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Abstract—We present a parallel implementation of the multilevel
fast multipole algorithm (MLFMA) for fast and accurate solutions
of electromagnetics problems involving homogeneous objects with
diverse material properties. Problems are formulated rigorously
with the electric and magnetic current combined-field integral
equation (JMCFIE) and solved iteratively using MLFMA parallelized
with the hierarchical partitioning strategy. Accuracy and efficiency of
the resulting implementation are demonstrated on canonical problems
involving perfectly conducting, lossless dielectric, lossy dielectric, and
double-negative spheres.

1. INTRODUCTION

Real-life electromagnetics phenomena, such as scattering from airborne
targets [1], radiation from antennas [2], transmission through dielectric
lenses [3], metamaterials [4], and photonic crystals [5], often involve
large objects with respect to wavelength. Accurate discretizations
of these objects lead to large matrix equations, even when they
are formulated with the surface integral equations. The resulting
large-scale problems can be solved iteratively, where the required
matrix-vector multiplications are performed efficiently with various
acceleration methods, such as the fast Fourier transform (FFT) [6, 7],
the adaptive integral method [8], and especially the multilevel fast
multipole algorithm (MLFMA) [9–13], which has been successfully
used to solve many challenging problems in various application
areas [1–5, 14].
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For a problem involving O(N) unknowns, MLFMA provides each
matrix-vector multiplication in O(N log N) time using O(N log N)
memory. On the other hand, a sequential implementation of MLFMA
running on a single processor may not be sufficient to solve very large
problems discretized with millions of unknowns. In order to solve such
extremely large problems, MLFMA can be parallelized on distributed-
memory architectures [15–26]. Different strategies, such as the hybrid
partitioning [15–18], asynchronous partitioning [19, 20], FFT-based
methods [21–23], and hierarchical partitioning [24–26], have been
developed for the efficient parallelization of MLFMA, increasing the
problem size from tens of millions to hundreds of millions in the
last decade. However, these studies have mainly focused on perfectly
conducting objects, whereas less attention has been paid to penetrable
objects.

In this work, we present a parallel implementation of MLFMA
for homogeneous objects. Problems are formulated with the electric
and magnetic current combined-field integral equation (JMCFIE) [27–
29] and discretized with the Rao-Wilton-Glisson (RWG) functions [30]
on triangular domains. MLFMA is parallelized using the hierarchical
partitioning strategy, which provides efficient parallelization for
penetrable and non-penetrable homogeneous objects [3, 24–26]. We
show that the resulting rigorous implementation is capable of
analyzing large-scale objects with diverse material properties, such
as metallic, lossless dielectric, and lossy dielectric, as well as those
with negative permittivity and permeability for the homogenization
of metamaterials. Accuracy and efficiency of the implementation are
demonstrated on canonical problems involving various types of spheres.

The rest of the paper is organized as follows. In Section 2, we
present a compact formulation for the solution of electromagnetics
problems using JMCFIE and MLFMA. Hierarchical parallelization is
discussed in Section 3, including pseudocodes of major operations in
parallel MLFMA. Section 4 includes a brief discussion on material
properties, followed by numerical results in Section 5, and concluding
remarks in Section 6.

2. SOLUTIONS WITH JMCFIE AND MLFMA

Consider electromagnetics problems involving time-harmonic fields
with e−iωt time dependence. For numerical solutions, JMCFIE can
be discretized with the RWG functions on triangular domains using
a Galerkin scheme. The interaction of the mth testing function tm

(m = 1, 2, . . . , N) and the nth basis function bn (n = 1, 2, . . . , N)
through a homogeneous domain Du with electrical parameters {εu, µu}
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can be written as
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αĪN [m,n]

}
(2)

Z̄(21)
u [m, n] = −η2

uZ̄
(12)
u [m,n], (3)

where α is a combination parameter, γu,m = ±1 and γu,n =
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respectively, ηu =
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are discretized operators. In (4)–(6), n̂(r) is the oriented unit normal
vector. The integro-differential operators are applied to the nth basis
function as

Tu{bn}(r) = iku

∫

Sn

dr′bn(r′)
[
exp(iku|r− r′|)

4π|r− r′|
]

+
i
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where ku = ω
√

εu
√

µu = 2πλ−1
u is the wavenumber.

Consider an object with electrical parameters {εi, µi} in a host
domain {εo, µo} extending to infinity. If the object is penetrable, a
2N × 2N matrix equation can be derived, where the matrix elements
involve contributions from the inner and outer media, i.e.,

Z̄(ab)[m,n] = Z̄(ab)
i [m,n] + Z̄(ab)

o [m,n] (9)
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for a = 1, 2, b = 1, 2, m = 1, 2, . . . N , and n = 1, 2, . . . N . On the other
hand, if the object is a perfect electric conductor (PEC), an N × N
matrix equation with

Z̄(11)[m,n] = Z̄(11)
o [m,n] (10)

is derived and solved to obtain the coefficients for the electric current,
while the rest of the interactions are omitted. In this case, the resulting
matrix equations are identical to those obtained with the combined-
field integral equation (CFIE) [31].

In MLFMA, interactions are factorized as

Z̄(ab)
u [m,n] ≈

∫
d2k̂F(ab)

u,m(rC , k̂) · τ(rC − rC′ , k̂)R(ab)
u,n (rC′ , k̂), (11)

where F(ab)
u,m is the receiving pattern of the mth testing function, R(ab)

u,n

is the radiation pattern of the nth basis function, and τ(rC − rC′ , k̂)
is a combination of shift and translation operators to transform the
radiated field at rC′ into incoming field at rC . The radiation pattern
does not depend on the interaction type, i.e.,

R(11)
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where ku = k̂ku, ψ̄ = (̄I3×3− k̂k̂), and Ī3×3 is the 3× 3 unit dyad. On
the other hand,
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For fast solutions, the patterns in (12) and (17)–(20) are calculated
and stored in memory to be used multiple times during iterations.
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3. HIERARCHICAL PARALLELIZATION

MLFMA can be parallelized efficiently using the hierarchical
partitioning strategy, which is based on simultaneous partitioning of
subdomains and field samples. Consider a tree structure of L + 2 =
O(log N) levels. At levels l = 1, 2, . . . , L, there are Nl subdomains
and Sl field samples with NlSl = O(N) to compute the interactions
in accordance with the factorization in (11). Let the tree structure be
parallelized into P processes. At level l, process p is assigned to Np

l
subdomains and Sp

l samples with Np
l Sp

l = O(N/p) via a load-balancing
algorithm. Intermediate levels l+1/2 for l = 1, 2, . . . , L−1 are defined
to facilitate operations in the hierarchical strategy. Specifically, level
l + 1/2 contains the subdomains (and their samples) at level l + 1,
which are partitioned similar to those at level l [25].

Consider process p with a set of subdomains N p
l and a set of

samples Sp
l for l = 1, 2, . . . , L and l + 1/2 = 3/2, 5/2, . . . , L − 1/2.

Table 1 lists the major operations performed during an aggregation
stage in process p to compute radiated fields of subdomains from the
lowest level to the top of the tree structure. For each subdomain
c1 at an intermediate level l + 1/2, child subdomains in the same
process are traced one by one. Given a child subdomain c2, the local
data are inflated via one-to-one communications. Then, the data are
interpolated and divided into two parts according to the partitioning
of the next level. After all subdomains at the intermediate level are
considered, one-to-one communications are required to send the half of
the stored data to a corresponding process and receive complementary
data to change the partitioning.

Table 2 lists the major operations performed during a translation
stage in process p. After all intra-process translations are performed,
process p is paired with all other processes p′ 6= p for inter-process
translations. Once a pairing is established, all levels are traced to
transfer radiated fields from p′ to p. The transferred field is converted
into incoming fields for all subdomains in the far zone owned by p. Note
that, for translations performed by p′, radiated fields are transferred
from p to p′, before the pairing is disestablished.

Finally, Table 3 lists the major operations performed during a
disaggregation stage in process p. As the reverse of the aggregation
stage, subdomains are traced from level l = L−1 to l = 1. At each level,
one-to-one communications are performed to change the partitioning
for the intermediate level l + 1/2. Choosing a subdomain c1 at this
level, child subdomains at level l in the same process are traced one
by one. Specifically, samples of the incoming field are anterpolated
and deflated, exactly as the reverse of the inflation, via one-to-one
communications. Also note that the resulting data are superposed
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Table 1. Pseudocode of major operations performed in process p
during an aggregation stage.

Do for each level l = 1, 2, . . . , L− 1
Do for each subdomain c1 ∈ N p

l+1/2 at level l + 1/2
Do for each child subdomain c2 ⊂ c1 if c2 ∈ N p

l
• Inflations (one-to-one communications)
• Interpolate and get Sp

l {c2 → c1}
End

End
• One-to-one communications to change partitioning for l + 1

End

Table 2. Pseudocode of major operations performed in process p
during a translation stage.

Do all intra-process translations
Do for each processor p′ 6= p if there exists translations

Do for each level l = 1, 2, . . . , L

Do for each subdomain c1 ∈ N p′
l involved in a translation

• Receive Sp′
l {c1} from p′

Do for each subdomain c2 ∈ N p
l in the far-field list of c1

• Compute Sp
l {c2 → c1} via translation

End
End
Do for each subdomain c1 ∈ N p

l involved in a translation
• Send Sp

l {c1} to p′

End
End

End

with incoming fields due to translations to combine interactions at
different levels.

4. MATERIAL PROPERTIES

This section presents how different materials are handled in the
same implementation. Consider a homogeneous object with electrical
parameters {εi, µi}, where εi = ε0εir + iσi/ω, located in a host domain
{εo, µo} = {ε0, µ0} (free space) that extends to infinity.
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Table 3. Pseudocode of major operations performed in process p
during a disaggregation stage.

Do for each level l = L− 1, L− 2, . . . , 1
• One-to-one communications to change partitioning for l + 1/2
Do for each subdomain c1 ∈ N p

l+1/2 at level l + 1/2
Do for each child subdomain c2 ⊂ c1 if c2 ∈ N p

l
• Anterpolate and get Sp

l {c1 → c2}
• Deflations (one-to-one communications)

End
End

End

4.1. Perfect Electric Conductor

If the object is PEC, i.e., σi → ∞, the matrix equation in (10) is
formed. Only one tree structure is constructed for the outer medium,
which can be parallelized efficiently using the hierarchical strategy [25].
The size of the subdomains at the lowest level is approximately 0.25λ0.
The total number of samples at level l is determined by the refined
excess bandwidth formula [14], i.e., Sl ∝ (k0dl)2, where dl is the size
of subdomains.

4.2. Lossless Dielectric

If the object is lossless, i.e., σi = 0, a 2N × 2N matrix equation with
partitions as defined in (9) is formed. Two different tree structures
are constructed, considering the inner and outer media, since the
cluster size and the number of samples for radiated and incoming fields
depend on the medium parameters. Each tree structure is parallelized
separately using the hierarchical strategy [3]. Compared to the PEC
case, the time per iteration is increased around eight-fold (two N ×N
multiplications are required for each partition). Besides, the matrix-
vector multiplication time tends to increase as the permittivity or
permeability of the object increases, since Sl ∝ (kidl)2 = εiµi(ωdl)2
for the inner tree structure. High contrast also has an adverse effect
on the iterative convergence, as discussed in [32].

4.3. Lossy Dielectric

Similar to the lossless case, a 2N×2N matrix equations is derived when
the object is lossy, i.e., σi > 0. Matrix partitions become diagonally
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Figure 1. Solution of a scattering problem involving a lossless
dielectric sphere of radius 0.3 m at 80 GHz in free space. The relative
permittivity of the sphere is 2.0. RCS (in dBms) is plotted as a function
of the bistatic angle, where 0◦ and 180◦ correspond to the forward-
scattering and backscattering directions, respectively.

dominant as the conductivity increases, which may lead to better
conditioned matrix equations that are easier to solve iteratively [33].
To determine the number of samples for the inner medium, we use
Sl ∝ (|ki|dl)2 by inserting the absolute value of the wavenumber into
the excess bandwidth formula.

4.4. Negative Parameters

JMCFIE is applicable to those objects with negative permittivity
and/or permeability for the homogenization of metamaterials, provided
that the roots when finding the wavenumber and intrinsic impedance
are selected carefully [34]. In free space, negative parameters lead
to a high-contrast object, whose iterative solution can be again
challenging, especially if the object is lossless. The number of samples
are determined by taking the absolute value of the wavenumber, i.e.,
Sl ∝ (|ki|dl)2.
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Figure 2. Solution of a scattering problem involving a lossless
dielectric sphere of radius 0.3 m at 80 GHz in free space. The relative
permittivity of the sphere is 12.0. RCS (in dBms) is plotted as a
function of the bistatic angle, where 0◦ and 180◦ correspond to the
forward-scattering and backscattering directions, respectively.

5. NUMERICAL EXAMPLES

As numerical examples, solutions of scattering problems involving a
sphere of radius 0.3 m are presented. The sphere is located in free
space and illuminated by a plane wave propagating in the z direction
with the electric field polarized in the x direction at 80 GHz. Five
different cases are considered:

• Lossless sphere with a relative permittivity of 2.0.
• High-contrast lossless sphere with a relative permittivity of 12.0.
• Lossy sphere with a relative permittivity of 2.0 and a conductivity

of 1.0 S/m.
• PEC sphere.
• Double-negative sphere with a relative permittivity of −2.0 and a

relative permeability of −1.6.

All problems are formulated with JMCFIE using α = 0.9. This choice
of the combination parameter is determined via numerical experiments
and it seems to be suitable especially if high accuracy is desired using
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Figure 3. Solution of a scattering problem involving a lossy dielectric
sphere of radius 0.3 m at 80 GHz in free space. The relative permittivity
and conductivity of the sphere are 2.0 and 1.0 S/m, respectively.
RCS (in dBms) is plotted as a function of the bistatic angle, where
0◦ and 180◦ correspond to the forward-scattering and backscattering
directions, respectively.

the RWG functions. Discretizations with the RWG functions on λ0/10
triangles lead to matrix equations involving 46,811,328 unknowns when
the sphere is penetrable and 23,405,664 unknowns when the sphere is
PEC. Problems are solved with MLFMA on a cluster of Intel Xeon
Nehalem quad-core processors with 2.80 GHz clock rate. Using the
hierarchical strategy, MLFMA is parallelized into 64 processes. Both
near-zone and far-zone interactions are calculated with maximum 1%
error. Iterative solutions are performed by the biconjugate-gradient-
stabilized (BiCGStab) algorithm [35] without preconditioning. The
target residual error for the convergence is selected as 0.005. For
these accuracy parameters and the given model of processors, the
parallelization efficiency is around 85% leading to 54-fold speedup using
64 processes compared to the corresponding sequential solution [3, 25].
Note that problems involving more complicated objects may require
effective preconditioners, such as those based on the Schur-complement
reduction for penetrable objects [5] and the two-level scheme for PEC
objects [36] that are appropriate for MLFMA implementations.
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Figure 4. Solution of a scattering problem involving a PEC sphere
of radius 0.3 m at 80 GHz in free space. RCS (in dBms) is plotted as
a function of the bistatic angle, where 0◦ and 180◦ correspond to the
forward-scattering and backscattering directions, respectively.

Figures 1–5 present the bistatic radar cross section (RCS) values
(in dBms) on the z–x plane as a function of the bistatic angle θ
from 0◦ to 180◦, where 0◦ and 180◦ correspond to the forward-
scattering and backscattering directions, respectively. RCS values
around the forward-scattering direction are also focused in separate
plots. Computational values obtained by using the parallel MLFMA
are compared with those obtained via analytical Mie-series solutions.
It can be observed that the computational values agree very well with
the analytical results for all cases.

For more quantitative assessment of the accuracy and efficiency,
Table 4 lists the number of iterations, total time (that is dominated
by iterations), memory, and root-mean-square (RMS) error in
computational values with respect to analytical values for the sphere
problems. The fastest convergence is observed when the sphere is
lossy, as a result of the improved conditioning for moderate values of
conductivity. On the other hand, the convergence is significantly slower
for high contrasts, e.g., for the lossless sphere with 12.0 permittivity
and the double-negative sphere, as commonly observed in numerical
solutions of JMCFIE [32]. As also expected, the fastest solution in
terms of the processing time is obtained for the PEC case. The
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Figure 5. Solution of a scattering problem involving a double-negative
sphere of radius 0.3 m at 80 GHz in free space. The relative permittivity
and permeability of the sphere are −2.0 and −1.6, respectively. RCS
(in dBms) is plotted as a function of the bistatic angle, where 0◦
and 180◦ correspond to the forward-scattering and backscattering
directions, respectively.

Table 4. Solutions of scattering problems involving a sphere of radius
0.3m at 80 GHz.

Electrical Parameters
Number of Time Memory RMS
Iterations (hours) (GB) Error

εr = 2.0 143 31.2 387 0.36%
εr = 12.0 178 88.6 714 0.91%

εr = 2.0 & σ = 1.0 S/m 37 14.4 656 0.17%
PEC 125 3.33 155 0.21%

εr = −2.0 & µr = −1.6 198 48.1 415 0.23%

total time is generally proportional to the number of iterations,
but it is remarkable that, in penetrable cases, the computing time
also increases as the absolute values of the relative permittivity and
permeability increase. For example, the high-contrast problem with
relative permittivity of 12.0 requires 178 iterations and 88.6 hours,
whereas it takes only 31.2 hours for 143 iterations when the relative
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permittivity is 2.0. Finally, in all solutions listed in Table 4, the RMS
error is below 1%, which is the target accuracy in our simulations. The
highest error of 0.91% is obtained when the relative permittivity is 12.0,
due to the sensitivity to geometric discretization for high contrasts.

6. CONCLUSION

A parallel implementation for large-scale objects discretized with
millions of unknowns is presented. Problems involving homogeneous
objects with various material properties are analyzed rigorously with
the developed implementation based on a combination of JMCFIE,
MLFMA, and the hierarchical partitioning strategy. Accuracy and
efficiency of the implementation are demonstrated on very large
scattering problems involving the sphere.
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3. Ergül, Ö., “Solutions of large-scale dielectric problems with the
parallel multilevel fast multipole algorithm,” J. Opt. Soc. Am. A,
Vol. 28, No. 11, 2261–2268, Nov. 2011.
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