilson coefficients in the
framework of the spectator model, the main source of uncertainity comes
from the experimental result. This causes, in particular, the quantities I and
R, defined in (24) and (25), be uncertain by a similar amount as BRexp(b →
sγ). As it was argued at the end of the last section, r in (30) depends mainly
on the central values of the branching ratios. After analyzing s′ and Sinβ for
the central values of the quantities in Table 1, the percentage error in their
values will be set to that of s and I, respectively.

¿From the Wofenstein parametrisation of the CKM matrix, | λt |∼ λ2,
where λ ≈ 0.22 is the Cabibbo angle. In [10] it is argued that Im[λtλ

∗

t′ ] ∼ λ5

and Im[V ∗

tdVtbV
∗

cbVcd], Im[V ∗

tdVtbV
∗

t′bVt′d] ∼ λ7, which makes Im[λtλ
∗

t′ ] more
important than the other two. Thus, to make comparison explicit, in the
final graphical results we shall present the r dependence of the function g(r)
defined by

g(r) = Im[λtλ
∗

t′ ]/λ
5. (31)

As it will be seen soon, for a fixed value of mt′ , Sinβ is very sensitive to
the variations in r; Sinβ is meaningful (real and in [-1, 1] interval) only for a
limited range of r values.

If the addition of a fourth generation is an extension of SM, the allowed
range of r must include the SM prediction of ∼ 0.1. This, in particular,
follows from the sequental character of the families in case of which one does
not expect the occurence of new operators in the associated decay amplitudes
as summarized by (4) and (5). In this sense, one can discard some range of
mt′ values that drives the SM prediction outside the window of the allowed
values of r.
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3.1 Light Top Case

The most important non-oblique correction to Z decays arises in the Zbb̄
vertex which depends quadratically on mt. Therefore, naively one expects
Rb to move toward the SM prediction for a lower value of mt. In this context,
in [3] a supersymmetric SM with mt ∼ MW and mt′ ∼ mCDF

t is proposed.
Here supersymmetry is necessary to satisfy the requirements of the CDF
signal.

In this section we shall analyse g(r) and Sinβ for mt ∼ MW and mt′ ∼
mCDF

t . In particular, we shall set mt = 85GeV and vary mt′ in the CDF
range. This mt and mt′ values are away from representing the CDF data. In
particular, dominance of the decay mode t′ → bW+, and width of t -quark
must be explained in some appropriate model, such as supersymmetry. We
leave aside this problem and analyze the light top quark case assuming its
results might shed light on the construction of some extension of SM.

In Table 2 we summarize ,as mt′ wanders in the CDF range, the minimum
(rmin) and maximum (rmax) values of r between which all quantities are
meaningful. We observe from this table that as mt′ increases from 158 GeV
to 194 GeV the allowed range of r gets narrower. Thus, as mt′ approaches to
the upper CDF limit, r is forced to take values closer to the SM prediction
of r ∼ 0.1. If mt′ is further increased rmax approaches SM prediction, in
particular, r ∼ 0.1 is just left outside the allowed interval of r values for
mt′ ≈ 1.5TeV .

Fig.1 shows the variation of Im[Sinβ] with r for mt = 85GeV and mt′ =
176 GeV. Sinβ becomes imaginary for r < 0.027560 and r > 0.16766 leaving
a window around r ∼ 0.1 as the appropriate region.

Fig. 2 shows the variation of g(r) in (31) with r. It takes the value 3.5
at r = 0.027560 and vanishes at r = 0.16766. In the rather narrow interval
0.027560 < r < 0.030 g(r) falls rapidly from 3.5 to unity. Starting from
unity at r ∼ 0.030, it descents gradually to zero at r = 0.16766. For r ∼ 0.1,
g(r) ∼ 0.2 making Im[λtλ

∗

t′ ] ∼ λ6 which is less than the assumtion made in
[10]. However, for r <∼ 0.030, Im[λtλ

∗

t′ ] is well above λ5, approaching λ4 at
the lower end.

The errors in the input parameters effect the value of Im[λtλ
∗

t′ ] for a
particular value of r. The allowed range of r , The allowed range of r ,
however, is not sensitive to uncertainities in the parameters in Table 1, as
it varies with the central value of BR(b → sg) in a particular model. This
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analysis is performed for the central values of the input parameters . As
mentioned before one expects, Sinβ be uncertain by ∼ 30%, so the numerical
results for Im[λtλ

∗

t′ ] have an uncertainity of the same order.

3.2 Heavy Top Case

In this section we shall analyse g(r) and Sinβ for mt = 176GeV and mt′ ≥
MZ .

In Table 3 we summarize ,as mt′ increases from MZ to 300 GeV, the mini-
mum (rmin) and maximum (rmax) values of r between which all quantities are
meaningful. We observe from this table that allowed range for r is narrower
than that in the light top quark case. Infact, as mt′ exceeds 200 GeV SM
prediction for r is just left outside the allowed range of r. As mt′ increases
further the window of the allowed values of r forgets completely the the SM
expectation about r. One can therefore fairly say that for heavy top quark
consistent with CDF results, mass of the top quark of the fourth generation
must be somewhere in between MZ and ∼ 200GeV .

Fig.3 shows the variation of Im[Sinβ] with r for mt = 176GeV and
mt′ = 150 GeV. Sinβ becomes imaginary for r < 0.02716 and r > 0.11284
which permits a very narrow interval in which r may take a value.

Fig. 4 shows the variation of g(r) with r. It takes the value ∼ 1.2 at
r = 0.027116, then falls first rapidly to ∼ 0.2 aroud r ∼ 0.030, and gradually
to zero at r ∼ 0.11284. As we observe from this figure, g(r) is smaller than
that in the light top case. Next, one concludes that Im[λtλ

∗

t′ ] is less than
λ5 almost throughout the interval. Especially, around r ∼ 0.1, Im[λtλ

∗

t′ ] is
around ∼ 0.04, making it ∼ λ7.

For higher values of mt′ the SM prediction of r ∼ 0.1 is far outside the
allowed region. This calculation is performed for the central values of the
parameters in Table 1. As mentioned before one expects, Sinβ be uncertain
by ∼ 30%, so the numerical results for Im[λtλ

∗

t′ ] has an uncertainity of the
same order.

3.3 Comparison of Two Cases and Conclusions

If one assumes that r does not depart from its SM value, rather clear expec-
tations follow. In particular, in both cases, it is not possible to draw Im[λtλ

∗

t′ ]
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to ∼ λ5. As is seen from Fig.2, for r = 0.1, Im[λtλ
∗

t′ ] ∼ λ6. In the heavy top
quark case it is even smaller; as Fig.4 suggests, for r = 0.1, Im[λtλ

∗

t′ ] ∼ λ7.4.
In both cases, as mt′ increases, allowed range for r squeezed to the lower

end. In particular, for the light top case r = 0.1 point is thrown to ”no
solution” solution for mt′ ∼ 1.5TeV which is much larger than the mt′ ∼
200GeV -point of the heavy top quark case. However, choosing large values
formt′ does not guarantee that g(r) takes values of the order of unity. Except
for r values around rmin, for any mt′ , however large, generally g(r) is much
smaller than unity, forcing Im[λtλ

∗

t′ ] << λ5. Thus, consistency of large mt′

and Im[λtλ
∗

t′ ] ∼ λ5 assumption of [10] is not generally satisfied except for
the special point of r ≈ rmin. This, in particular, requires a very large
value for BR(b → sg) which is unlikely to occur under four -generation SM
diagrammatics of the b → sg decay. One thus concludes that, including the
30% uncertainity in g(r), it is unlikely to have Im[λtλ

∗

t′] ∼ λ5 at any mt′ in
both cases.

In the light top quark case the window of the allowed range of r values is
wide. Thus, it permits more deviations from the SM expectation. However,
the SM prediction of r ∼ 0.1 is well included in the window. In this sense,
since r ∼ 0.1 is a subset of the allowed r values one has some extension of
SM. Despite these results, the light top quark case (in this four generation
SM form) is not acceptable phenomenologically since it is not consistent with
CDF signal.

In the heavy top case, the allowed window of r values is narrower than
that of the light top case. Thus, deviations from the SM prediction is not
large as in the case of light top case. Width of the window changes rapidly
with mt′ . Moreover, since for mt′ >∼ 200GeV r ∼ 0.1 point is thrown to
”no solution” region of r values, one can boldly say that mt′ >∼ 200GeV
is unlikely to be acceptable. It is in this sense that one is able to propose
some upper bound for mt′ . This analysis gives results only on mt′ , so fourth
generation lepton masses and mb′ are not restricted at all. There is no phe-
nomenological difficulty with this case as long as the ”almost- degeneracy”
condition explained in the introduction is satisfied. If such a fourth sequental
family of leptons and quarks do indeed exist LEP1.5 or LEP2 will be able to
detect them.

One of us (D.A.D.) thanks Scientific and Technical Research Council of
Turkey for financial support.
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Parameter Range
µ(GeV) 4.8

mCDF
t (GeV ) 176± 18
| Vcb | 0.9743± 0.0007

BRexp(b → ceν) (10.4±0.4)%
BRexp(b → sγ) (2.32±0.67) 10−4

ΛQCD(GeV) 0.195± 0.005
MW (GeV) 80.33
mc/mb 0.30±0.02

Table 1: Values of the input parameters used in the numerical analysis

mt′(GeV ) rmin rmax

158 0.027523 0.18000
176 0.027560 0.16766
194 0.027590 0.15765

Table 2: Boundaries of the allowed range of r values for mt = 85GeV .
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mt′(GeV ) rmin rmax

91 0.0274400 0.15903
150 0.0271600 0.11284
200 0.0269943 0.09644
300 0.0269500 0.08080

Table 3: Boundaries of the allowed range of r values for mt = 176GeV .
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