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1 Introduction

During the last few years, there has been substantial experimental progress on the spec-
troscopy of the light and heavy baryons. Among the discovered many new states, some are
described by the quark model, but the quark content of some others is under debate. Many
new states containing a single heavy quark are experimentally observed. Practically, all
baryons containing a single charm quark that predicted by the quark model have already
been established. The heavy spin–1/2, Λb, Σb, Ξb and Ωb baryons as well as the spin–3/2,
Σ∗

b baryon containing a single b–quark are also experimentally discovered (for a review,
see for example [1]). Recently, the CMS Collaboration announced the observation of the
spin–3/2, Ξ∗

b baryon containing also a single b–quark with a mass of 5945 MeV [2].
The quark model also predicts hadrons with two or three heavy quarks. The experimen-

tal progress on the heavy hadron spectroscopy has stimulated the researches on the doubly
heavy hadron physics. Up to now, only one heavy baryon with two charm quarks, namely
the Ξ+

cc baryon has been observed in experiments [3–5] conducted by the SELEX Collab-
oration. Researches are waiting for considerable experimental progress on observations of
the doubly heavy baryons and their properties at LHC–b.

One of the main characteristic parameters of the doubly heavy baryons is their mass.
The masses of these baryons are tried to be estimated in different frameworks such as
quark model [6, 7] and MIT bag model [8]. The masses of the spin–1/2 doubly heavy
baryons are also calculated within QCD sum rules method [9] in [10–13], and the masses of
the spin–3/2 doubly heavy baryons are studied within the same framework in [10, 11] and
[14]. However, one can easily see that the analytical expressions presented in these three
works are different, and therefore there appears a necessity for a more accurate study of
the masses and residues of the doubly heavy baryons within the QCD sum rules method.

The outline of the paper is as follows. In section 2, we obtain the sum rules for the
masses and residues of the doubly heavy baryons. In section 3, we present the numerical
analysis of the sum rules and discuss the results. We also compare the obtained results
with those predicted via other nonperturbative approaches in this section.

2 Mass sum rules for the doubly heavy spin–3/2 baryons

The QCD sum rules for the doubly heavy spin–3/2 baryons are obtained by considering
the two–point correlator,

Πµν(q) = i

∫
d4xeiqx 〈0 |T {ηµ(x)η̄ν(0)}| 0〉 , (1)

where T is the time ordering operator, q is the four–momentum of the doubly heavy baryon
and ηµ is its interpolating current. Few words about the choices of the interpolating current
for the spin–3/2 doubly heavy baryons are in order. The general structure of the interpo-

lating current should contain the following terms: εabc(QaTCΓQ
′b)Γ̃qc, εabc(qaTCΓQb)Γ̃Q

′c,

and εabc(qaTCΓQ
′b)Γ̃Qc, where T is the transposition, C is the charge conjugation operator,

Γ and Γ̃ are Dirac matrices; and a, b and c are the color indices. Since we are interested
in the doubly heavy baryons with spin–3/2, each diquark in the above–presented forms
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should obviously have spin 1. As far as the first term is concerned, since the diquark has
spin 1, it should be symmetric with respect to the Q ↔ Q

′

exchange. This implies that Γ
is to be replaced by γµ or σµν . The remaining two terms should also exhibit this symmetry
property. Hence, these two terms should have the following form:

εabc
[
(qaTCΓQb)Γ̃Q

′c + (qaTCΓQ
′b)Γ̃Qc

]
,

where Γ = γµ or σµν .
As a result, the two possible forms of the interpolating current for the double heavy

baryons can be written as:

N1ε
abc

{
(QaTCγµQ

′b)Γ̃1q
c + (qaTCγµQ

b)Γ̃1Q
′c + (qaTCγµQ

′b)Γ̃1Q
c
}
, (2)

or,

N2ε
abc

{
(QaTCσµνQ

′b)Γ̃2q
c + (qaTCσµνQ

b)Γ̃2Q
′c + (qaTCσµνQ

′b)Γ̃2Q
c
}
,

where N1 and N2 are the normalization factors. The values of Γ̃1 and Γ̃2 are determined
through a consideration involving Lorentz structure and parity. Since the above–mentioned
forms must both be Lorentz vectors, then Γ̃1 = 1 or γ5, and Γ̃2 = γν or γ5γν . Furthermore,
the parity consideration leads to the results Γ̃1 = 1 and Γ̃2 = γν . Thus, as a result of the
above discussion, we have two possible interpolating currents for the spin–3/2 doubly heavy
baryons,

η1µ = N1ε
abc

{
(QaTCγµQ

′b)qc + (qaTCγµQ
b)Q

′c + (qaTCγµQ
′b)Qc

}
,

η2µ = N2ε
abc

{
(QaTCσµνQ

′b)γνq
c + (qaTCσµνQ

b)γνQ
′c + (qaTCσµνQ

′b)γνQ
c
}
.

Moreover, if we formally assume that all quarks are heavy (light) and Q
′

= Q, only the η1µ
survives similar to the ∆++ current. For this reason, in the present work, we consider the
following current as the interpolating current for doubly heavy baryons with spin–3/2:

ηµ =
1√
3
ǫabc

{
(qaTCγµQ

b)Q′c + (qaTCγµQ
′b)Qc + (QaTCγµQ

′b)qc
}
, (3)

where q is the light; and Q and Q′ are the two heavy quarks, respectively. We present the
quark content of the doubly heavy baryons in Table 1.

baryon Light quark q Heavy quark Q Heavy quark Q′

Ξ∗
QQ u or d b or c b or c

Ω∗
QQ s b or c b or c

Ξ∗
QQ′ u or d b c

Ω∗
QQ′ s b c

Table 1: The quark content of the spin–3/2 doubly heavy baryons.

As is well known, in the QCD sum rules approach, the correlation function is calculated
in two different manners:
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• In terms of quarks and gluons using the operator product expansion (OPE), which
contains perturbative and nonperturbative condensate contributions,

• In terms of hadrons (physical part).

Equating these two representations and performing Borel transformation with respect
to the baryon momentum square, which suppresses the higher states and continuum con-
tributions, we obtain the sum rules. Here we would like to make the following cautionary
note. The interpolating current ηµ of the doubly heavy baryons can interact not only with
the positive parity spin–3/2 baryons, but also with the negative parity spin–3/2 baryons, as
well as with spin–1/2 baryons with both parities, and surely these unwanted contributions
must be eliminated.

The matrix element of the interpolating current ηµ sandwiched between the vacuum and
the single baryon states is determined in the following way:

〈
0 |ηµ|B(3/2)+(q)

〉
= λ(3/2)+uµ(q) ,〈

0 |ηµ|B(3/2)−(q)
〉
= λ(3/2)−γ5uµ(q) ,

〈
0 |ηµ|B(1/2)+(q)

〉
= λ(1/2)+

(
4qµ
m

+ γµ

)
γ5u(q),

〈
0 |ηµ|B(1/2)−(q)

〉
= λ(1/2)−

(−4qµ
m

+ γµ

)
u(q) , (4)

where uµ is the Rarita–Schwinger spinor, and λi are the residues.
Now, we can proceed calculating the physical part of the correlator given by Eq. (1).

Saturating this correlator by the ground state baryons we get,

Πµν =
〈0 |ηµ|B(q)〉 〈B(q) |η̄ν | 0〉

q2 −m2
B

+ · · · , (5)

where dots represent the higher states and continuum contributions.
Using Eqs. (4) and (5) and performing summation over spins of the Rarita–Schwinger

spinor which is given by the relation,

∑
uµ(q, s)ūν(q, s) = (/q +mB)

(
gµν −

1

3
γµγν −

2qµqν
3m2

B

+
qµγν − qνγµ

3mB

)
, (6)

we obtain the following expression for the physical part of the correlation function:

Πµν(q) =
λ2
(3/2)+

m2
(3/2)+ − q2

(/q +m(3/2)+)

(
gµν −

1

3
γµγν −

2qµqν
m2

(3/2)+
+

qµγν − qνγµ
3m(3/2)+

)
,

−
λ2
(3/2)−

m2
(3/2)− − q2

γ5(/q +m(3/2)−)

(
gµν −

1

3
γµγν −

2qµqν
m2

(3/2)−
+

qµγν − qνγµ
3m(3/2)−

)
γ5 ,

−
λ2
(1/2)+

m2
(1/2)+ − q2

(
4qµ

m(1/2)+
+ γµ

)
γ5(/q +m(1/2)+)

(
4qν

m(1/2)+
+ γν

)
γ5

+
λ2
(1/2)−

m2
(1/2)− − q2

(
− 4qµ

m(1/2)−
+ γµ

)
(/q +m(1/2)−)

( −4qν
m(1/2)−

+ γν

)
. (7)
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It follows from this expression that only the structures /qgµν and gµν couple to the spin–
3/2 baryons, which we shall consider in further discussion. Therefore, for the physical part
of the correlator we get,

Πµν(q) =
λ2
(3/2)+

m2
(3/2)+ − q2

(/q +m(3/2)+)gµν +
λ2
(3/2)−

m2
(3/2)− − q2

(/q −m(3/2)−)gµν + · · · (8)

We now return our attention to the calculation of the correlator from the QCD side. This
calculation is carried out in deep Euclidean region using the OPE. After some calculations,
we obtain expression of the correlator for the baryons containing two different heavy quarks
in terms of light and heavy quarks propagators as follows:

Πµν(q) =
1

3
ǫabcǫa

′b′c′
{
− Scb′

Q γνS̃
aa′

Q′ γµS
bc′

q − Sca′

Q γνS̃
bb′

q γµS
ac′

Q′ − Sca′

Q′ γνS̃
bb′

Q γµS
ac′

q

− Scb′

Q′ γνS̃
aa′

q γµS
bc′

Q − Sca′

q γνS̃
bb′

Q′ γµS
ac′

Q − Scb′

q γνS̃
aa′

Q γµS
bc′

Q′

− Scc′

Q′ Tr
[
Sba′

Q γνS̃
ab′

q γµ

]
− Scc′

q Tr
[
Sba′

Q′ γνS̃
ab′

Q γµ

]
− Scc′

Q Tr
[
Sba′

q γνS̃
ab′

Q′ γµ

]}
, (9)

where S̃ = CSTC.
It follows from Eq. (9) that, in order to calculate the correlator from the QCD side, the

expressions of the heavy and light quarks propagators are needed. Their expressions in the
coordinate representation are given as,

Sq(x) = i
/x

2π2x4
− mq

4π2x2
− 〈q̄q〉

12

(
1− i

mq

4
/x

)
− x2

192
m2

0〈q̄q〉
(
1− i

mq

6
/x

)
,

SQ(x) =
m2

Q

4π2

K1(mQ

√
−x2)√

−x2
−

m2
Q/x

4π2x2
K2(mQ

√
−x2) , (10)

where K1 and K2 are the modified Bessel functions of the second kind.
It should be noted here that the propagators contain also pieces proportional to the

gluon field strength tensor. While we perform numerical analysis with these terms, we see
that their contributions are very small, and for this reason we do not present them in Eq.
(10). In calculating the correlator from QCD side with strange quark, we take its mass in
linear order.

The correlation function for the structure /qgµν or gµν in QCD side can be written in
terms of the dispersion relation as,

Πi(q
2) =

∫ ∞

(mQ+mQ′ )2
ds

ρi
s− q2

, (11)

where i = 1(2) corresponds to the structure /qgµν (gµν). The spectral density ρi in Eq. (11)
is given by the imaginary part of the correlator,

ρi(s) =
1

π
ImΠi(s) .
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After tedious calculations, for the spectral densities we get,

ρ1(s) =
1

32π4

∫ αmax

αmin

dα

∫ βmax

βmin

dβ
{
µ
[
3αβ(α+ β)µ− 4(1− α− β)mQ′mQ

− 4mq(αmQ′ + βmQ)
]}

− 〈q̄q〉
24π2

∫ αmax

αmin

dα
[
(1− α)(3αmq − 4mQ)− 4αmQ′

]
(12)

ρ2(s) =
1

16π4

∫ αmax

αmin

dα

∫ βmax

βmin

dβ
{
µ
[
(α + β)µ(αmQ′ + βmQ)−mq(αβµ+ 3mQmQ′)

]}

+
〈q̄q〉
12π2

∫ αmax

αmin

dα
{
(1− α)

[
2α(m2

0 + µ1 − s)−mQmq

]
+ (αmq + 3mQ)mQ′

}
, (13)

where,

µ =
m2

Q

α
+

m2
Q′

β
− s ,

µ1 = µ(β → 1− α) ,

βmin =
αm2

Q′

sα−m2
Q

,

βmax = 1− α ,

αmin =
1

2s

[
s+m2

Q −m2
Q′ −

√
(s+m2

Q −m2
Q′)2 − 4m2

Qs ,

αmax =
1

2s

[
s+m2

Q −m2
Q′ +

√
(s+m2

Q −m2
Q′)2 − 4m2

Qs .

We can now compare our results on the spectral densities with the ones presented for
instance in [10] and [11]. As far as the spectral density ρ1(s) is concerned, we have the
factor 3(α+β), which is absent in [11]. The quark condensate in our case contains the term
proportional to 1

8
α(1 − α)mq, while the corresponding term in [11] is 17

48
α(1 − α)mq. The

differences for the spectral density ρ2(s) can be summarized as follows. The perturbative
term proportional to mQ(mQ′) (note that mQ(mQ′) in our work correspond to mQ′(mQ) in
[11]) contains the factor (α + β) which is absent in [11]. In the perturbative part of ρ2(s)
we have also

− 1

16π4
mq

∫
dα

α

∫
dβ

β
(m2

Qβ +m2
Q′α− sαβ)2 ,

which is again absent in [11]. When we compare the quark condensate terms we have
4α(1− α)s which is different from their term reading 3α(1− α)s.

For the /qgµν structure, our results on perturbative part and quark condensate terms
without the strange quark mass agree with the ones given in [10], but the terms proportional
to ms (which is calculated in [15]) and the results for the d = 5 operators are different
compared to those given in [10] and [15].

Equating the coefficient of the structure /qgµν(gµν) in Eq. (8) to Eq. (11) for Π1(Π2),
and performing Borel transformation with respect to Q2 = −q2, we get the following sum
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rules for the masses and residues:

λ2
(3/2)+e

−m2
(3/2)+

/M2

+ λ2
(3/2)−e

−m2
(3/2)−

/M2

=

∫ s0

(mQ+m′

Q)2
dsρ1(s)e

−s/M2

,(14)

λ2
(3/2)+m(3/2)+e

−m2
(3/2)+

/M2

− λ2
(3/2)−m(3/2)−e

−m2
(3/2)−

/M2

=

∫ s0

(mQ+m′

Q)2
dsρ2(s)e

−s/M2

,(15)

in which the quark–hadron duality is used, and the contributions of the higher states and
continuum are modeled as the perturbative ones starting from some threshold s0.

It follows from these sum rules that the negative parity spin–3/2 baryons “contaminates”
the sum rules. In order to eliminate contributions of the (3/2)− baryons we multiply Eq.
(14) with m(3/2)− and add it to Eq. (15), as a result of which we get the following sum rule:

λ2
(3/2)+(m(3/2)+ +m(3/2)−)e

−m2
(3/2)+

/M2

=

∫ s0

(mQ+m′

Q)2
ds
[
m(3/2)−ρ1(s) + ρ2(s)

]
e−s/M2

. (16)

It should be remembered that this approach is also used in estimating the coupling
constant of the pseudoscalar mesons with heavy baryons containing single heavy quark in
[16].

3 Numerical analysis

In this section, we present our numerical results on the masses and residues of the spin–
3
2

+
doubly heavy baryons. For the quark masses, we use their MS values: m̄c(m̄c) =

(1.28± 0.03) GeV , m̄b(m̄b) = (4.16± 0.03) GeV (see for example [16]), and ms(2 GeV ) =
(102 ± 8) MeV [17]. The values of the quark condensates are taken as 〈ūu〉(1 GeV ) =
〈d̄d〉(1 GeV ) = −(246+28

−19 MeV )3 [18], 〈s̄s〉 = 0.8〈ūu〉 and m2
0 = (0.8 ± 0.2) GeV 2. The

masses of the negative parity doubly heavy baryons are taken from [19], in which the
QCD sum rules have been used in calculating them. These masses are calculated to have
the following values: mΞ∗

cc
(3
2

−
) = (3.80 ± 0.18) GeV , mΩ∗

cc
(3
2

−
) = (3.96 ± 0.16) GeV ,

mΞ∗

bb
(3
2

−
) = (10.43± 0.15) GeV and mΩ∗

bb
(3
2

−
) = (10.57± 0.15) GeV .

It should be noted that the masses of the negative parity spin–3/2 baryons Ξ∗
bc(

3
2

−
) and

Ω∗
bc(

3
2

−
) are not estimated in [19]. We observe that the mass difference of the positive and

negative parity baryons with two identical heavy quarks is about 200 MeV , and estimate
that similar difference could have existed for Ξ∗

bc and Ω∗
bc type baryons. So, we take the

mass of these negative parity baryons as, mΞ∗

bc
(3
2

−
) = 7.4 GeV and mΩ∗

bc
(3
2

−
) = 7.5 GeV .

According to the sum rules analysis, the working regions of the continuum threshold s0
and the Borel mass M2 should be found by imposing the requirement that the mass and
residue exhibit good stability with respect to the variations in these parameters. Therefore,
we vary the continuum threshold s0 and the Borel mass M2, in order to find the “working
region”of M2, where the perturbative contribution is larger compared to the nonpertur-
bative part. Using the quark–hadron duality, the contributions of the higher states and
continuum are taken as the perturbative ones starting from s0.

The continuum threshold depends on the energy in the vicinity of the first excited
state. In this respect, we choose the value of the continuum threshold within the interval

6



s0 = (100− 125) GeV 2 for bb, s0 = (50− 65) GeV 2 for bc, and s0 = (14− 22) GeV 2 for cc
baryons.

In the analysis of QCD sum rules, two conditions are satisfied for M2. a) The pole
dominance with respect to the higher states and continuum; b) The convergence of the
OPE, i.e., dominance of the perturbative part over the nonperturbative contributions.

The upper bound on M2 can be obtained from the condition (a). For this purpose, we
introduce the ratio R, which describes relative contributions of the continuum and pole,

R =

∫ ∞

s0

dsρ(s)e−s/M2

∫ ∞

(mQ+m′

Q)2
dsρ(s)e−s/M2

.

Demanding that R < 1/2, which guarantees that the pole contribution exceeds the contin-
uum and higher state contributions, we find the maximum values of M2 for cc, bc and bb
baryons, as are listed below:

M2
max =





4.5 GeV 2 (at
√
s0 = 4.4 GeV ), for Ξ∗

cc and Ω∗
cc,

8.0 GeV 2 (at
√
s0 = 8.0 GeV ), for Ξ∗

bc and Ω∗
bc,

12.0 GeV 2 (at
√
s0 = 10.9 GeV ), for Ξ∗

bb and Ω∗
bb.

(17)

The lower limit of M2 can be obtained when the criteria (b) is satisfied. Our numerical
analysis leads to the following minimum values of M2:

M2
min =






3.0 GeV 2 (at
√
s0 = 4.4 GeV ), for Ξ∗

cc and Ω∗
cc,

6.0 GeV 2 (at
√
s0 = 8.0 GeV ), for Ξ∗

bc and Ω∗
bc,

8.0 GeV 2 (at
√
s0 = 10.9 GeV ), for Ξ∗

bb and Ω∗
bb.

(18)

In these ranges of the M2, the relative contributions of the pole and continuum for each
baryon are presented in Table 2. In comparison, we also present the contributions of the
pole and continuum obtained from the expressions presented in [10] in the same Table.

Pole (Our Work) Continuum (Our Work) Pole[10] Continuum[10]

Ξ∗
cc (63− 71)% (29− 37)% 57% 43%

Ω∗
cc (75− 81)% (19− 25)% — —

Ξ∗
bc (68− 75)% (25− 32)% — —

Ω∗
bc (77− 83)% (17− 23)% — —

Ξ∗
bb (52− 58)% (42− 48)% 57% 43%

Ω∗
bb (66− 70)% (30− 34)% — —

Table 2: The relative contributions of the pole and continuum to the sum rule in respect
to the variation of M2 in the “working region”, together with those obtained from the
expressions presented in [10].
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Using the the working regions of M2 and s0, we obtain the results for the masses of
spin–3/2 doubly heavy baryons, which are all presented in Table 3. For completeness, we
present the results of the other works in the same Table as well. The residues of these
baryons are also presented in Table 4. We see from these Tables that our results on the
masses are overall very close to the values given in [6], [10], [11], [14] and [15]. For the
masses of Ξ∗

bb and Ω∗
bb, the predictions of all approaches are very close to each other. On

the other hand, for the masses of Ξ∗
bc and Ω∗

bc, the predictions of [11] are slightly larger in
magnitude while the results of [6] are slightly smaller compared to our results for central
values. As far as the residues of the Ξ∗

cc and Ω∗
cc baryons are concerned, our predictions are

higher in magnitude compared to the ones presented in [10] and [14]. Our prediction for
the residue of the Ξ∗

bb baryon is also higher when compared to that of the [10], while our
predictions on the residues of the Ξ∗

bb and Ω∗
bb baryons almost match with those of the [14].

Our Work
[10] and [15] [11] [6] [14]

Structure /qgµν Structure gµν

Ξ∗
cc 3.69±0.16 3.72±0.18 3.58±0.05 3.90±0.10 3.727 3.61±0.18

Ω∗
cc 3.78±0.16 3.78±0.16 3.67±0.05 3.81±0.06 3.872 3.76±0.17

Ξ∗
bb 10.4±1.0 10.3±0.2 10.33±1.09 10.35±0.08 10.237 10.22±0.15

Ξ∗
bc 7.25±0.20 7.2±0.2 — 8.00±0.26 6.98 —

Ω∗
bc 7.3±0.2 7.35±0.25 — 7.54±0.08 7.13 —

Ω∗
bb 10.5±0.2 10.4±0.2 10.38±1.10 10.28±0.05 10.389 10.38±0.14

Table 3: The mass spectra of the spin–3/2 doubly heavy baryons in units of GeV .

Our Work
[10] [14]

Structure /qgµν Structure gµν

Ξ∗
cc 0.12±0.01 0.12±0.01 0.071 ± 0.017 0.070±0.017

Ω∗
cc 0.14±0.02 0.13±0.01 — 0.085±0.019

Ξ∗
bb 0.22±0.03 0.21±0.01 0.111 ± 0.040 0.161±0.041

Ξ∗
bc 0.15±0.01 0.15±0.01 — —

Ω∗
bc 0.18±0.02 0.17±0.01 — —

Ω∗
bb 0.25±0.03 0.25±0.02 — 0.199±0.048

Table 4: The residues of the spin–3/2 doubly heavy baryons in units of GeV 3.

As the final remark, we note that in the case we neglect or take into account the
contributions coming from the negative parity baryons the results change less than 5%.
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4 Conclusion

In the present work we calculated the masses and residues of the doubly heavy spin–
3/2 baryons within the QCD sum rules method. In calculations we took into account
the contributions of the operators up to five dimensions in OPE. We also included the
contributions of the negative parity baryons. We compared our predictions on the masses
and residues with the existing predictions in the literature. Our results on the masses
of the doubly heavy spin–3/2 baryons are overall consistent with the previous predictions
of different works discussed in the body text. However in the case of residues, although
our results for some baryons are in good consistency with the results of some works, our
predictions for some other baryons deviate considerably from the existing predictions in the
literature. We expect that our predictions on the masses and residues in this manuscript
can all be checked at LHCb in near future.
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