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Lanczos bidiagonalization-based inverse solution 
methods applied to electrical imaging of the heart 
by using reduced lead-sets: A simulation study
Fourough Gharbalchi1*, Yesim Serinagaoglu Dogrusoz2 and Gerhard Wilhelm Weber3

Abstract: In inverse problem of electrocardiography (ECG), electrical activity of the 
heart is estimated from body surface potential measurements. This electrical activ-
ity provides useful information about the state of the heart, thus it may help clini-
cians diagnose and treat heart diseases before they cause serious health problems. 
For practical application of the method, having fewer number of electrodes for data 
acquisition is an advantage. Additionally, inverse problem of ECG is ill-posed due to 
attenuation and smoothing within the body. Therefore, the solution of ECG inverse 
problem has to be regularized. In this study, we constrain ourselves to two Lanczos-
bidiagonalization-based inverse solution methods, namely, Lanczos least-squares QR 
(L-LSQR) factorization and Lanczos truncated total least-squares (L-TTLS). Tikhonov 
regularization is also implemented as a base for comparison for these methods. We 
use body surface measurements simulated using epicardial potentials measured 
from the surface of canine hearts. In these experiments, the hearts are stimulated 
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from the ventricles at various sites, mimicking ectopic beats. Torso potentials are 
obtained from these epicardial measurements by multiplying them with the forward 
transfer matrix and adding Gaussian distributed noise. We solve the inverse problem 
using different number of leads on the body surface (771, 192, 64, and 32 leads), and 
assess the performances of these regularization methods for the reduced lead-sets. 
These reduced lead-sets are selected from the primary 771-lead configuration by us-
ing two main approaches. The first approach is manually selecting appropriate leads, 
and the second one uses the inverse problem approach to select leads sequen-
tially. The results show that the L-TTLS method is more successful in reconstructing 
epicardial potentials than the L-LSQR method. The L-TTLS method is faster than the 
Tikhonov regularization, since it benefits from bidiagonal form of the forward matrix. 
Reducing the number of electrodes to 64 has a small effect on the solutions, but with 
32 leads, inverse solutions get less precise, and the difference between the results of 
Tikhonov regularization and L-TTLS method becomes less significant.

Subjects: Biomedical Engineering; Engineering & Technology; Medical Imaging; Technology

Keywords: inverse problem of electrocardiography; Tikhonov regularization; lead  
reduction; Lanczos least-squares QR (L-LSQR); Lanczos truncated total least-squares (L-TTLS)

1. Introduction
According to a World Health Organization (WHO) report, an estimated 17 million people die of car-
diovascular diseases such as heart attack and stroke, around the world every year (WHO, 2014). 
Yearly growing number of patients around the world has motivated researchers to seek clinically 
practical non-invasive methods to attain detailed and precise information about the electrical activ-
ity of the heart. Although several cardiac abnormalities are diagnosable by the standard 12-lead 
ECG, many others are not detectable by this fixed lead configuration. Furthermore, 12-lead ECG suf-
fers from sparse sampling in space. Alternatively, body surface potential mapping (BSPM) approach 
has been proposed, in which ECG signals are acquired from large number of electrodes densely 
placed on the torso surface. But still, these measurements also suffer from attenuation and smooth-
ing that occur inside the body. One way to recover lost details on the body surface is to obtain actual 
electrical sources within the heart that generate the body surface measurements by solving the in-
verse ECG problem. This technique is also called as electrical imaging of the heart. The solution of the 
inverse ECG problem can help physicians diagnose various heart diseases and treat them properly 
before they turn into life threatening health issues. However, inverse ECG problem is ill-posed be-
cause of attenuation and smoothing of cardiac signals inside the body (Gulrajani, 1998; Ramanathan, 
Ghanem, Jia, Ryu, & Rudy, 2004). Thus, even small perturbations in the measurements or errors in 
the mathematical model relating the sources to the measurements can cause unbounded errors in 
the solution. To overcome this ill-posed nature of the problem and to obtain reasonable and mean-
ingful cardiac electrical images, the solution has to be regularized.

Researchers have proposed several regularization and statistical estimation methods to over-
come the ill-posedness of the inverse ECG problem. Tikhonov regularization (Tikhonov & Arsenin, 
1977) and truncated singular value decomposition (TSVD) (Shou, Xia, & Jiang, 2007) are the most 
well-known methods for regularization. A modified version of Tikhonov regularization, which is 
called as the “Twomey” regularization, has not been as practical as Tikhonov regularization, since it 
needs prior information about the desired solution (Twomey, 1963). Truncated total least-squares 
(TTLS) is another method that has been shown to be effective, especially in the presence of geomet-
ric noise (Shou et al., 2008). However, as with TSVD, computation of singular values for a large matrix 
is time consuming. Alternatively, Lanczos-bidiagonalization-based TTLS method (L-TTLS) has been 
proposed in (Güçlü, 2013) to reduce the computational complexity and the run time. Another 
Lanczos-bidiagonalization-based method is Lanczos least-squares QR factorization (L-LSQR); Jiang, 
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Xia, Shou, and Tang (2007) compared the performances of conventional regularization methods, 
Tikhonov regularization and TSVD, with L-LSQR method. Most of the regularization methods employ 
L2-norm (Euclidian norm)-based approaches, both in the data and penalty terms to deal with the 
ill-posed nature of the inverse problem. L1-norm based solutions have also been proposed to over-
come over-smoothing effects present in the L2-norm based solutions (Ghosh & Rudy, 2009; Shou, 
Xia, Liu, Jiang, & Crozier, 2011; Wang, Qin, Wong, & Heng, 2011). Bayesian Maximum a posteriori 
(MAP) estimation (Serinagaoglu, Brooks, & MacLeod, 2006; van Oosterom, 1999), Kalman filters and 
smoothers (Aydin & Dogrusoz, 2011; Ghodrati, Brooks, Tadmor, & MacLeod, 2006) are some of the 
statistical approaches that incorporate prior information on the solutions in the form of a prior prob-
ability density function.

For cardiac electrical imaging to be practical in clinical applications, it is important to use small 
number of electrodes (Ghodrati, Brooks, & MacLeod, 2007). But at the same time, data acquired via 
these electrodes should have effective coverage of the changes in the electrical potentials that are 
reflected onto the body surface. Another point to keep in mind is that smaller number of electrodes 
usually result in an under-determined system. In that case, much of the burden of reconstructing 
cardiac electrical image is on the regularization algorithms.

In this paper, our main goal is to study the effects of employing a smaller number of leads (elec-
trodes) for recording the body surface potentials, on the inverse ECG solutions. We propose a simple 
lead-set reduction algorithm based on inverse solutions, and we compare the performances of these 
reduced lead-sets with the performances of the manually selected lead-sets and the complete lead-
set. We have applied Lanczos-bidiagonalization-based methods, L-TTLS and L-LSQR in this study to 
take advantage of their reduced computational complexity and fast computation. L-LSQR has been 
applied previously to solve the inverse ECG problem (Jiang et al., 2007), and L-TTLS has been pro-
posed in an earlier study by one of our research group (Güçlü, 2013) to reduce the computational 
complexity and the run time. However, to the best of our knowledge, neither method has been as-
sessed elsewhere in terms of their performances with reduced lead-sets. Here we compare perfor-
mances of these methods in reconstructing real heart potentials with Tikhonov regularization. 
Results are quantitatively compared by calculating correlation coefficient (CC) and relative differ-
ence measurement star (RDMS). Qualitative comparisons are also carried out by plotting the heart 
surface potential distributions using MAP3D visualization software, which provides an interactive 
display of both geometry and data assigned to elements of that geometry.

2. Problem definition
In cardiac electrical imaging, electrical sources in the heart may be represented in various equiva-
lent sources. In this study, we use epicardial potentials, which are the potentials on the outer surface 
of the heart. Epicardial potentials are related to body surface potentials by the following linear 
system:

 

where B ∈ ℝ
m×p and X ∈ ℝ

n×p are the matrices that contain body surface potentials and epicardial 
potentials, respectively. The matrix A ∈ ℝ

m×n is the forward transfer matrix, which is the result of 
the solution of the forward problem of ECG, and the matrix N ∈ ℝ

m×p is used to model measurement 
errors. For vector notation we can redefine the above equation as:

 

where t represents each time instant, and b(t), x(t), and n(t) correspond to the tth column of matrices 
B, X, and N, respectively. The solution to Equation (2) is found separately for every t. For simplicity, we 
drop the time index from the equations in the following sections.

(1)B = AX + N,

(2)b(t) = Ax(t) + n(t) ( t = 1, 2,… , p),
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3. Regularization methods

3.1. Tikhonov regularization
Tikhonov regularization method is one of the most well-known and popular regularization methods 
to deal with the ill-posed nature of the inverse ECG problem (Golub & van Loan, 1980). In this meth-
od, a cost function consisting of the residual norm and the constraint norm is defined, and the solu-
tion is chosen to minimize this cost function (Aster, Borcher, & Thurber, 2005):
 

where � is the regularization parameter, x
�
 is the solution for a specific � value, and R is the regulari-

zation matrix representing the constraints to be used for regularization. Here, ‖.‖2 stands for the 
Euclidean norm, and we use R = I (identity matrix, i.e. zeroth-order regularization), because it is 
more suitable for inverse problem of ECG (Franzone, Guerri, Taccardi, & Viganotti, 1985).

Two alternative representations of Tikhonov regularization are presented below:

 

 

Considering the above two equations, it can be inferred that if the null space of A intersects with the 
null space of R (i.e. N(A) ∩N(R) = {0}), then there would be a unique solution, xest, then the coeffi-
cient matrix, 

(
ATA + �2RTR

)
, has full rank, and the solution is calculated as:

 

where

 

is the Tikhonov regularized inverse of matrix A. As in many regularization methods, large singular 
values are more effective than smaller ones; therefore, the determination of the regularization pa-
rameter λ is important.

3.2. Lanczos least-squares QR (L-LSQR)
Lanczos least-squares QR factorization (L-LSQR) is an iterative method to solve linear systems. When 
the coefficient matrix is large, iterative methods are more preferable than direct solutions. L-LSQR 
method iteratively produces solution matrices. After k iterations, the solution will approach an opti-
mal solution. However, this method suffers from a phenomenon called as “semi-convergence”. If 
the number of iterations is not limited, the solution may converge to a worse solution with higher 
relative error (Jiang et al., 2007).

L-LSQR method starts with finding the sequence of Lanczos vectors using Lanczos-bidiagonalization 
method. Lanczos-bidiagonalization computes uj ∈ ℝ

m, vj ∈ ℝ
n and scalars αj and βj such that 

Bk = UTAV is met. Here, Bk is a lower bidiagonal matrix, with 0 representing triangular 0-matrices: 

(3)x
�
= argminx‖Ax − b‖22 + �2‖Rx‖22,

(4)
(
ATA + �2RTR

)
x = ATb,

(5)min
‖‖‖‖‖

(
A

�R

)
x −

(
b

0

)‖‖‖‖‖2

(6)xest = A�
b,

(7)A
�
= (ATA + �2RTR)−1AT

(8)Bk =

⎡
⎢⎢⎢⎢⎢⎣

�
1

0

�
1

�
2

�
2

⋱

⋱ �k
0 �k+1

⎤
⎥⎥⎥⎥⎥⎦

.
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Lanczos vectors are orthonormal such that:

and

3.2.1. Lanczos-bidiagonalization

1. � Choose a starting vector b ∈ ℝ
m and �1 = ‖b‖2, u1 = b

�1
, v0 = 0 and α1.

2. � For i = 1, 2,… , k do

a.  ri = A
Tui − �ivi−1

b.  �i = ‖ri‖2
c.  vi =

ri

�i

d.  Pi = Avi − �iui

e.  �i+1 = ‖Pi‖2
f. ui+1 =

Pi

�i+1

End

After k iterations, three matrices will have been computed, a lower bidiagonal matrix Bk and two 
matrices Uk+1 and Vk. These matrices are related by the following relationships:
 

where ei represents the ith unit vector. Now, the calculated quantities by Lanczos-bidiagonalization 
algorithm can be used to solve the least-squares problem:

 

Here, the solution has the form:

where the length of the vector y(k) is k. Then, r(k) = b − Ax is defined and by substitution we have:

 

Let us define tk+1 = �1u1 − Bky
(k). Since Uk+1 has orthonormal columns, it can be concluded that y(k) 

should be chosen so that it minimizes ‖tk+1‖2. Thus, the least-squares problem changes to:

 

By standard QR factorization of Equation (13) we have:

Uk+1 = (u1,u2,… , uk+1) ∈ ℝ
m×(k+1),UTk+1Uk+1 = Ik+1,

Vk = (v1, v2,… , vk) ∈ ℝ
m×k,VTk Vk = Ik.

(9)
b = �1u1 = �1Uk+1e1,

AVk = Uk+1Bk,

ATUk+1 = VkB
T
k + �k+1vk+1e

T
k+1

(10)min‖Ax − b‖2.

(11)x(k) = vky
(k),

(12)r(k) = �1u1 − AVky
(k) = Uk+1

(
�1e1 − Bky

(k)
)
.

(13)min ‖�1e1 − Bky(k)‖2.

(14)

Qk
�
Bk 𝛽1e1

�
=

�
Rk fk
gTk 𝜑̃k+1

�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜌1 𝜃2 𝜑1
𝜌2 𝜃3 0 𝜑2

⋱ ⋱ ⋮

⋱ ⋱ ⋮

0 𝜌k−1 𝜃k 𝜑k−1
𝜌k 𝜑k

gk1 gk2 … … … gkk 𝜑k+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then, y(k) and tk+1 can be calculated as:

 

Finally, by combining Equations (13) and (15) we have:

 

As it was stated before, L-LSQR is a semi-convergence method, which by further iteration may di-
verge from optimal solution. Therefore, defining the bound for k appropriately is an important issue.

3.3. Lanczos truncated total least-squares (L-TTLS)
When Lanczos-bidiagonalization method is combined and used along with TTLS, we call it as the 
Lanczos TTLS (L-TTLS) method. In L-TTLS algorithm (Morigi & Sgallari, 2001), starting with an initial 
vector, u1 = b∕‖b‖2, two sets of matrices Vk and Uk, and the (k + 1) × k bidiagonal matrix, Bk, are 
produced after k iterations such that:

Vk = {v1, v2, …, vk}, and Uk = {u1, u2, …, uk+1}.

These matrices are related to each other by the subsequent equations:

 

After k iterations, if k is large enough to include all singular values of the matrix A, the TLS problem 
can be projected into subspaces spanned by Vk and Uk.

The final form of the problem will be:

 

where ‖ . ‖F denotes the Frobenius norm. Then TLS method is applied on a small sized matrix, which 
is the result of Lanczos-bidiagonalization process, in order to create the truncated TLS solution, 
namely, the TTLS solution. To calculate TTLS solution, SVD is applied on the matrix (Bk = �1u1):

 

The matrix V̄
(k) is partitioned as noted below:

 

where V̄11 ∈ ℝ
(k−1)×(k−1)

, V̄12 ∈ ℝ
(k−1)×1

, V̄21 ∈ ℝ
1×(k−1)

, and V̄22 ∈ ℝ
1×1

.

Then the standard TLS solution can be defined as:

 

Finally, the solution is calculated as:

 

(15)fk = Rky
(k), tk+1 = Q

T
k

[
0

𝜑̃k+1

]
.

(16)x(k) = vkR
−1
k fk = Dkfk.

(17)AVk = UkBk and b = �1u1

(18)min ‖Bk, 𝛽1e1 − �Bk, ê(k)‖F , subject to �Bky = ê
(k),

(19)(Bk𝛽1u1) = Ū
(k)

Σ
(k)(

V̄
(k)

)T

.

(20)
V̄ =

(
V̄11 V̄12

V̄21 V̄22

)
,

(21)ȳk = −V̄
(k)

12

(
̄̄v(k)
22

)−1

.

(22)x̃ = VkV̄
(k)

12

(
̄̄v(k)
22

)−1

.
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3.4. Regularization parameter selection method
The regularization parameters in this study are the λ parameter in Tikhonov regularization method 
and the truncation number k in L-LSQR and L-TTLS methods. In this study, Maximum Correlation 
Coefficient (MCC) method is used as a regularization parameter selection method, in which the cor-
responding parameter is selected so that the CC of the solution with the true potentials is 
maximized.

4. Lead reduction for body surface potential mapping (BSPM)
Inverse ECG has the potential to be a strong tool for clinical diagnosis of various heart diseases. 
However, for practical purposes, the number of attached electrodes on the body surface should be 
as small as possible considering their optimal configuration to acquire information as much as pos-
sible. Toward this end, numerous studies are conducted under “Lead Reduction” topic, each of which 
aims to reduce the number of attached electrodes to the body surface in a way that informative 
potential distribution on the torso surface would still be accurately detectable (Barr, Spach, & 
Herman-Giddens, 1971; Donnelly, Finlay, Nugent, & Black, 2008; Finlay et al., 2006; Lux, Smith, Wyatt, 
& Abildskov, 1978; Lux et al., 1979). The common aim in all these studies is to use a smaller number 
of electrodes than the nodes in the associated geometry model.

Beside the desired number of leads, the location of them on the surface of the body is of a great 
importance. For instance, the electrical activity of the heart is more detectable in the frontal region 
of the torso (Lux et al., 1978). Several lead-sets are used in this study, and the effects of reducing the 
number of leads are evaluated.

We start with a complete lead-set consisting of 771 electrodes (Figure 1(a)), then we reduce these 
leads to 192 leads as presented in (Lux et al., 1978) (Figure 1(b)). These 192 leads are from equally 
spaced electrodes (a 12 × 16 1electrode array) that cover the upper part of the body.

To relate the reduced lead-set problems to the original problem in Equation (1), there should be a 
row-removal process which can be done by pre-multiplication of the forward matrix, A, by a selec-
tion matrix, S, which contains “1” in each row at the column number corresponding to the desired 
row of matrix A that will be selected, and zero elsewhere:

 

Therefore, the corresponding 192, 64, and 32 rows of selected configurations are extracted from 
the original forward matrix, A771×490, by removing the undesired rows. The same process should be 
applied to the data matrix, B, to obtain a reduced data matrix corresponding to the new reduced 
forward matrix (Ghodrati et al., 2007):

 

(23)As = SA.

(24)Bs = SB.

Figure 1. (a) 771 complete lead-
set and (b) 192 lead-set.
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In this study, two approaches are considered to select 64 and 32 electrodes out of a larger number 
of electrodes. In the first approach, the desired number and the locations of the reduced-leads are 
manually selected from a larger lead set. We have two major selection criteria in this approach: the 
first one is to select electrodes only from the frontal region of the torso. The second, and the funda-
mental one is to select electrodes more densely between potential extrema on the torso (blue and 
red regions in Figure 1(a)), since this region contains significant information about the electrical ac-
tivity of the heart and better represents the waveform pattern compared to other regions. The re-
sulting lead-sets are shown in Figure 2, and referred to as 64 lead-set-I and 32-lead-set-I, 
respectively.

The second way for selecting reduced lead-sets employs an inverse problem solution approach, 
which results in 64 lead-set-II and 32 lead-set-II. In this approach, instead of the 771 complete 
lead-set, 192 lead-set configuration proposed by Lux et al. (1978) is considered as the primary 
lead-set, out of which we select 64 and 32 leads automatically. Thus, we start with a forward 
transfer matrix, A, of size 192 × 490, and a data matrix B of size 192 × 109, which contains the 
torso surface measurements. The process of selecting the optimal 64 or 32 leads out of these 192 
leads is based on selecting only one optimal lead per iteration. In each iteration, the lead whose 
acquired signal gives the best inverse solution to the whole system is selected. To solve the re-
lated inverse problem, Tikhonov regularization along with maximum CC as regularization param-
eter selection method is used. In other words, in this method the lead selection process is 
addressed as a criterion of how well each individual electrode is able to reconstruct the epicardial 
potentials.

A flowchart for the reduced lead set selection steps is presented in Figure 3. At the first iteration 
step, the inverse problem is solved for each body surface potential measurement separately. The 
lead that yields the maximum CC in the inverse solution is then selected as the first lead for the re-
duced lead-set. At the second iteration step, each body surface lead (except the one that was al-
ready selected) is appended to the previously selected lead in sequence, and the combination leads 
(consisting of 2 leads) that yield the maximum CC in the solution compose the first two leads for the 
reduced lead-set. This iteration of appending one lead next to the previously selected leads and solv-
ing the inverse problem for maximum CC value is repeated until the desired number of leads are 
achieved. These reduced lead-sets are referred to as 64-lead-set-II and 32-lead-set-II, and their 
configurations are shown in Figure 4. Note that this is an automatic lead selection algorithm, which 
may yield frontal and back lead distributions.

Figure 2. (a) 64-lead-set-I and 
(b) 32-lead-set-I.

Note: In this approach, reduced 
leads are manually selected 
from the frontal surface of the 
body.
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5. Results
The epicardial potentials used for this study were measured at University of Utah Nora Eccles Harrison 
Cardiovascular Research and Training Institute (CVRTI) (MacLeod, Lux, & Taccardi, 1998). These epi-
cardial measurements were taken from 490 points over the heart surface (epicardial surface) with a 
sampling rate of 1,000 samples per second and the forward transfer matrix is used to simulate 771 
body surface potentials from epicardial potential measurements. We simulated the body surface po-
tentials at 30 dB Signal to Noise Ratio (SNR). For this study, data from a single animal are included.

The goal here can be summarized in two parts:

(1) � We know from literature that reduced lead-sets also yield high-quality inverse solutions com-
pared to larger data-sets, if an appropriate lead number and a suitable distribution can be 
selected. Here, we aim to study and compare the performances of two reduced lead-set selec-
tion algorithms, with each other and with the solutions that are based on the complete 
lead-set.

Figure 4. (a) 64-lead-set-II 
front view, (b) 64-lead-set-II 
back view, (c) 32-lead-set-II 
front view, and (d) 32-lead- 
set-II back view.

Figure 3. Main steps of  
lead-selection approach.
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(2) � There are various regularization algorithms in literature used for solving the inverse ECG prob-
lem. Here we aim to compare two Lanczos bidiagonalization-based methods in terms of their 
performances when reduced lead-sets are used.

Correlation Coefficient (CC) and Relative Difference Measurement Star (RDMS) metrics are used as 
two quantitative criteria to compare the results of the three regularization algorithms with the true 
(experimentally obtained) epicardial potentials. Smaller values of RDMS indicate a higher quality of 
the answer, i.e. the regularized solution is closer to the real solution.

Here, the inverse problem is solved at all time instants using the three regularization methods for 
each lead-set combination, including the case where we include all 771 leads. Then, CC and RDMS 
values are calculated by comparing the true epicardial potentials with the reconstructed ones over 
the heart surface at each time instant. Table 1 includes averages and standard deviations over time 
of the calculated CC and RDMS values for different regularization methods and lead-set selections. 
It can be inferred that the L-TTLS method is able to reconstruct epicardial potentials better than the 
L-LSQR method. As the number of leads decreases, considering the average and standard deviation 
values of CC, the difference between the results of Tikhonov regularization and L-TTLS method be-
comes smaller. This indicates that by reducing the number of measurement sites on the torso, 
L-TTLS method acts more robust than the L-LSQR method. Clearly, 64 lead-set-II and 32-lead-set-II 
perform better than 64 lead-set-I and 32-lead-set-I, respectively. This is due to the process of select-
ing leads for 64 lead-set-II and 32-lead-set-II which is significantly more accurate than the manual 
selection scheme used for 64-lead-set-I and 32-lead-set-I cases. Similarly, by considering the values 
in the last column of Table 1, the average and standard deviation values of RDMS values for different 
regularization methods, it can be concluded that although the amount of RDMS values increase by 
reducing the number of measuring sites, there is no drastic change in these values. Therefore, it can 
be concluded that to reconstruct epicardial potentials, a large number of electrodes is unnecessary 
and similar results can be obtained using a small number of leads in an optimal configuration.

Table 1. Average and standard deviation values of CC and RDMS of different regularization 
methods for different lead-sets
Leads Method Avg ± std (CC) Avg ± std (RDMS)
771 Tikhonov 0.7946 ± 0.1995 0.5488 ± 0.2333

L-LSQR 0.7166 ± 0.2042 0.6840 ± 0.2432

L-TTLS 0.7609 ± 0.2126 0.6069 ± 0.2623

192 Tikhonov 0.7793 ± 0.2006 0.5809 ± 0.2428

L-LSQR 0.7296 ± 0.2032 0.6644 ± 0.2440

L-TTLS 0.7614 ± 0.2100 0.6088 ± 0.2586

64-I Tikhonov 0.7393 ± 0.2080 0.6435 ± 0.2359

L-LSQR 0.7068 ± 0.2050 0.7026 ± 0.2390

L-TTLS 0.7312 ± 0.2109 0.6602 ± 0.2512

64-II Tikhonov 0.7406 ± 0.2233 0.6308 ± 0.2617

L-LSQR 0.7036 ± 0.2195 0.6928 ± 0.2548

L-TTLS 0.7317 ± 0.2270 0.6472 ± 0.2697

32-I Tikhonov 0.7119 ± 0.2049 0.6911 ± 0.2299

L-LSQR 0.6887 ± 0.1995 0.7332 ± 0.2302

L-TTLS 0.7081 ± 0.2024 0.6991 ± 0.2369

32-II Tikhonov 0.7329 ± 0.2232 0.6453 ± 0.2600

L-LSQR 0.7104 ± 0.2200 0.6833 ± 0.2557

L-TTLS 0.7294 ± 0.2231 0.6524 ± 0.2604
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In order to assess the quality of the inverse solutions using reduced lead sets, we also plot the epi-
cardial potential distributions (iso-potential maps) over the heart surface at a single time instant 
using the MAP3D visualization software (CIBC, 2016), represented in Figure 5. In this figure, the top 
row shows the true potential distribution at a single time instant and the remaining plots show solu-
tions obtained by different methods and lead-sets. In these maps, the blue regions are the depolar-
ized parts of the heart and the red regions correspond to tissue at rest. This figure shows that, the 
contours of the real epicardial potentials and 64 lead-set-II and 32-lead-set-II are very similar, indi-
cating that the quality of the solutions of this reduced lead-set are significantly high. By looking at 
the wave-front form, again it can be concluded that the regularization results of 64 lead-set-II and 
32-lead-set-II, especially for the L-TTLS method, have a higher quality than 64 lead-set-I and 
32-lead-set-I. This validates that optimally selected 64 lead-set-II and 32-lead-set-II have the abil-
ity to reconstruct epicardial potentials better than 64 lead-set-I and 32-lead-set-I.

6. Conclusion
In this study, three regularization methods, namely, Tikhonov regularization, L-LSQR and L-TTLS, are 
employed to reconstruct potential distributions on the epicardial surface by solving the inverse prob-
lem of ECG. These regularization methods are applied to data corresponding to complete and re-
duced lead-sets. To compare the results of these regularization methods, average and standard 
deviation values of correlation coefficient (CC) and relative difference measurement star (RDMS) are 
calculated. Our results show that L-TTLS method performs better than L-LSQR. By assuming the re-
sults of Tikhonov regularization as a baseline, it can be concluded that as the number of measure-
ment leads decreases, the difference between the reconstructed potentials using Tikhonov 

Figure 5. MAP3D results 
at t = 53 ms for Tikhonov 
regularization, L-LSQR, and 
L-TTLS methods. Panel (a) 
show true epicardial potential 
distribution. The remaining 
panels (in groups of 3 images) 
correspond to solutions with (b) 
771 complete lead-set, (c) 192 
lead-set, (d) 64 lead-set-I, (e) 
64 lead-set-II, (f) 32 lead-set-I, 
and (g) 32 lead-set-II.
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regularization and L-TTLS reduces. So it can be inferred that L-TTLS method is more robust and ac-
curate than Tikhonov regularization method when the number of measurement sites is reduced. In 
fact, it would be beneficial to use methods that employ Lanczos-bidiagonalization as part of the 
regularization process to speed up the execution time. The short runtime is an important issue when 
dealing with big data matrices to solve ECG inverse problems (for example, inverse problems in 
terms of transmembrane potentials).

In many studies, in order to obtain electrical activity of the heart, a large number of leads are used. 
However, according to the results obtained in this study, there is no need to use a large number of 
leads to acquire signals on the surface of the body, and a small number of leads optimally located on 
the surface of the torso will be enough to estimate the potential distribution on the surface of the 
heart. Therefore, by employing a small number of measurement leads, electrical sources on the heart 
surface and correspondingly pathologies of the heart can be diagnosed and treated, since the inverse 
solution of ECG provides spatial and temporal information about the electrical activity of the heart.

As future work, we will apply the proposed lead-selection method in this study on a wider range of 
data with varying pacing sites on the epicardial surface. In this way, it would be possible to under-
stand how the reduced lead-sets are affected from different propagation patterns of potentials on 
the heart, and to develop and introduce a generalized lead-set that produces good solutions for 
these different data.
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