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Abstract

This study presents a theoretical analysis of output independence and complementariness
between classifiers in a rank-based multiple classifier decision system in the context of the
Partitioned Observation Space theory. To enable such an analysis, an Information Theoretic
interpretation of a rank-based multiple classifier system is developed and basic concepts from
Information Theory are applied to develop measures for output independence and comple-
mentariness. It is shown that output independence of classifiers is not a requirement for
achieving complementariness between these classifiers. Namely, output independence does
not 1mply a performance improvement by combining multiple classifiers. A condition called
Dominance 1s shown to be important instead. The information theoretic measures proposed
for output independence and complementariness are justified by simulated examples.

Keywords: statistical classifier combination, statistical decision combination, statisti-
cal pattern recognition, multiple classifier systems, ranks, classifier observation space, event
space partitioning, Bayesian formalism, independence, complementariness, entropy, mutual
information.

1 Introduction

Multiple classifier systems have been a focus of intensive research for the last decade. Contribu-
tions have been made or some form of decision combination system have been attempted in a
variety of pattern recognition fields. These include machine printed word/character recognition
[1], handwritten character recognition [2, 3, 4, 5, 6, 7, 8], speaker recognition, [9, 10, 11, 12], face
identification [13, 14], text to phoneme translation [15], remote sensing [16, 17], military target
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recognition [18] and biomedical signal processing [19, 20]. The neural networks community has
also been active on this approach [21, 5, 22, 15, 23, 24, 25, 6]. Xu and his colleagues have cate-
gorized multiple classifier decision combination systems with respect to the type of raw output
information from each classifier [2], resulting in three categories: The classifier outputs may be
single class labels (Type 1), rankings of a subset of source classes from highest to lowest “like-
lihood” (Type 2 or rank-based ) or the complete set of similarity score values for the candidate
classes leading to such rankings (Type 3).

Two closely related concepts arise while using a multiple-classifier system with the aim of
improving the overall classification performance. These are the independence and the comple-
mentariness of the classifiers involved.

While constructing a multiple classifier decision combination system, one is faced with several
important problems. It is often not clear whether there will really be an improvement over the
performance of the best classifier by the use of more than one classifier. This clearly depends on
the individual performances of the classifiers involved and their interaction during the classifica-
tion process. One is faced with the problem of determining the potential improvement possible
by making collective use of multiple classifiers.

Another issue of considerable importance is the computational load implied by the parallel
use of multiple classifiers. Given a large set of potential classifiers (e.g., using different features
extraction methods, different modeling/similarity scoring methods), using all of them in parallel
may guarantee performance improvement but may not be computationally feasible with the
hardware capabilities at hand. Practical considerations often necessitate selecting a suitable
subset of classifiers which satisfy a certain performance gain/classification speed tradeoff.

Finally, one should be interested in understanding theoretically when and why a given set of
classifiers, when combined, lead to improved performance, while others do not. Loosely stated,
the aforementioned objectives may only be achieved if it is possible to quantify the potential of
the combiner to improve the classification performance. The complementariness concept and an
associated measure may be used to quantify such an ability.

Independence and complementariness concepts have been around in the pattern recognition

literature for a long time. Unfortunately, the concepts have been often used loosely, without



any attempt for a solid definition and the development of a quantifying measure. For example,
the dependence between the set of classifiers is often ignored and a statistical independence
assumption is used in the development [22, 7]. Some other researchers have argued that statistical
independence of the classifier outputs is not really the useful measure for quantifying improved
performance but the independence of the errors made should be considered instead. This is also
left as a verbal argument [5, 6]. There have also been solid contributions such as by Tumer and
Ghosh [21, 21, 26]. They have shown the relations between classifier output correlation and the
deviation from the optimal Bayesian decision boundary for classifiers which are combined by
linear averaging or by order statistics. Their results apply to classifiers with continuous outputs
in measurement form and cannot be extended trivially to rank-based classifier systems.

Recently, the authors have introduced the Partitioned Observation Space (POS) Theory as
a unifying view where all rank-based multiple classifier systems are uniformly treated and the
decision combination problem is formulated as one of discrete optimization [27, 28]. The rank-
based multiple classifier system is treated as an interrelated set of random variables and the
partitioning of the classifier observation space is introduced as a controlled tool to selectively
reduce the observation resolution in order both to reduce the problem dimensionality and to
suppress undesired or unreliable resolution.

In the present study, building on the concepts developed in [27] and some basic concepts
from Information Theory, a formal treatment of classifier independence and complementariness
concepts for rank-based Type 2 multiple classifier systems will be attempted. For this purpose,
first a definition will be proposed for the output independence of rank-based classifiers. It will be
argued that this Information Theory based definition also gives an output dependence measure
for the classifiers involved. Then the improvement in performance by combining the rank outputs
of more than one classifiers is questioned from the output independence point of view. It is shown
by an example that dependent classifiers when combined may give a better performance than the
combination of independent classifiers if the combined decision is done in an optimal way in the
Bayesian sense. This observation leads to a deeper analysis of the conditions for improvement
and finally to the definition of dominance between combined classifiers and a proposal for a

measure of complementariness between them.



The paper is organized along the aforementioned ideas as follows. The Partitioned Observa-
tion Space Theory is presented in Section 2. In Section 3, some relevant concepts from Infor-
mation Theory are introduced. Then in Sections 4 and 5, the paper develops the information
theoretic interpretation of a multiple classifier system and discusses the output independence of
classifiers and its relations with complementariness. In Sections 6 and 7, first a necessary and suf-
ficient condition on complementariness and then an information theoretic measure is developed.
The proposed measures are justified by means of illustrative examples and the paper concludes

in Section 8 by a discussion of these theoretical results.

2 The Partitioned Observation Space Theory

Consider a closed-set pattern classification problem where patterns belong to P source classes
S;y73 = 1,2,---,P. There are ) classifiers X,,¢ = 1,2,---,() involved in the classification
process. Furthermore, o denotes a pattern, causing all classifiers to generate source class rankings
which are transformed into a rank score matriz form R. The elements r;; are positive integer
rank scores with the highest score assigned to the highest ranking class. We define two random
variables taking index values of an ordered set & of source classes: s, denotes the true source
class, d denotes the final decision of the system. The processing of z by all classifiers results in a
rank score matrix R, which is the only input for final classification. Possible rank score matrixes
are denoted by yet another index random variable r such that (r = n) denotes the realization of
the rank score matrix R,, on a finite event space R = {Ry, Ry, -+, Ry}. Let the objective be, to
obtain the maximum rate of correct classification. Other objectives are also possible but this is a
meaningful one for closed-set pattern recognition. The total probability of correct classification
can be expressed as P{y = 1} where y is a binary valued indicator of the correct decision, which
is “1” for correct classification and “0” otherwise. The problem of finding the best rank-based
decision combination process becomes one of maximizing P{y = 1}. To be useful, this objective
function should be transformed in a form which contains free parameters for optimization as well
as statistics about the classifier behavior. Expanding into a sum over source class and rank score

matrix indexes and using Bayes rule we obtain



P{g =1} =
Yot Yot PAd=Jls, = jir = n}P{s, = j,r = n}.
By definition, the decision process to be found uses only the rank score matrix, i.e., is a de-

n} = P{d = j|r = n} leading

(1)

terministic function of r. Hence we have P{d = jl|s, = j,r

to

Ply=1}=
S N P{d=jlr=n}P{s, = j,r=n}.

In this expansion, the first terms P{d = j|r = n} are directly linked with the decision process

(2)

we are seeking. For a given deterministic decision process, these have uniquely determined
binary values “0” and “1”7. The joint probability terms P{s, = j,r = n} on the other hand
are independent of the decision process and models the joint behavior of the classifier ensemble.
This set of probabilities can be estimated if the classifiers are operated on labeled cross-validation
data. Denoting the decision terms as our optimization variables b;, and assuming that the joint
probabilities have been properly estimated, we obtain a constrained optimization problem with
constraints arising from the fact that there should be a unique decision for a given rank score

matrix. That is we have,

P N
max {Z Z binP{s, =j,1r= n}} ) (3)

Subject to ijnzl for n=1,2,---,N. (4)
i=1

Since all P{s, = j,r = n} are non-negative, this problem has an obvious global optimum

solution given by

1 if j = argmax P{s, = k,r = n},
- k=12, P (5)

an
0 otherwise,



2.1 Curse of Dimensionality

The optimal b7, correspond to an optimum decision process. When an unknown pattern z is
processed by all the classifiers, the rank score matrix r is determined. The index k of the single
non-zero by, among the P variables corresponding to this r is the final classification d = k.
The given solution is possible if we have the observation statistics estimated properly. Unfor-
tunately, there are P(P!)Q of them, which is prohibitively large for most problems. Since they
should be extracted from limited data, a formalism of reducing this dimensionality is required.

This can be accomplished by the following formulation.

2.2 Partitioned Observation Space Approach

Consider the objective function in (3). The problem domain is composed of two main parts, the
first one being the space spanned by the free variables b;, (Problem Parameter Space), while
the second one being the space spanned by the estimated behavior statistics P{s, = j,r = n}
(Classifier Observation Space). The statistics are called the Classifier Observation Statistics.
For well behaving classifiers, the cross-validation samples tend to be clustered in the classifier
observation space. A feasible idea is to partition the observation space such that generated
partitions have enough cross-validation data for estimation of the observation statistics. Such a
partitioning may be done by incorporating our prior knowledge about the problem space or by
using the actual distribution of the cross-validation data or in a hybrid manner. A formalism for
exploiting these ideas can be summarized as follows [27].

We first define an augmented event space F composed of the compound events (s, = j;r = n).
These are the most basic events, i.e., the event atoms in F which specify the occurrence of the
event “The source class for the pattern x was S; and the set of classifiers generated the rank score
matrix R,”. This event space is finite with cardinality P(P!)?. Now assume that a mapping
W partitions this event space into disjoint sets of event atoms. The name W will denote both
the partitioning and the mapping associated with it. Assume that W results in Myy partitions

W17W27"'7WM

w Which are disjoint and their union being F. The partitioning results in a new

event space where the new basic events are the partitions. Hence W effectively defines a new

random variable Iy S xR v+— {1,2,---, My}, whose values are indexes on an ordered set



Gw = {Wi, Wy, -+ Whyp, }. Here, S is the set of possible source classes while R is the set
of possible rank score matrixes. By observing that the random variable gy Is a deterministic
mapping from the values of s, and r, the double sum in (2) can also be written by introducing

the new random variable as

P{g: 1} =
Zf:l 251\721 P{d:]7§a’ :j7£: n72w = W(]7 n)}

which, by using the Bayes rule and the fact that the decision should be based on the rank score

(6)

matrix only, becomes

Ply=1} =
Zﬁ‘jﬂ ZnNZI P{d = jlr=n} (7)
Pls, = j,r=nlg,, =W(,n)1P{g,, = W(jn)}.

The first and last set of terms inside this expansion have the usual meanings of decision
variables and observation statistics. However this time the observable events for modeling the
joint classifier behavior in the observation space are the partitions W,,. This is a coarser res-
olution where the actual rank score matrixes are hidden inside observable partitions. In the
middle, we have a set of newly introduced transition terms between this coarser resolution and
the finer resolution of the original event atoms. Clearly, the first terms will be optimization
variables and the last terms will be estimated from the cross-validation data. Since a deliberate
decision is made to keep the observation resolution at the partition level, there is by defini-
tion no data to determine the transition terms. By our partition selection, we are ignorant
about this finer detail. The transition terms allow us to formally introduce our ignorance within
the Bayesian formalism, by assuming a uniform distribution within the partition, i.e., we have
P{s, = j,r = nlg,, = m} = 1/|Wp|,if (s, = j,r = n) € Wy, and 0 otherwise, where [W,,] is
the cardinality of the partition

With this new expansion, a controlled tool to selectively decrease resolution on the obser-
vation and modeling of the classifier ensemble behavior is introduced. By the selection of the
partitioning, it is possible to reduce the number of partitions, hence the events of the observation

space. (For the above expansion we have M)y statistics to estimate.) For fixed cross-validation



data, a reduction in the number of statistics to estimate corresponds to an increase in the relia-
bility, which is crucial to the generalization performance, hence to the classification performance
of the system [15].

Although we have mentioned that the number of statistics can be reduced, this should be done
by considering the amount of data available. The new optimal solution based on statistics derived
from a partitioning is sub-optimal as compared with the one based on the original statistics.
Therefore, the nature of the partitioning is important for the usefulness of the resulting solution.
The objective should be to maintain the maximum observation resolution which is reasonable
for the amount of data available, and not a finer one. It is also illogical to use a very coarse
resolution while enough data for a finer one is available since this will increase the deviation
from the global optimum. A number of sensible partitionings are discussed in [27] and [29] where
some specific partitionings are shown to lead to existing methods from the rank-based classifier
combination literature.

The optimum solution to the optimization problem given in (7) is similar to the solution
to the original problem, but with the number of estimates now reduced to Myy. This solution
may be applied in an algorithmic form requiring a small number of computations for making the
optimum decision based on the estimated statistics: For any given rank score matrix (r = n),
the coefficients P{s, = j,r = nlg,, = W(j,n)} - P{g,, = W(j,n)} must be considered for
j=1,2,---, P. The index j of the largest of these coefficients determines the final class decision
of the system. This procedure requires a total of at most P multiplications. Note that the
determination of the transition terms is only possible if the partitioning is based on a rule which

can be easily applied when the rank score matrix is given.

3 Relevant Concepts of Information Theory

Information theory gives us a promising tool to explore the complementariness of multiple clas-
sifiers. To illustrate this, we will first summarize some relevant basic results using the notation
of Section 2 [30].

Consider again the finite event space R = {Ry,Ra,---, Ry} and let r be an integer valued

random variable as defined in Section 2.2. This event space can be thought as a source of



information. One can define a measure for the information conveyed by the realization of the

event (r = n) in terms of its probability as

1

I(r=mn) = log Plr=n}’ (8)

The expected value of the information acquired by the observation of R is

H(r) = E{l(r=n)} ©)

= YL Pl =n}log primy,
which is also known as the entropy of this information source. This quantity can be interpreted
as a number of properties of the event space R or the associated random variable r [30]. These
are the amount of average “information” conveyed by an observation of r, our uncertainty about
r or the randomness of r. The units of these information measures depend on the base of the
log(.) operator. For a base 2 logarithm, the unit of information is bit. The well known Theorem

1 establishes the minimum and maximum values for the entropy function and its proof can be

found in [30].

THEOREM 1 Letr € {1,2,---,N}; then one has 0 < H(r} <logN. Furthermore H(r) = 0 iff
35 € {1,2,---, N} such that P{r = j} =1 and H(r = log N) iff Vj € {1,2,---, N} we have
P{r=j}=1/N.

Consider now that there are two random variables r; and r, with probability mass functions
P{r; = n1} and P{ry, = ny}, representing two related event spaces Ry and Ry. The relation
between these two probability distributions is given by the the conditional probability P{r; =
ni|ry = na}. Now if we define the information conveyed by observing the realization (r; = nq)

given that we have already observed (r, = ng) as

1
=lo ,
& Plry = nilry = na)

I(ﬁ =ny|ry = n2)

then the entropy of r, after observing r, can be found [30] as

1

= n1lry = na}’

H(ry|ry) = Z P{ry =ni,ry = na}log Plr, (11)

ni,n2



This conditional entropy may be interpreted as a number of properties of r; and ry: The
amount of average “information” conveyed by an observation of ry given that we have already
observed ry, our uncertainty remaining about ry given that we have resolved our uncertainty
about ry or the randomness of ry after observing r,. Since we know our uncertainty about r;
both before and after observing ry, we can derive the amount of average information we have
acquired about the former by observing the latter. This symmetric quantity is known as the

mutual information between r; and ry and is given by
I{ry, 1) = H(ry) = H(ry|r2)- (12)
which can be expressed in explicit form as

P{fl =MN1,I'y = n?}
P{ry = ni }P{ry = ny}

I(ry,re) = Z P{ry =ni,ry = na}log (13)

ni,n2

THEOREM 2 We have I(ry,ry) > 0,Vry,ry and I(ry,ry) = 0 if and only if the two random

variables are statistically independent.

Theorem 2 whose proof can be found in [30] asserts that the mutual information as defined
in(12) is a well suited measure of statistical dependence between the random variables r; and
ry hence between the underlying events [30]. These concepts can be applied in the context of

multiple classifier systems as discussed in the following sections.

4 An Information Theoretic Interpretation of Classifiers

Information theory defines a discrete memoryless communication channel (DMC) as an object
that accepts, every unit of time, one of P input symbols and outputs one of N output symbols.
The output can be thought of as a noisy version of the input [30]. A classifier on the other hand,
is an object which accepts patterns, whose class labels are known to a supervisor, and outputs
its best estimates of these class labels.

A classifier can be interpreted as analogous to a DMC if we argue that the true realization
of the class label is transformed by the classifier into a noisy output form. The source of the

noise is not important for this interpretation but it may be the result of the feature extraction
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Figure 1: The discrete memoryless channel interpretation of a classifier. The input to the DMC
is the true label of the pattern while the output of the DMC is the classifier output. The exact

number of outputs depends on the level of information supplied by the classifier.

and /or the similarity scoring algorithm. The actual source of information we are interested in
(the input to the DMC interpretation of the classifier) is the true label of the class emitting the
patterns. However, what we have access to is only the noisy output of this DMC as illustrated
by Figure 1.

When more than one classifiers are involved, we may consider them as multiple DMCs trans-
mitting the same information source whose outputs are to be considered to acquire information

about this source.

5 Output Independence of Classifiers

A multiple classifier decision combination system with observation space partitioning can be vi-
sualized as a set of interrelated random variables as illustrated in Figure 2. With the random
variable definitions given in Figure 2, we are at a point to introduce a formal definition of inde-
pendence among the outputs of classifiers both before and after observation space partitioning
as described in Section 2. Consider two classifiers whose rank-based outputs represented by the
random variables rq,ry. In view of Theorem 2 we can make the following definition which can

easily be extended to more than two classifiers.

DErFINITION 1 Classifiers X1, Xy are said to be output independent in the rank-based sense if
and only if we have I(r;,ry) =0 with I(r;,ry) defined by

11
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Classifier #1 Classifier #Q
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Partitioned Space Observation Space Partitioning
Rank score matrix
@ G “®
Marginal r.v. for Marginal r.v. for ; i o
Classifier #1 Classifier #Q Optimal Decision Process

Decision

Figure 2: Random variable representation of the multiple classifier decision combination sys-
tem. The events within the system can be represented by a number of interrelated random
variables. The random variables are transformed from one to another either by means of the
classifiers, or by means of the partitioning and the optimal decision process. r'y,1'5,- -+, 1/ are
the marginal random variables reflecting the individual classifier outputs after the application of

the observation space partitioning.

I(ry,ry) =
P{ry=ni,ro=nals =j} (14)

an,nQ,j P{£1 =M, = n2|§x = J} log P{r,=nils,=; } Plry=nals,=j} "

Otherwise, the two classifiers are output dependent with I(ry,ry) being a measure of dependence

between them.

If one uses the random variables ry,ry, -+, r¢ in this definition, then the output dependence
of the original classifiers is computed. However, it is also possible to compute the output de-
pendence, after a partitioning of the observation space as described in Section 2. For this, the
marginal output random variables r’y, 'y, ---,1', derived after the partitioning W, should be
used instead of ry, 1y, -+, rg. Note that the numerical measure of dependence among the outputs
of the classifiers will be different depending on whether this is computed for the original outputs

or after each specific partitioning
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11 10 01 00
00 01 10 11
Si| 045 | 0.35 | 0.15 | 0.05
Sz 0.15 | 0.05 | 0.05 | 0.75

X1X,

Table 1: True joint probability distribution of the classifier observation space. Columns denote
the rank score matrizes while rows denote pattern classes. Each cell represent the estimate of
the probability that patterns from a class lead to a specific rank score matrix at the outputs of

the classifiers.

Output independence of classifiers is an important parameter in itself. However, as is shown

by the following example, it is not necessarily a measure of complementariness.

ExXAMPLE 1 Suppose we consider two rank-based classifiers X; and X, operating on a simple two
class problem where the class labels are S; and S;. Assume that these classifiers are operated in
parallel on patterns from these two classes and the class conditional joint probabilities in Table 1
are obtained. ! These will be called as the true joint distribution of the classifier behavior. The
marginal probabilities for the individual classifiers can be obtained from this joint distribution
and are given in Table 2 (a) and (b).

Probability of the errors made by the individual classifiers may be analyzed from these two
marginal tables. Considering Table 2 (a), the jointly optimum decision ? selects class S; if the
rank score matrix (10)7 occurs and Sy if (01)7 occurs at the classifier outputs. Denoting the
decision by d and using the random variable notations of Section 2, the total probability of error

for classifier X is

Py, = P{d=1|s, =2}P{s, =2} + P{d =25, = 1} P{s, = 1}
= 0.2x05+02x0.5
= 0.2

'From now on, we will drop mentioning that the probabilities are conditional except for the cases where there
is an ambiguity.
2The jointly optimum decision is in the sense of Section 2. In this sense, the jointly optimum decision and the

optimum combination is synonymous. For this example, the class label with the largest probability for a given

column is selected.
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(a) (b)

X | a0’ onT X, 0| onT
Si | 08 0.2 Si | 06 0.4
So | 0.2 0.8 Sol 0.2 0.8

Table 2: Marginal probabilities for individual classifiers (a) X; and (b) X;. Columns denote
the rank score vectors at classifier outputs while rows denote pattern classes. These tables are

rank-based generalized forms of the matrixes known as classifier confusion matrizes.

11 10 01 00
00 01 10 11
S1| 0.48 | 0.32 | 0.12 | 0.08
Se| 0.04 | 0.16 | 0.16 | 0.64

X1X,

Table 3: Joint probability distribution of the classifier observation space computed from the

marginal distributions in Table 2, under the independence assumption.

By a similar computation for classifier X3, we have Py = 0.3. Therefore, it can be argued that
X is the best of the two classifiers.

Let the true joint distribution in Table 1 be used for jointly optimal decision. From this
table, it can be seen that one has d = 1 if r € {1,2,3} and d = 2 if r = 4, where r denotes
the realization of the rank score matrix. The total probability of error for the jointly optimal

decision is

P%y, = (0.15+0.054 0.05) x 0.5+ 0.05 x 0.5
= 0.15

which is lower than the probability of error P = 0.2 for the best individual classifier. Therefore,
an improvement in performance over the best individual classifier is achieved by the jointly
optimal decision. Now suppose that the classifiers are independent. Then, we can construct
a joint probability distribution by making use of this assumption. This derived distribution is
given in Table 3.

When this derived joint distribution is considered for optimal decision, one has now d = 1 if

re{l1,2} and d =2 if r € {3,4}. In this case, the total probability of error would clearly be

14



11 10 01 00
00 01 10 11
S1| 0.12 | 0.48 | 0.08 | 0.32
Sz 0.05 | 0.45 | 0.05 | 0.45

X1X,

Table 4: Joint probability distribution of the classifier observation space for the two classifiers

of Example 2.

%y, = (0.0440.16) x 0.5+ (0.12 4 0.08) x 0.5
= 0.20,

which shows no improvement over the performance of the best classifier Xj.

This simple example shows that the independence assumption may hide a potential for im-
provement for classifiers which are in fact dependent. It also shows that independence of clas-
sifiers is not a necessary condition for such an improvement. For dependent classifiers, the
jointly optimal decision process in the sense of the theory summarized in Section 2 may achieve
an improvement over the best individual classifier while methods based on the independence
assumption will fail to do so. An interesting question at this point is whether or not an improve-
ment is still possible for the case of classifiers which are truly output independent. The following

example gives a positive answer.

ExXAMPLE 2 Again consider a simple problem with two classifiers X; and X, operating on
patterns from two classes 57 and S3. The joint distribution of the classifier observation space is
given in Table 4 while the marginal distributions for the individual classifiers are given in Table
5 (a) and (b).

For this example, we have I(r;,r,)) = 0 and therefore, the classifiers are output independent.
The total probability of error for both individual classifiers are Py = Pg = 0.45. However, when
the joint distribution is considered for optimal decision, the decisions are d = 1 when r € {1, 2, 3}
and d = 2 when r = 4 effectively leading to a total probability of error of Ff_ , = 0.435. This is
smaller than the probability of error for both of the classifiers denoting an improved performance

for the case of output independent classifiers.
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(a) (b)

X | a0’ onT X, 0| onT
Si | 06 0.4 Si | 02 0.8
So | 0.5 0.5 S| 0.1 0.9

Table 5: Marginal probabilities for individual classifiers (a) X; and (b) X, in Example 2.

Classifier | X7 | X5
P{y=0|s,=1}]04 0.8
P{y=0[s, =2}]05]0.1

Table 6: Class dependent error probabilities for classifiers in Example 2.

An interesting observation can be made about these classifiers if one inspects the class de-
pendent error probabilities P{y = 0|s, = 1} and P{y = 0[s, = 2} where y is the indicator of
correct decision as defined in Section 2. These are given in Table 6. From these probabilities,
it can be concluded that classifier X; cannot successfully classify patterns from class So while
classifier X5 cannot classify patterns from class Sy. The fact that the errors of the two classifiers

are concentrated on different classifiers support the ideas in [5, 6].

6 A Condition for Complementariness

The joint distribution given in Table 3 is obtained from the marginal distributions under the
assumption of independence. However, this could as well have been the true joint distribution of
the classifier observation space. Given the true joint distribution and the marginal distributions,
one important task is to find the conditions on these distributions so that there will be an
improvement by using the jointly optimal decision. Such a general condition is introduced by

the following Definition and Fact.

DEFINITION 2 In a multiple classifier system, a classifier is called as the dominating classifier if

the jointly optimal decision is a function of only the rank score vector of that classifier.

Fact 1 If one classifier dominates the others, then the jointly optimal performance of the mul-

tiple classifier system becomes exactly equal to the performance of the dominating classifier.
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The truth of Fact 1 is intuitively apparent from the Definition but a proof can be found in
[29]. This fact shows for the general case that if one classifier dominates the others, no improve-
ment can be expected from the combination of the classifiers. Conversely, for improvement by
combination, no classifier should dominate, i.e., the jointly optimal decision should favor each
classifier’s decision in turn, for some rank score matrixes. This is expressed by Theorem 3 which

makes use of Lemma 1.

LEMMA 1 Due to the joint optimality of the combined decision, the combined performance cannot

be lower than the performance of the best classifier within a multiple classifier system.

ProoOF. To show this, assume, without loss of generality that X is the best individual classifier.
First define Rfl as the set of rank score vectors for which the single classifier X decides on class
label S7. Also let Q be the set of all allowable rank score vectors for this single classifier. Now

define R? as the set of all rank score matrizes for which X; decides on class label 57, as given

by

R?:{n:[nlng nQ]|n1€R{(1,nk697k:277P} (15)

Again without loss of generality, the rank score matrixes can be ordered such that these L = |RY|
rank score matrixes correspond to the random variable values r = 1,2, -, L. The corresponding
part of the joint distribution of the observation space is illustrated in Figure 3. If the conditions
Pin > Pjn for j =2,3,---, Pand n =1,2,---, L are satisfied, then the jointly optimal decision
is equivalent to the decision of Xy for this set of r values.

Suppose we try to disturb this condition by letting px; > py1 for the r = 1. This largest
probability term will contribute to the probability of error made by X;. However, it will not
contribute to the probability of error made by the optimal decision since the optimal decision
will select Sy for r = 1. Therefore, the error for the optimum decision will necessarily be lower

than the error for the best classifier X;. O

THEOREM 3 If none of the classifiers in a () classifier ensemble dominate the ensemble, then we

necessarily have Pg,, ., < min{Pg , P% -+, P)%Q}.
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Figure 3: Part of the joint distribution of the observation space used for Lemma 1.

Proor. Without loss of generality, assume that classifier X is the best performing individual
classifier. However, it is not a dominating classifier since there is none. Define Dq(ré) to represent
the decision of classifier X, for the specific rank score vector ré while DY(R;) denotes the jointly
optimal decision for the specific rank score matrix R; = [r} r} - -- rlQ]

The fact that X is not a dominating classifier means that there exist at least one or more rank
score matrixes R; such that DY (R;) # D' (r}). For each such rank score matrix, an intermediate,
partially optimal decision process D! can be designed which satisfies D/(R;) = D¢ (R;) while
for all other rank score matrixes its decisions coincide with the decision of classifier Xy, i.e.,
ﬁl(Rk) = D'(x}),VRy € R, k #[. By Lemma 1, the partially optimized decision process cannot
vield a performance lower than the performance of the best individual classifier. Therefore, such
a decision process which is different than the best individual classifier should necessarily yield to

an improved performance. O

Another result of this section about dominance is given by Corollary 1.

COROLLARY 1 If there is a dominating classifier within a multiple classifier system, then this is

necessarily the best performing individual classifier.

ProOF. By Fact 1, the performance of the dominating classifier equals the performance of the
combination. However, by Lemma 1, the performance of the combination cannot be lower than
the best individual performance. Therefore, the performance of the dominating classifier equals

the performance of the best classifier, proving the Corollary. O
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The above discussion suggests that output independence plays no exclusive role in assessing
the potential for improvement by the combination of classifiers. However, a different concept the
paper defines as the dominance of a classifier gives a condition on classifier complementariness.
Namely, one should have no dominating classifier in a given classifier ensemble in order to have

performance improvement by optimal combination in the sense of Section 2.

7 Complementariness of Classifiers

The previous section defined a condition for achieving complementary behavior among classifiers
and hence, to obtain an improvement from classifier combination. However, the fact that none
of the classifiers are dominating, does not give one, a measure on the potential improvement
possible by the combination of a set of classifiers. In the present section, an attempt is made to
introduce such a measure.

Consider again Figure 2. Apart from the probability of correct classification, another measure
on the performance of an individual classifier X may be given by means of the mutual infor-
mation I(ry,s,) between the classifier output r; and the source class s,, i.e., it may be argued
that the amount of information acquired about the true class label by observing the outputs of
classifier Xy is a reasonable measure on that classifier’s performance.

Now consider that while using X} individually, one asks the question: How much does clas-
sifier X; has a potential to complement the present classifier X ?. This depends on the ability
of X; to provide additional information about the source class label. Namely, one should be
interested in the amount of new information provided by the output of X; which was not present

in the output of Xp. This quantity can be expressed as a difference

Alx, x, = I(rg, 113 8.) — I(rg, 55, (16)

where the first term represents the amount of information acquired about the source class label
s, by observing both classifier outputs r; and r; while the last term represents the amount of
information acquired about the source class label by observing the output of classifier Xy alone.

Replacing both mutual information terms by their entropy definitions as given in (12) one gets
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Alx, x, = H(s,|ry) — H(s;|rp, ). (17)

which can be expressed in expanded form as

P{§x :j|£1 =N, :nz}

AIXle: Z P{%:j7£1:n17£2:n2}10g P{§$:]|E1:n1}

Jim1,me

(18)

The quantity we have defined in (16) is not symmetric, namely, we have Alx, x, # Alx,x, .
This is a reasonable behavior since for classifiers with different performances, the amount of
information contributed by X; to X cannot be the same as the amount contributed by X to
X;. One expects the contribution of the better performing classifier to be larger.

The quantity defined by Aly, y, can be proposed as a measure of the complementariness
of classifier X; with respect to classifier Xj. This proposal is supported by investigating the
behavior of the aforementioned measures on several examples with two classifiers and two classes.
The joint distributions for these five examples are chosen so as to illustrate some interesting
cases of behavior with respect to increasing complementariness, and the associated behavior of
the proposed measures. The cases are also selected in such a way that the marginal classifier
observation space distributions for classifier Xy and hence the associated performances are always
the same while they are different for the second classifier X5. Other than these considerations,
the joint distributions are arbitrary and do not reflect the behavior of any particular type of
classifiers. The distributions and their derived marginal distributions are given in Table 7. Three
of these distributions can be recognized from Examples 1 and 2. The given cases are also selected
in such a way that the performance and the marginal classifier observation space distribution for
classifier X is always the same, while they vary for the second classifier Xs.

Consider the following scenario while investigating Tables 7 and 8. One is restricted to use
only two classifiers in parallel for this two class illustrative problem. Five different classifiers are
available and the best classifier is labeled X;. The task is to select the second classifier X5 among
the available ones which is the most complementary with respect to the best classifier X, i.e., the
largest performance improvement over the performance of the best classifier is sought. For this
purpose, each alternative classifier is operated in parallel with the best one and the distributions

in Table 7 are obtained. From these distributions, the measures in Table 8 are obtained where
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Table 7: Five simulated example cases. Joint and individual classifier observation space distri-

butions are illustrated as three columns. Measures computed from these distributions are given

Case 1

Case 2

Case 3

Case 4

Case b

Joint X1 X2
0.4810.32 | 0.12 | 0.08 0.80 | 0.20 0.60 | 0.40
0.04 | 0.16 | 0.16 | 0.64 0.20 | 0.80 0.20 | 0.80
0.5110.29 | 0.09 | 0.11 0.80 | 0.20 0.60 | 0.40
0.12 |1 0.08 | 0.08 | 0.72 0.20 | 0.80 0.20 | 0.80
0.70 |1 0.10 | 0.07 | 0.13 0.80 | 0.20 0.77 1 0.23
0.08 1 0.12 | 0.11 | 0.69 0.20 | 0.80 0.19 ] 0.81
0.66 | 0.14 | 0.14 | 0.06 0.80 | 0.20 0.80 | 0.20
0.09 |1 0.11 | 0.11 | 0.69 0.20 | 0.80 0.20 | 0.80
0.4510.35 | 0.15 | 0.05 0.80 | 0.20 0.60 | 0.40
0.15] 0.05 | 0.05 | 0.75 0.20 | 0.80 0.20 | 0.80

in Table 8.

Ind. Perf. Indiv. Infor. Independence | Joint Infor. | Complementariness | Improv.
Case | Py, | Px, | 1(ry.8,.) | 1(ry.5,) 1(ry,1ry) Iy roi8,) | Alxyx, | Alxax, | APCope
Case 1| 0.2 | 0.3 0.2781 0.1245 0.0000 0.3888 0.0807 0.2343 0.000
Case2 | 0.2 | 0.3 0.2781 0.1245 0.0846 0.3204 0.0423 0.1959 0.005
Case 2 | 0.2 | 0.21 | 0.2781 0.2591 0.1008 0.3592 0.0811 0.1001 0.010
Case4 | 0.2 | 0.2 0.2781 0.2781 0.0359 0.4033 0.1252 0.1252 0.015
Caseb | 0.2 | 0.3 0.2781 0.1245 0.1538 0.4319 0.1538 0.3073 0.050

Table 8: Intermediate measures of interest for the examples with two classes and two classifiers,

given in Table 7. The complementariness of classifier Xy with respect to classifier X is given in

the column labeled as Alx, x, and is the primary measure of interest.
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all logarithms are Base 2 logarithms. This gives a measurement unit of Bits. One can make the
following discussions.

For this two class problem with uniform class distribution, the entropy of the source random
variable s, is 1 bit, which is hence the maximum value for all measures in Table 8 based on
Information Theory. For Case 1, the best classifier is dominating the pair since the optimal
decision on the joint distribution is the same as the decision of the best classifier X; for all
cases. Therefore, the candidate classifier cannot contribute to the best classifier and so there is
no performance improvement. However, it is interesting to note that the Alx, x, column still
reports a positive value. It can be argued that the dominance condition may not be reflected in
Alx x,.

For the remaining cases which are ordered with respect to the actual performance improve-
ment over the best, the best classifier is not dominating. Also, the Alx, x, column seems to
reflect the potential improvement achievable by combination. Investigating the output indepen-
dence column [I(ry,ry) supports that output independence is not necessarily a desired condition
for complementariness. Case 5 shows that the maximum improvement given in Table 8 is for
the candidate classifier which has the maximum dependence with the best classifier. Again a
considerable improvement is possible for Case 4, where the output dependence between classi-
fiers is quite low. A last observation on Table 8 is that the complementing classifier performance
need not necessarily be very close to the performance of the best classifier for improvement to
be possible. Again the maximum improvement is achieved by a complementing classifier with
p® = 0.3 while a much smaller improvement could be achieved with a much better performing

classifier with p¢ = 0.21.

8 Conclusion

This paper attempted to clarify the concepts of output independence and complementariness and
their relations with the actual performance improvement achievable by optimal combination. The
following have been the main contributions. Firstly, an Information Theoretic interpretation of
a multiple classifier system is introduced and this enabled the use of measures from information

theory to quantify relations between random variables representing events within such a system.
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A measure for classifier output dependence is developed under this framework and it is shown
that output independence plays no exclusive role in determining how much a classifier can com-
plement another. A new concept called as dominance of a classifieris introduced to give a critical
condition for performance improvement. Finally, another Information Theoretic measure is in-
troduced to quantify the potential for improvement in such a system which have been supported
by empirical justification. However, not all the questions raised within the scope of this paper
could be answered and there exist several issues open for further research. The concept of error
independence and its relation with performance improvement through combination remains an
open issue. Also, the theoretical relation between the complementariness measure Aly, y, and

the actual improvement remains to be established.
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