Integral laminations on non-orientable surfaces

S.Öykü YURTTAŞ̧ ${ }^{1, *}$, Mehmetcik PAMUK ${ }^{1}$
1 Department of Mathematics, Dicle University, 21280 Diyarbakır, Turkey
saadet.yurttas@dicle.edu.tr
2 Department of Mathematics, Middle East Technical University, Ankara, Turkey
mpamuk@metu.edu.tr

Abstract

We describe triangle coordinates for integral laminations on a nonorientable surface $N_{k, n}$ of genus k with n punctures and one boundary component, and give an explicit bijection from the set of integral laminations on $N_{k, n}$ to $\left(\mathbb{Z}^{2(n+k-2)} \times \mathbb{Z}^{k}\right) \backslash\{0\}$.

Keywords: non-orientable surfaces, triangle coordinates, Dynnikov coordinates AMS Mathematics Subject classification: 57N05, 57N16, 57M50

1 Introduction

Let $N_{k, n}$ be a non-orientable surface of genus k with n punctures and one boundary component. In this paper we shall describe the generalized Dynnikov coordinate system for the set of integral laminations $\mathcal{L}_{k, n}$, and give an explicit bijection between $\mathcal{L}_{k, n}$ and $\left(\mathbb{Z}^{2(n+k-2)} \times \mathbb{Z}^{k}\right) \backslash\{0\}$. To be more specific, we shall first take a particular collection of $3 n+2 k-4$ arcs and k curves embedded in $N_{k, n}$, and describe each integral lamination by an element of $\mathbb{Z}_{\geq 0}^{3 n+2 k-4} \times \mathbb{Z}^{k}$, its geometric intersection numbers with these arcs and curves. Generalized Dynnikov coordinates are certain linear combinations of these integers that provide a one-to-one correspondence between $\mathcal{L}_{k, n}$ and $\left(\mathbb{Z}^{2(n+k-2)} \times \mathbb{Z}^{k}\right) \backslash\{0\}$.

The motivation for this paper comes from a recent work of Papadopoulos and Penner [7] where they provide analogues for non-orientable surfaces of several results from Thurston theory of surfaces which were studied only for orientable

[^0]surfaces before [4, [8]. Here we shall give the analogy of the Dynnikov Coordinate System [2] on the finitely punctured disk which has several useful applications such as giving an efficient method for the solution of the word problem of the n-braid group [1], computing the geometric intersection number of integral laminations [9], and counting the number of components they contain 11].

Throughout the text we shall work on a standard model of $N_{k, n}$ as illustrated in Figure 1 where a disc with a cross drawn within it represents a crosscap, that is the interior of the disc is removed and the antipodal points on the resulting boundary component are identified (i.e. the boundary component bounds a Möbius band).

The structure of the paper is as follows. In Section 1.1 we give the necessary terminology and background. In Section 2 we describe and study the triangle coordinates for integral laminations on $N_{k, n}$, and construct the generalized Dynnikov Coordinate System giving the bijection $\rho: \mathcal{L}_{k, n} \rightarrow\left(\mathbb{Z}^{2(n+k-2)} \times \mathbb{Z}^{k}\right) \backslash\{0\}$. An explicit formula for the inverse of this bijection is given in Theorem 2.14.

1.1 Basic terminology and background

A simple closed curve in $N_{k, n}$ is inessential if it bounds an unpunctured disk, once punctured disk, or an unpunctured annulus. It is called essential otherwise. A simple closed curve is called 2-sided (respectively 1 -sided) if a regular neighborhood of the curve is an annulus (respectively Möbius band). We say that a 2 -sided curve is non-primitive if it bounds a Möbius band 7], and a 1-sided curve is non-primitive if it is a core curve of a Möbius band. They are called primitive otherwise.

An integral lamination \mathcal{L} on $N_{k, n}$ is a disjoint union of finitely many essential simple closed curves in $N_{k, n}$ modulo isotopy. Let $\mathcal{A}_{k, n}$ be the set of arcs $\alpha_{i}(1 \leq$ $i \leq 2 n-2), \beta_{i}(1 \leq i \leq n+k-1), \gamma_{i}(1 \leq i \leq k-1)$ which have each endpoint either on the boundary or at a puncture, and the curves $c_{i}(1 \leq i \leq k)$ which are the core curves of Möbius bands in $N_{k, n}$ as illustrated in Figure 1 the arcs $\alpha_{2 i-3}$ and $\alpha_{2 i-2}$ for $2 \leq i \leq n$ join the i-th puncture to $\partial N_{k, n}$, the arc β_{i} has both end points on $\partial N_{k, n}$ and passes between the i-th and $(i+1)$-st punctures for $1 \leq i \leq n-1$, the n-th puncture and the first crosscap for $i=n$, and the $(i-n)$-th and $(i+1-n)$-th crosscaps for $n+1 \leq i \leq n+k-1$. The arc $\gamma_{i}(1 \leq i \leq k-1)$ has both endpoints on $\partial N_{k, n}$ and surrounds the i-th crosscap.

The surface is divided by these arcs into $2 n+2 k-2$ regions, $2 n+k-3$ of these are triangular since each $\Delta_{i}(1 \leq i \leq 2 n-2)$ and $\Sigma_{i}(1 \leq i \leq k-1)$ is bounded by three arcs when the boundary of the surface is identified to a point. The two triangles $\Delta_{2 i-3}$ and $\Delta_{2 i-2}$ on the left and right hand side of the i-th puncture are defined by the arcs $\alpha_{2 i-3}, \alpha_{2 i-2}, \beta_{i-1}$ and $\alpha_{2 i-3}, \alpha_{2 i-2}, \beta_{i}$ respectively. The triangle Σ_{i} is defined by the arcs $\gamma_{i}, \beta_{n+i-1}, \beta_{n+i}$. Each $\Delta_{i}^{\prime}(1 \leq i \leq k-1)$ is bounded by γ_{i}, and the two end regions Δ_{0} and Δ_{k}^{\prime} are bounded by β_{1} and β_{n+k-1} respectively.

Figure 1: The arcs $\alpha_{i}, \beta_{i}, \gamma_{i}$, the 1-sided curves $c_{1}, c_{2}, \ldots, c_{k}$ and the regions Δ_{i} and Σ_{i}.

Given $\mathcal{L} \in \mathcal{L}_{k, n}$, let L be a taut representative of \mathcal{L} with respect to the elements of $\mathcal{A}_{k, n}$. That is, L intersects each of the arcs and curves in $\mathcal{A}_{k, n}$ minimally.

Figure 2: There is 1 left loop component in the first case and 2 right loop components in the second case. There are 2 above and 3 below components in each case.

Definition 1.1. Set $S_{i}=\Delta_{2 i-1} \cup \Delta_{2 i}$ for each i with $1 \leq i \leq n-1$. A path component of L in S_{i} is a component of $L \cap S_{i}$. There are four types of path components in S_{i} as depicted in Figure 2:

- An above component has end points on β_{i} and β_{i+1}, passing across $\alpha_{2 i-1}$,
- A below component has end points on β_{i} and β_{i+1}, passing across $\alpha_{2 i}$,
- A left loop component has both end points on β_{i+1},
- A right loop component has both end points on β_{i}.

Figure 3: There is 1 right core loop and 1 straight core component in the first case; 1 left loop and 1 left core loop component in the second case; 1 right non-core loop and 1 right core loop component in the third case and 1 1 -sided and 12 -sided non-primitive curves in the fourth case. There are 2 above and 2 below components in each case.

Definition 1.2. Set $S_{i}^{\prime}=\Delta_{i}^{\prime} \cup \Sigma_{i}$ for each $1 \leq i \leq k-1$. A path component of L in S_{i}^{\prime} is a component of $L \cap S_{i}^{\prime}$. There are 7 types of path components in S_{i}^{\prime} as depicted in Figure 3.

- An above component has end points on β_{n+i-1} and β_{n+i}, and passes across γ_{i} without intersecting c_{i},
- A below component has end points on β_{n+i-1} and β_{n+i}, and doesn't pass across γ_{i},
- A left loop component has both end points on β_{n+i},
- A right loop component has both end points on β_{n+i-1},

If a loop component intersects c_{i}, it is called core loop component otherwise it is called non-core loop component.

- A straight core component has end points on β_{n+i-1} and β_{n+i}, and intersects c_{i},
- A non-primitive 1-sided curve,

If L contains a non-primitive 1 -sided curve c_{i} we depict it with a ring with end points on the i-th crosscap as shown in the fourth case in Figure 3.

- A non-primitive 2-sided curve.

2 Triangle coordinates

Let L be a taut representative of \mathcal{L}. Write $\alpha_{i}, \beta_{i}, \gamma_{i}$ and c_{i} for the geometric intersection number of L with the arc $\alpha_{i}, \beta_{i}, \gamma_{i}$ and the core curve c_{i} respectively. It will always be clear from the context whether we mean the arc or the geometric intersection number assigned on the arc.
Definition 2.1. The triangle coordinate function $\tau: \mathcal{L}_{k, n} \rightarrow\left(\mathbb{Z}_{\geq 0}^{3 n+2 k-4} \times \mathbb{Z}^{k}\right) \backslash\{0\}$ is defined by

$$
\tau(\mathcal{L})=\left(\alpha_{1}, \ldots, \alpha_{2 n-2} ; \beta_{1}, \ldots, \beta_{n+k-1} ; \gamma_{1}, \ldots, \gamma_{k-1} ; c_{1}, \ldots, c_{k}\right)
$$

where $c_{i}=-1$ if L contains the i-th core curve; $c_{i}=-2 m$ if it contains $m \in \mathbb{Z}^{+}$ disjoint copies 2 -sided non-primitive curves around the i-th crosscap, and $c_{i}=$ $-2 m-1$ if it contains m disjoint copies of 2 -sided non-primitive curves around the i-th crosscap plus the i-th core curve.

Remark 2.2. Let $b_{i}=\frac{\beta_{i}-\beta_{i+1}}{2}$ for $1 \leq i \leq n+k-2$. Then in each $S_{i}(1 \leq i \leq n-1)$ and $S_{i}^{\prime}(n \leq i \leq n+k-2)$ there are $\left|b_{i}\right|$ loop components. Furthermore, if $b_{i}<0$ these loop components are left, and if $b_{i}>0$ they are right.

The proof of the next lemma is obvious from Figure 2,
Lemma 2.3. Let $1 \leq i \leq n-1$. The number of above and below components in S_{i} are given by $a_{S_{i}}=\alpha_{2 i-1}-\left|b_{i}\right|$ and $b_{S_{i}}=\alpha_{2 i}-\left|b_{i}\right|$ respectively.

Let λ_{i} and $\lambda_{c_{i}}$ denote the number of non-core and core loop components, ψ_{i} the number of straight core components, and $a_{S_{i}^{\prime}}$ and $b_{S_{i}^{\prime}}$ the number of above and below components in S_{i}^{\prime}.

Lemma 2.4. Let L be a taut representative of $\mathcal{L} \in \mathcal{L}_{k, n}$, and set $c_{i}^{+}=\max \left(c_{i}, 0\right)$. Then for each $1 \leq i \leq k-1$ we have

$$
\begin{array}{ll}
\lambda_{i}=\max \left(\left|b_{n+i-1}\right|-c_{i}^{+}, 0\right), & \lambda_{c_{i}}=\min \left(\left|b_{n+i-1}\right|, c_{i}^{+}\right), \\
\psi_{i}=\max \left(c_{i}^{+}-\left|b_{n+i-1}\right|, 0\right) . &
\end{array}
$$

Proof. Assume that L doesn't contain any non-primitive curve in S_{i}^{\prime}. Since c_{i} gives the sum of straight core and core loop components and $\left|b_{n+i-1}\right|$ gives the sum of non-core loop and core loop components in S_{i}^{\prime} (see Figure 3) we have

$$
\begin{equation*}
c_{i}=\psi_{i}+\lambda_{c_{i}} \quad \text { and } \quad\left|b_{n+i-1}\right|=\lambda_{i}+\lambda_{c_{i}} . \tag{1}
\end{equation*}
$$

If $c_{i}>\left|b_{n+i-1}\right|$, then clearly there exists a straight core component in S_{i}^{\prime}, and hence no non-core loop component in S_{i}^{\prime} that is $\lambda_{i}=0$. Therefore in this case, $\lambda_{c_{i}}=\left|b_{n+i-1}\right|$ and hence $\psi_{i}=c_{i}-\left|b_{n+i-1}\right|$ by Equation (1)

If $c_{i}<\left|b_{n+i-1}\right|$, there exists a non-core loop component in S_{i}^{\prime}, and hence no straight core components in S_{i}^{\prime} that is $\psi_{i}=0$. Therefore $c_{i}=\lambda_{c_{i}}$ and hence $\lambda_{i}=\left|b_{n+i-1}\right|-c_{i}$ by Equation प. We get

$$
\begin{aligned}
\lambda_{i} & =\max \left(\left|b_{n+i-1}\right|-c_{i}, 0\right) \\
\psi_{i} & =\max \left(c_{i}-\left|b_{n+i-1}\right|, 0\right) .
\end{aligned}
$$

Also if $\left|b_{n+i-1}\right|<c_{i}, \lambda_{i}=0$ and hence $\lambda_{c_{i}}=\left|b_{n+i-1}\right|$, if $\left|b_{n+i-1}\right|>c_{i}, \psi_{i}=0$ and hence $\lambda_{c_{i}}=c_{i}$ by Equation 11. Therefore we get, $\lambda_{c_{i}}=\min \left(\left|b_{n+i-1}\right|, c_{i}\right)$.

Finally, if L contains a non-primitive curve in S_{i}^{\prime}, there can be no straight core and core loop component in S_{i}^{\prime} that is $\psi_{i}=\lambda_{c_{i}}=0$, hence $\lambda_{i}=\left|b_{n+i-1}\right|$. Since $c_{i}<0$ by definition, setting $c_{i}^{+}=\max \left(c_{i}, 0\right)$ we can write

$$
\begin{array}{ll}
\lambda_{i}=\max \left(\left|b_{n+i-1}\right|-c_{i}^{+}, 0\right), & \lambda_{c_{i}}=\min \left(\left|b_{n+i-1}\right|, c_{i}^{+}\right), \\
\psi_{i}=\max \left(c_{i}^{+}-\left|b_{n+i-1}\right|, 0\right) . &
\end{array}
$$

Lemma 2.5. Let L be a taut representative of $\mathcal{L} \in \mathcal{L}_{k, n}$. For each $1 \leq i \leq k-1$ we have

$$
\begin{aligned}
& a_{S_{i}^{\prime}}=\frac{\gamma_{i}}{2}-\left|b_{n+i-1}\right|-\psi_{i} \\
& b_{S_{i}^{\prime}}=\max \left(\beta_{n+i-1}, \beta_{n+i}\right)-\left|b_{n+i-1}\right|-\frac{\gamma_{i}}{2} .
\end{aligned}
$$

Proof. To compute the number of above and below components in S_{i}^{\prime} we observe that each path component other than a below component in S_{i}^{\prime} intersects γ_{i} twice, that is $\gamma_{i}=2\left(a_{S_{i}^{\prime}}+\left|b_{n+i-1}\right|+\psi_{i}\right)$. Therefore we get,

$$
a_{S_{i}^{\prime}}=\frac{\gamma_{i}}{2}-\left|b_{n+i-1}\right|-\psi_{i} .
$$

To compute the number of below components, we note that the sum of all path components in S_{i}^{\prime} is given by $\beta=\max \left(\beta_{n+i-1}, \beta_{n+i}\right)$. Then $b_{S_{i}^{\prime}}$ is β minus the number of above, straight core components and twice the number loop components in S_{i}^{\prime} (each loop component intersects β twice). We get

$$
\begin{aligned}
b_{S_{i}^{\prime}} & =\max \left(\beta_{n+i-1}, \beta_{n+i}\right)-a_{S_{i}^{\prime}}-2\left|b_{n+i-1}\right|-\psi_{i} \\
& =\max \left(\beta_{n+i-1}, \beta_{n+i}\right)-\left|b_{n+i-1}\right|-\frac{\gamma_{i}}{2}
\end{aligned}
$$

Another way of expressing $a_{S_{i}^{\prime}}$ and $b_{S_{i}^{\prime}}$ is given in item P4. in Properties 2.12,
Remark 2.6. Observe that the loop components in Δ_{0} are always left and the number of them is given by $\frac{\beta_{1}}{2}$. Similarly, the loop components in Δ_{k}^{\prime} are always right and the number of core and non-core loop components in Δ_{k}^{\prime} are given by c_{k} and $\lambda_{k}=\frac{\beta_{n+k-1}}{2}-c_{k}$.

Lemma 2.7 and Lemma 2.8 are obvious from Figure 2 and Figure 3 .
Lemma 2.7. There are equalities for each S_{i} :

- When there are left loop components ($b_{i}<0$),

$$
\begin{aligned}
\alpha_{2 i}+\alpha_{2 i-1} & =\beta_{i+1} \\
\alpha_{2 i}+\alpha_{2 i-1}-\beta_{i} & =2\left|b_{i}\right|,
\end{aligned}
$$

- When there are right loop components $\left(b_{i}>0\right)$,

$$
\begin{aligned}
\alpha_{2 i}+\alpha_{2 i-1} & =\beta_{i} \\
\alpha_{2 i}+\alpha_{2 i-1}-\beta_{i+1} & =2\left|b_{i}\right|,
\end{aligned}
$$

- When there are no loop components ($b_{i}=0$),

$$
\alpha_{2 i}+\alpha_{2 i-1}=\beta_{i}=\beta_{i+1} .
$$

Lemma 2.8. There are equalities for each S_{i}^{\prime} :

- When there are left loop components $\left(b_{n+i-1}<0\right)$,

$$
\begin{aligned}
a_{S_{i}^{\prime}}+b_{S_{i}^{\prime}}+\psi_{i}+2\left|b_{n+i-1}\right| & =\beta_{n+i} \\
a_{S_{i}^{\prime}}+b_{S_{i}^{\prime}}+\psi_{i} & =\beta_{n+i-1}
\end{aligned}
$$

- When there are right loop components $\left(b_{n+i-1}>0\right)$

$$
\begin{aligned}
a_{S_{i}^{\prime}}+b_{S_{i}^{\prime}}+\psi_{i}+2\left|b_{n+i-1}\right| & =\beta_{n+i-1} . \\
a_{S_{i}^{\prime}}+b_{S_{i}^{\prime}}+\psi_{i} & =\beta_{n+i}
\end{aligned}
$$

- When there are no loop components $b_{n+i-1}=0$

$$
a_{S_{i}^{\prime}}+b_{S_{i}^{\prime}}+\psi_{i}=\beta_{n+i}=\beta_{n+i-1} .
$$

Example 2.9. Let $\tau(\mathcal{L})=(4,2,2,6 ; 2,6,8,4 ; 8 ; 1,1)$ be the triangle coordinates of an integral lamination $\mathcal{L} \in \mathcal{L}_{2,3}$. We shall show how we draw \mathcal{L} from its given triangle coordinates. First, we compute the loop components in the two end regions Δ_{0} and Δ_{2}^{\prime} using Remark [2.6. Since $\beta_{1}=2$ there is one loop component in Δ_{0}. Similarly, since $\beta_{4}=4$ and $c_{2}=1$, we get $\lambda_{2}=\frac{\beta_{4}}{2}-c_{2}=1$.

Next, we compute loop components in S_{1}, S_{2} and S_{1}^{\prime}. Since $b_{i}=\frac{\beta_{i}-\beta_{i+1}}{2}$ for each $1 \leq i \leq 3$ we have $b_{1}=-2, b_{2}=-1$. Hence there are two left loop components in S_{1}, and one left component in S_{2}. Similarly since $b_{3}=2$ there are 2 right loop components in S_{1}^{\prime}, and by Lemma [2.4] $\lambda_{1}=\max \left(\left|b_{3}\right|-c_{1}, 0\right)=1$ (hence $\psi_{1}=0$) and $\lambda_{c_{1}}=\min \left(\left|b_{3}\right|, c_{1}\right)=1$. Using Lemma 2.3 and Lemma 2.5 we compute the number of above and below components. We get $a_{S_{1}}=\alpha_{1}-\left|b_{1}\right|=2$, $b_{S_{1}}=\alpha_{2}-\left|b_{1}\right|=0, a_{S_{2}}=\alpha_{3}-\left|b_{2}\right|=1, b_{S_{2}}=\alpha_{4}-\left|b_{2}\right|=5$, and

$$
\begin{aligned}
& a_{S_{1}^{\prime}}=\frac{\gamma_{1}}{2}-\left|b_{3}\right|-\psi_{1}=2 \\
& b_{S_{1}^{\prime}}=\max \left(\beta_{3}, \beta_{4}\right)-\left|b_{3}\right|-\frac{\gamma_{1}}{2}=2 .
\end{aligned}
$$

Connecting the path components in each $\Delta_{0}, \Delta_{2}^{\prime}, S_{1}, S_{2}$ and S_{1}^{\prime} we draw the integral lamination as shown in Figure 4.

Figure 4: $\tau(L)=(4,2,2,6 ; 2,6,8,4 ; 8 ; 1,1)$

Lemma 2.10. The triangle coordinate function $\tau: \mathcal{L}_{k, n} \rightarrow\left(\mathbb{Z}_{\geq 0}^{3 n+2 k-4} \times \mathbb{Z}^{k}\right) \backslash\{0\}$ is injective.

Proof. We can determine the number of loop, above and below components in each S_{i} by Remark 2.2 and Lemma 2.3 , core and non-core loop, straight core, above and below components in each S_{i}^{\prime} by Lemma 2.4 and Lemma 2.5 as illustrated in Example 2.9. The components in each S_{i} and S_{i}^{\prime} are glued together in a unique way up to isotopy, and hence \mathcal{L} is constructed uniquely.

Remark 2.11. The triangle coordinate function $\tau: \mathcal{L}_{k, n} \rightarrow\left(\mathbb{Z}_{\geq 0}^{3 n+2 k-4} \times \mathbb{Z}^{k}\right) \backslash\{0\}$ is not surjective: an integral lamination must satisfy the triangle inequality in each S_{i} and S_{i}^{\prime}, and some additional conditions such as the equalities in Lemma 2.7 and Lemma 2.8 .

Next, we give a list of properties an integral lamination $\mathcal{L} \in \mathcal{L}_{k, n}$ satisfies in terms of its triangle coordinates as in [9], and then construct a new coordinate system from the triangle coordinates which describes integral laminations in a unique way. In particular, we shall generalize the Dynnikov coordinate system [1-3, 5, 9-11] for $N_{k, n}$.

Properties 2.12. Let L be a taut representative of $\mathcal{L} \in \mathcal{L}_{k, n}$.
P1. Every component of L intersects each β_{i} an even number of times. Recall from Remark 2.2 that the number of loop components is given by $\left|b_{i}\right|$ where $b_{i}=\frac{\beta_{i}-\beta_{i+1}}{2}$.

P2. Set $x_{i}=\left|\alpha_{2 i}-\alpha_{2 i-1}\right|$ and $t_{i}=\left|a_{S_{i}^{\prime}}-b_{S_{i}^{\prime}}\right|$. Then x_{i} and t_{i} gives the difference between the number of above and below components in S_{i} and S_{i}^{\prime} respectively. Set $m_{i}=\min \left\{\alpha_{2 i}-\left|b_{i}\right|, \alpha_{2 i-1}-\left|b_{i}\right|\right\} ; 1 \leq i \leq n-1$ and $n_{i}=\min \left\{a_{S_{i}^{\prime}}, b_{S_{i}^{\prime}}\right\}$; $1 \leq i \leq k-1$. See Figure5. Note that x_{i} is even since L intersects $\alpha_{2 i} \cup \alpha_{2 i-1}$ an even number of times. Clearly, this may not hold for t_{i} since when ψ_{i} is odd the sum of above and below components (and hence their difference) is odd. See Lemma 2.8.

P3. Set $2 a_{i}=\alpha_{2 i}-\alpha_{2 i-1}\left(\left|a_{i}\right|=x_{i} / 2\right)$. Then, by Lemma 2.7 we get

- If $b_{i} \geq 0$, then $\beta_{i}=\alpha_{2 i}+\alpha_{2 i-1}$ and hence

$$
\alpha_{2 i}=a_{i}+\frac{\beta_{i}}{2} \text { and } \alpha_{2 i-1}=-a_{i}+\frac{\beta_{i}}{2}
$$

- If $b_{i} \leq 0$, then $\beta_{i+1}=\alpha_{2 i}+\alpha_{2 i-1}$ and hence

$$
\alpha_{2 i}=a_{i}+\frac{\beta_{i+1}}{2} \text { and } \alpha_{2 i-1}=-a_{i}+\frac{\beta_{i+1}}{2}
$$

Figure 5: m_{i} and n_{i} denote the smaller of above and below components in S_{i} and S_{i}^{\prime} repectively

That is,

$$
\alpha_{i}= \begin{cases}(-1)^{i} a_{\lceil i / 2\rceil}+\frac{\beta_{\lceil i / 2\rceil}}{2} & \text { if } b_{\lceil i / 2\rceil} \geq 0, \\ (-1)^{i} a_{\lceil i / 2\rceil}+\frac{\beta_{1+\lceil i / 2\rceil}}{2} & \text { if } b_{\lceil i / 2\rceil} \leq 0 .\end{cases}
$$

where $\lceil i / 2\rceil$ denotes the smallest integer that is not less than $i / 2$.
P4. Since $t_{i}=a_{S_{i}^{\prime}}-b_{S_{i}^{\prime}}$ for $1 \leq i \leq k-1$, from Lemma 2.8 we get

- If $b_{n+i-1} \geq 0$ then $a_{S_{i}^{\prime}}+b_{S_{i}^{\prime}}+\psi_{i}+2 b_{n+i-1}=\beta_{n+i-1}$, and

$$
a_{S_{i}^{\prime}}=\frac{t_{i}-\psi_{i}+\beta_{n+i-1}-2 b_{n+i-1}}{2}
$$

- If $b_{n+i-1} \leq 0$ then $a_{S_{i}^{\prime}}+b_{S_{i}^{\prime}}+\psi_{i}-2 b_{n+i-1}=\beta_{n+i}$, and

$$
a_{S_{i}^{\prime}}=\frac{t_{i}-\psi_{i}+\beta_{n+i}+2 b_{n+i-1}}{2}
$$

And hence

$$
a_{S_{i}^{\prime}}=\frac{t_{i}-\psi_{i}+\max \left(\beta_{n+i}, \beta_{n+i-1}\right)-2\left|b_{n+i-1}\right|}{2}
$$

Similarly we compute

$$
b_{S_{i}^{\prime}}=\frac{-t_{i}-\psi_{i}+\max \left(\beta_{n+i}, \beta_{n+i-1}\right)-2\left|b_{n+i-1}\right|}{2}
$$

P5. It is easy to observe from Figure 5 that

$$
\begin{aligned}
\beta_{i} & =2\left[\left|a_{i}\right|+\max \left(b_{i}, 0\right)+m_{i}\right] \quad \text { for } \quad 1 \leq i \leq n-1 \\
\beta_{n+i} & =\left|t_{i}\right|+2 \max \left(b_{n+i-1}, 0\right)+\psi_{i}+2 n_{i} \quad \text { for } \quad 1 \leq i \leq k-1 .
\end{aligned}
$$

Therefore, since $b_{i}=\frac{\beta_{i}-\beta_{i+1}}{2} ; 1 \leq i \leq n+k-2$ we can compute β_{1} using one of the two equations below:

$$
\begin{aligned}
& \beta_{1}=2\left[\left|a_{i}\right|+\max \left(b_{i}, 0\right)+m_{i}+\sum_{j=1}^{i-1} b_{j}\right] \quad \text { for } 1 \leq i \leq n-1, \\
& \beta_{1}=\left|t_{i}\right|+2 \max \left(b_{n+i-1}, 0\right)+\psi_{i}+2 n_{i}+2 \sum_{j=1}^{n+i-2} b_{j} \text { for } 1 \leq i \leq k-1 .
\end{aligned}
$$

Figure 6: L^{*} is a simple closed curve on the right but it is not on the left.

P6. Some integral laminations contain R-components: an R-component of L has geometric intersection numbers $i\left(R, \alpha_{j}\right)=1$ for each $1 \leq j \leq 2 n-2$, $i\left(R, \beta_{j}\right)=2$ for each $1 \leq j \leq n+k-1$ and $i\left(R, \gamma_{j}\right)=2$ for each $1 \leq j \leq k-1$, which has its end points on the k-th crosscap (denoted red in Figure (6). Set $L^{*}=L \backslash R$. Note that L^{*} is a component of L which isn't necessarily a simple closed curve (the two possible cases are depicted in Figure (6)). Let $\alpha_{i}^{*}, \beta_{i}^{*}$ and γ_{i}^{*} denote the number of intersections of L^{*} with the arcs α_{i}, β_{i} and γ_{i} respectively. Define $a_{i}^{*}, b_{i}^{*}, t_{i}^{*}$ and $\lambda_{i}^{*}, \lambda_{c_{i}}^{*}, a_{S^{\prime}}^{*}, b_{S^{\prime}}^{*}$ and ψ_{i}^{*} similarly as above. We therefore have

$$
\begin{aligned}
& \beta_{1}^{*}=2\left[\left|a_{i}^{*}\right|+\max \left(b_{i}^{*}, 0\right)+m_{i}^{*}+\sum_{j=1}^{i-1} b_{j}^{*}\right] \text { for } 1 \leq i \leq n-1 \\
& \beta_{1}^{*}=\left|t_{i}^{*}\right|+2 \max \left(b_{n+i-1}^{*}, 0\right)+\psi_{i}^{*}+2 n_{i}^{*}+2 \sum_{j=1}^{n+i-2} b_{j}^{*} \quad \text { for } \quad 1 \leq i \leq k-1
\end{aligned}
$$

where $m_{i}^{*}=\min \left\{\alpha_{2 i}^{*}-\left|b_{i}^{*}\right|, \alpha_{2 i-1}^{*}-\left|b_{i}^{*}\right|\right\} ; 1 \leq i \leq n-1$ and $n_{i}^{*}=\min \left\{a_{S_{i}^{\prime}}^{*}, b_{S_{i}^{\prime}}^{*}\right\}$; $1 \leq i \leq k-1$. Furthermore, there is some $m_{i}^{*}=0$, or some $n_{i}^{*}=0$ since otherwise L^{*} would have above and below components in each S_{i} and S_{i}^{\prime} which would yield curves parallel to $\partial N_{k, n}$, or L^{*} would contain R-components which is impossible by definition. Write $a_{i}^{*}=a_{i}, b_{i}^{*}=b_{i}, t_{i}^{*}=t_{i}$ since deleting R-components doesn't change the a, b, t values. Set

$$
\begin{aligned}
& X_{i}=2\left[\left|a_{i}\right|+\max \left(b_{i}, 0\right)+\sum_{j=1}^{i-1} b_{j}\right] \text { for } 1 \leq i \leq n-1 \\
& Y_{i}=\left|t_{i}\right|+2 \max \left(b_{n+i-1}, 0\right)+\psi_{i}+2 \sum_{j=1}^{n+i-2} b_{j} \quad \text { for } \quad 1 \leq i \leq k-1
\end{aligned}
$$

Then one of the three following cases hold for L^{*} :
I. If $m_{i}^{*}>0$ for all $1 \leq i \leq n-1$, then there is some j with $1 \leq j \leq k-1$ such that $n_{j}^{*}=0$. Therefore, $\beta_{1}^{*}>X_{i}$ and $\beta_{1}^{*}=Y_{j}$.
II. If $n_{i}^{*}>0$ for all $1 \leq i \leq k-1$, then there is some j with $1 \leq j \leq n-1$ such that $m_{j}^{*}=0$. Therefore, $\beta_{1}^{*}>Y_{i}$ and $\beta_{1}^{*}=X_{j}$.
III. There is some i with $1 \leq i \leq n-1$ such that $m_{i}^{*}=0$ and some j with $1 \leq j \leq k-1$ such that $n_{j}^{*}=0$. Therefore, $\beta_{1}^{*}=X_{i}=Y_{j}$.

We therefore have

$$
\beta_{i}^{*}=\max (X, Y)-2 \sum_{j=1}^{i-1} b_{j}
$$

where

$$
X=2 \max _{1 \leq r \leq n-1}\left\{\left|a_{r}\right|+\max \left(b_{r}, 0\right)+\sum_{j=1}^{r-1} b_{j}\right\}
$$

and

$$
Y=\max _{1 \leq s \leq k-1}\left\{\left|t_{s}\right|+2 \max \left(b_{n+s-1}, 0\right)+\psi_{s}+2 \sum_{j=1}^{n+s-2} b_{j}\right\} .
$$

P7. If L doesn't have an R-component, that is if $L^{*}=L$ then $2 c_{k} \leq \beta_{n+k-1}^{*}=$ β_{n+k-1} since $\beta_{n+k-1}=2 c_{k}+2 \lambda_{k}$. If L has an R-component then $2 c_{k}>$ β_{n+k-1}^{*} and $\lambda_{k}=0$. See Figure [6. Hence the number of R-components of L is given by

$$
R=\max \left(0,2 c_{k}-\beta_{n+k-1}^{*}\right) / 2 .
$$

For example, the integral laminations in Figure 6 (from left to right) has $c_{1}=2, \beta_{5}^{*}=2$, and hence $R=1$; and $c_{1}=1, \beta_{5}^{*}=0$, and hence $R=1$. Then L is constructed by identifying the two end points of an R component with the pieces of L^{*} on the k-th crosscap. Since R-components intersect each β_{i} twice we get

$$
\beta_{i}=\beta_{i}^{*}+2 R ; 1 \leq i \leq n+k-1 .
$$

Then

$$
\beta_{i}=\max (X, Y)-2 \sum_{j=1}^{i-1} b_{j}+2 R
$$

Also, from item P3. we have

$$
\alpha_{i}= \begin{cases}(-1)^{i} a_{\lceil i / 2\rceil}+\frac{\beta_{\lceil i / 2\rceil}}{2} & \text { if } b_{\lceil i / 2\rceil} \geq 0, \\ (-1)^{i} a_{\lceil i / 2\rceil}+\frac{\beta_{1+\lceil i / 2\rceil}}{2} & \text { if } b_{\lceil i / 2\rceil} \leq 0,\end{cases}
$$

Finally, it is easy to observe from Figure 3 that

$$
\gamma_{i}=2\left(a_{S_{i}^{\prime}}+\left|b_{n+i-1}\right|+\psi_{i}\right)
$$

Making use of the properties above, we shall define the generalized Dynnikov coordinate system which coordinatizes $\mathcal{L}_{k, n}$ bijectively and with the least number of coordinates.

Definition 2.13. The generalized Dynnikov coordinate function

$$
\rho: \mathcal{L}_{k, n} \rightarrow\left(\mathbb{Z}^{2(n+k-2)} \times \mathbb{Z}^{k}\right) \backslash\{0\}
$$

is defined by

$$
\rho(\mathcal{L})=(a ; b ; t ; c):=\left(a_{1}, \ldots, a_{n-1} ; b_{1}, \ldots, b_{n+k-2} ; t_{1}, \ldots, t_{k-1} ; c_{1}, \ldots, c_{k}\right)
$$

where

$$
\begin{array}{ll}
a_{i}=\frac{\alpha_{2 i}-\alpha_{2 i-1}}{2} & \text { for } 1 \leq i \leq n-1 \\
b_{i}=\frac{\beta_{i}-\beta_{i+1}}{2} & \text { for } 1 \leq i \leq n+k-2 \\
t_{i}=a_{S_{i}^{\prime}}-b_{S_{i}^{\prime}} & \text { for } 1 \leq i \leq k-1,
\end{array}
$$

where $a_{S_{i}^{\prime}}$ and $b_{S_{i}^{\prime}}$ are as given in Lemma 2.5.
Theorem 2.14 gives the inverse of $\rho: \mathcal{L}_{k, n} \rightarrow\left(\mathbb{Z}^{2(n+k-2)} \times \mathbb{Z}^{k}\right) \backslash\{0\}$.
Theorem 2.14. Let $(a ; b ; t ; c) \in\left(\mathbb{Z}^{2(n+k-2)} \times \mathbb{Z}^{k}\right) \backslash\{0\}$. Set

$$
\begin{aligned}
X & =2 \max _{1 \leq r \leq n-1}\left\{\left|a_{r}\right|+\max \left(b_{r}, 0\right)+\sum_{j=1}^{r-1} b_{j}\right\} \\
Y & =\max _{1 \leq s \leq k-1}\left\{\left|t_{s}\right|+2 \max \left(b_{n+s-1}, 0\right)+\psi_{s}+2 \sum_{j=1}^{n+s-2} b_{j}\right\} .
\end{aligned}
$$

Then $(a ; b ; t ; c)$ is the Dynnikov coordinate of exactly one element $\mathcal{L} \in \mathcal{L}_{k, n}$ which has

$$
\begin{align*}
& \beta_{i}=\max (X, Y)-2 \sum_{j=1}^{i-1} b_{j}+2 R, \tag{2}\\
& \alpha_{i}=\left\{\begin{array}{cl}
(-1)^{i} a_{\lceil i / 2\rceil}+\frac{\beta_{\lceil i / 2\rceil}}{2} & \text { if } b_{\lceil i / 2\rceil} \geq 0, \\
(-1)^{i} a_{\lceil i / 2\rceil}+\frac{\beta_{1\lceil i / 27}}{2} & \text { if } b_{\lceil i / 2\rceil} \leq 0,
\end{array}\right. \tag{3}\\
& \gamma_{i}=2\left(a_{S_{i}^{\prime}}+\left|b_{n+i-1}\right|+\psi_{i}\right) \tag{4}
\end{align*}
$$

where $a_{S_{i}^{\prime}}$ is defined as in item P4. in Properties 2.12.
Proof. Given $L \in \mathcal{L}_{k, n}$ with $\tau(L)=(\alpha, \beta, \gamma, c)$ and $\rho(L)=(a, b, t, c)$, Properties 2.12 show that α, β and γ must be given by (2), (3) and (4) respectively, and hence L is unique by Lemma 2.10. Therefore ρ is injective. By Properties 2.12 we can draw non-intersecting path components in each $S_{i}(1 \leq i \leq n-1)$, S_{i}^{\prime} $(1 \leq i \leq k-1), \Delta_{0}$ and Δ_{k}^{\prime} which intersect each element of $\mathcal{A}_{k, n}$ the number of times given by $(\alpha, \beta, \gamma, c)$. Gluing together these path components gives a disjoint union of simple closed curves in $N_{k, n}$. There are no curves that bound a puncture or parallel to the boundary by construction, and hence $(\alpha, \beta, \gamma, c)$ where α, β and γ are defined by (2), (3) and (4) respectively, correspond to some L with $\rho(L)=(a, b, t, c)$. Therefore, ρ is surjective.

Example 2.15. Let $\rho(\mathcal{L})=\left(a_{1} ; b_{1}, b_{2} ; t_{1} ; c_{1}, c_{2}\right)=(-1 ; 2,0 ; 1 ; 1,0)$ be the generalized Dynnikov coordinates of an integral lamination \mathcal{L} on $N_{2,2}$. We shall use Theorem 2.14 to compute the triangle coordinates of \mathcal{L} from which we determine the number of path components in S_{1} and S_{1}^{\prime}, and hence draw \mathcal{L} as illustrated in Example 2.9. By Lemma 2.4. $\psi_{1}=\max \left(c_{1}^{+}-\left|b_{2}\right|, 0\right)=1$ so we have

$$
X=2\left(\left|a_{1}\right|+\max \left(b_{1}, 0\right)\right)=6 \quad \text { and } \quad Y=\left|t_{1}\right|+2 \max \left(b_{2}, 0\right)+\psi_{1}+2 b_{1}=6
$$

Therefore

$$
\begin{aligned}
& \beta_{1}=\max (6,6)=6, \beta_{2}=\max (6,6)-2 b_{1}=2, \beta_{3}=\max (6,6)-2\left(b_{1}+b_{2}\right)=2, \\
& \alpha_{1}=-a_{1}+\frac{\beta_{1}}{2}=4, \alpha_{2}=a_{1}+\frac{\beta_{1}}{2}=2 .
\end{aligned}
$$

Since $0=2 c_{2}<\beta_{3}^{*}=2$, there are no R-components by item P8. of Properties 2.12. Since $\beta_{1}=6$ there are 3 loop components in Δ_{0}, and since $\beta_{3}=2$ and $c_{2}=0$, there is one non-core loop component in Δ_{2}^{\prime} that is $\lambda_{2}=1$. By Remarks 2.2, $b_{1}=2$ and $b_{2}=0$, and hence there are 2 right loop components in S_{1} and no
loop components in S_{1}^{\prime}. By Lemma 2.3 we compute that $a_{S_{1}}=\alpha_{1}-\left|b_{1}\right|=2$ and $b_{S_{1}}=\alpha_{2}-\left|b_{1}\right|=0$. Finally by item P4. of Properties 2.12,

$$
\begin{aligned}
& a_{S_{1}^{\prime}}=\frac{t_{1}-\psi_{1}+\max \left(\beta_{2}, \beta_{3}\right)-2\left|b_{2}\right|}{2}=1 \\
& b_{S_{1}^{\prime}}=\frac{-t_{1}-\psi_{1}+\max \left(\beta_{2}, \beta_{3}\right)-2\left|b_{2}\right|}{2}=0
\end{aligned}
$$

Gluing together the path components in S_{1} and S_{1}^{\prime} we construct the integral lamination depicted in Figure 7 .

Figure 7: $\rho(L)=(-1 ; 2,0 ; 1 ; 1,0)$

Remark 2.16. Generalized Dynnikov coordinates for integral laminations can be extended in a natural way to generalized Dynnikov coordinates of measured foliations [5]: the transverse measure on the foliation [4, 7, 8] assigns to each element in $\mathcal{A}_{k, n}$ a non-negative real number, and hence each measured foliation is described by an element of $\left(\mathbb{R}_{\geq 0}^{3 n+2 k-4} \times \mathbb{R}^{k}\right) \backslash\{0\}$, the associated measures of the arcs and curves of $\mathcal{A}_{k, n}$. Therefore, the Generalized Dynnikov coordinate system for measured foliations is defined similarly (see Definition 2.13), and provides a one-to-one correspondence between the set of measured foliations (up to isotopy and Whitehead equivalence) on $N_{k, n}$ and $\left(\mathbb{R}^{2(n+k-2)} \times \mathbb{R}^{k}\right) \backslash\{0\}$.

References

[1] Dehornoy, Patrick and Dynnikov, Ivan and Rolfsen, Dale and Wiest, Bert, Ordering braids, volume 148 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2008.
[2] I. Dynnikov, On a Yang-Baxter mapping and the Dehornoy ordering, Uspekhi Mat. Nauk, 57(3(345)): 151-152, 2002.
[3] Dynnikov, I. and Wiest, B., On the complexity of braids, J. Eur. Math. Soc. (JEMS), 9(4):801-840, 2007
[4] Fathi,A. and Laudenbach,F. and Poenaru,V. Travaux de Thurston sur les surfaces, Société Mathématique de France,(66) 284, 1979
[5] Hall, Toby and Yurttas,S. Oyku, On the topological entropy of families of braids, Topology Appl., 156(8):1554-1564, 2009.
[6] Moussafir, J-O., On computing the entropy of braids, Funct. Anal. Other Math., 1(1):37-46, 2006.
[7] Papadopoulos, A. and Penner, R. C., Hyperbolic metrics, measured foliations and pants decompositions for non-orientable surfaces, Asian J. Math., 20(1):157-182, 2016.
[8] Thurston, W. P., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.), 19(2):417-431, 1988.
[9] Yurttaş, S. Öykü, Geometric intersection of curves on punctured disks, Journal of the Mathematical Society of Japan, 65(4):1554-1564, 2013.
[10] Yurttas, S. Öykü, Dynnikov and train track transition matrices of pseudoAnosov braids, Discrete Contin. Dyn. Syst., 36(1):541-570, 2016.
[11] Yurttaş, S. Öykü and Hall, Toby, Counting components of an integral lamination, manuscripta math. doi:10.1007/s00229-016-0885-4, 2016.

[^0]: *Correspondence: saadet.yurttas@dicle.edu.tr.

