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Abstract

We describe triangle coordinates for integral laminations on a non-
orientable surface Nk,n of genus k with n punctures and one boundary
component, and give an explicit bijection from the set of integral lam-
inations on Nk,n to (Z2(n+k−2) × Z

k) \ {0}.
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1 Introduction

Let Nk,n be a non-orientable surface of genus k with n punctures and one boundary
component. In this paper we shall describe the generalized Dynnikov coordinate
system for the set of integral laminations Lk,n, and give an explicit bijection be-
tween Lk,n and (Z2(n+k−2) × Z

k) \ {0}. To be more specific, we shall first take
a particular collection of 3n + 2k − 4 arcs and k curves embedded in Nk,n, and
describe each integral lamination by an element of Z3n+2k−4

≥0 × Z
k, its geometric

intersection numbers with these arcs and curves. Generalized Dynnikov coordi-
nates are certain linear combinations of these integers that provide a one-to-one
correspondence between Lk,n and (Z2(n+k−2) × Z

k) \ {0}.
The motivation for this paper comes from a recent work of Papadopoulos and

Penner [7] where they provide analogues for non-orientable surfaces of several
results from Thurston theory of surfaces which were studied only for orientable

∗Correspondence: saadet.yurttas@dicle.edu.tr.
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surfaces before [4, 8]. Here we shall give the analogy of the Dynnikov Coordinate
System [2] on the finitely punctured disk which has several useful applications such
as giving an efficient method for the solution of the word problem of the n-braid
group [1], computing the geometric intersection number of integral laminations [9],
and counting the number of components they contain [11].

Throughout the text we shall work on a standard model of Nk,n as illustrated in
Figure 1 where a disc with a cross drawn within it represents a crosscap, that is the
interior of the disc is removed and the antipodal points on the resulting boundary
component are identified (i.e. the boundary component bounds a Möbius band).

The structure of the paper is as follows. In Section 1.1 we give the necessary
terminology and background. In Section 2 we describe and study the triangle
coordinates for integral laminations on Nk,n, and construct the generalized Dyn-
nikov Coordinate System giving the bijection ρ : Lk,n → (Z2(n+k−2) × Z

k) \ {0}.
An explicit formula for the inverse of this bijection is given in Theorem 2.14.

1.1 Basic terminology and background

A simple closed curve in Nk,n is inessential if it bounds an unpunctured disk, once
punctured disk, or an unpunctured annulus. It is called essential otherwise. A
simple closed curve is called 2-sided (respectively 1-sided) if a regular neighborhood
of the curve is an annulus (respectively Möbius band). We say that a 2-sided curve
is non-primitive if it bounds a Möbius band [7], and a 1-sided curve is non-primitive
if it is a core curve of a Möbius band. They are called primitive otherwise.

An integral lamination L on Nk,n is a disjoint union of finitely many essential
simple closed curves in Nk,n modulo isotopy. Let Ak,n be the set of arcs αi (1 ≤
i ≤ 2n − 2), βi (1 ≤ i ≤ n + k − 1), γi (1 ≤ i ≤ k − 1) which have each endpoint
either on the boundary or at a puncture, and the curves ci (1 ≤ i ≤ k) which
are the core curves of Möbius bands in Nk,n as illustrated in Figure 1: the arcs
α2i−3 and α2i−2 for 2 ≤ i ≤ n join the i-th puncture to ∂Nk,n, the arc βi has
both end points on ∂Nk,n and passes between the i-th and (i+1)-st punctures for
1 ≤ i ≤ n−1, the n-th puncture and the first crosscap for i = n, and the (i−n)-th
and (i+1− n)-th crosscaps for n+ 1 ≤ i ≤ n+ k− 1. The arc γi ( 1 ≤ i ≤ k− 1)
has both endpoints on ∂Nk,n and surrounds the i-th crosscap.

The surface is divided by these arcs into 2n+2k−2 regions, 2n+k−3 of these
are triangular since each ∆i (1 ≤ i ≤ 2n − 2) and Σi (1 ≤ i ≤ k − 1) is bounded
by three arcs when the boundary of the surface is identified to a point. The two
triangles ∆2i−3 and ∆2i−2 on the left and right hand side of the i-th puncture are
defined by the arcs α2i−3, α2i−2, βi−1 and α2i−3, α2i−2, βi respectively. The triangle
Σi is defined by the arcs γi, βn+i−1, βn+i. Each ∆′

i (1 ≤ i ≤ k − 1) is bounded by
γi, and the two end regions ∆0 and ∆′

k are bounded by β1 and βn+k−1 respectively.
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Figure 1: The arcs αi, βi, γi, the 1-sided curves c1, c2, . . . , ck and the regions
∆i and Σi.

Given L ∈ Lk,n, let L be a taut representative of L with respect to the elements
of Ak,n. That is, L intersects each of the arcs and curves in Ak,n minimally.
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Figure 2: There is 1 left loop component in the first case and 2 right loop
components in the second case. There are 2 above and 3 below components
in each case.

Definition 1.1. Set Si = ∆2i−1 ∪ ∆2i for each i with 1 ≤ i ≤ n − 1. A path
component of L in Si is a component of L ∩ Si. There are four types of path
components in Si as depicted in Figure 2:
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• An above component has end points on βi and βi+1, passing across α2i−1,

• A below component has end points on βi and βi+1, passing across α2i,

• A left loop component has both end points on βi+1,

• A right loop component has both end points on βi.
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Figure 3: There is 1 right core loop and 1 straight core component in the
first case; 1 left loop and 1 left core loop component in the second case; 1
right non-core loop and 1 right core loop component in the third case and 1
1-sided and 1 2-sided non-primitive curves in the fourth case. There are 2
above and 2 below components in each case.

Definition 1.2. Set S′
i = ∆′

i ∪ Σi for each 1 ≤ i ≤ k − 1. A path component of
L in S′

i is a component of L ∩ S′
i. There are 7 types of path components in S

′

i as
depicted in Figure 3.

• An above component has end points on βn+i−1 and βn+i, and passes across
γi without intersecting ci,

• A below component has end points on βn+i−1 and βn+i, and doesn’t pass
across γi,

• A left loop component has both end points on βn+i,

• A right loop component has both end points on βn+i−1,

If a loop component intersects ci, it is called core loop component otherwise
it is called non-core loop component.

• A straight core component has end points on βn+i−1 and βn+i, and intersects
ci,
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• A non-primitive 1-sided curve,

If L contains a non-primitive 1-sided curve ci we depict it with a ring with
end points on the i-th crosscap as shown in the fourth case in Figure 3.

• A non-primitive 2-sided curve.

2 Triangle coordinates

Let L be a taut representative of L. Write αi, βi, γi and ci for the geometric
intersection number of L with the arc αi, βi, γi and the core curve ci respectively.
It will always be clear from the context whether we mean the arc or the geometric
intersection number assigned on the arc.

Definition 2.1. The triangle coordinate function τ : Lk,n → (Z3n+2k−4
≥0 ×Z

k)\{0}
is defined by

τ(L) = (α1, . . . , α2n−2;β1, . . . , βn+k−1; γ1, . . . , γk−1; c1, . . . , ck).

where ci = −1 if L contains the i-th core curve; ci = −2m if it contains m ∈ Z
+

disjoint copies 2-sided non-primitive curves around the i-th crosscap, and ci =
−2m−1 if it contains m disjoint copies of 2-sided non-primitive curves around the
i-th crosscap plus the i-th core curve.

Remark 2.2. Let bi =
βi−βi+1

2 for 1 ≤ i ≤ n+k−2. Then in each Si (1 ≤ i ≤ n−1)
and S′

i (n ≤ i ≤ n+ k − 2) there are |bi| loop components. Furthermore, if bi < 0
these loop components are left, and if bi > 0 they are right.

The proof of the next lemma is obvious from Figure 2.

Lemma 2.3. Let 1 ≤ i ≤ n − 1. The number of above and below components in
Si are given by aSi = α2i−1 − |bi| and bSi = α2i − |bi| respectively.

Let λi and λci denote the number of non-core and core loop components, ψi
the number of straight core components, and aS′

i
and bS′

i
the number of above and

below components in S′
i.

Lemma 2.4. Let L be a taut representative of L ∈ Lk,n, and set c+i = max(ci, 0).
Then for each 1 ≤ i ≤ k − 1 we have

λi = max(|bn+i−1| − c+i , 0), λci = min(|bn+i−1|, c
+
i ),

ψi = max(c+i − |bn+i−1|, 0).

5



Proof. Assume that L doesn’t contain any non-primitive curve in S′
i. Since ci gives

the sum of straight core and core loop components and |bn+i−1| gives the sum of
non-core loop and core loop components in S′

i (see Figure 3) we have

ci = ψi + λci and |bn+i−1| = λi + λci . (1)

If ci > |bn+i−1|, then clearly there exists a straight core component in S′
i, and

hence no non-core loop component in S′
i that is λi = 0. Therefore in this case,

λci = |bn+i−1| and hence ψi = ci − |bn+i−1| by Equation 1.
If ci < |bn+i−1|, there exists a non-core loop component in S′

i, and hence no
straight core components in S′

i that is ψi = 0. Therefore ci = λci and hence
λi = |bn+i−1| − ci by Equation 1. We get

λi = max(|bn+i−1| − ci, 0)

ψi = max(ci − |bn+i−1|, 0).

Also if |bn+i−1| < ci, λi = 0 and hence λci = |bn+i−1|, if |bn+i−1| > ci, ψi = 0
and hence λci = ci by Equation 1. Therefore we get, λci = min(|bn+i−1|, ci).

Finally, if L contains a non-primitive curve in S′
i, there can be no straight core

and core loop component in S′
i that is ψi = λci = 0, hence λi = |bn+i−1|. Since

ci < 0 by definition, setting c+i = max(ci, 0) we can write

λi = max(|bn+i−1| − c+i , 0), λci = min(|bn+i−1|, c
+
i ),

ψi = max(c+i − |bn+i−1|, 0).

Lemma 2.5. Let L be a taut representative of L ∈ Lk,n. For each 1 ≤ i ≤ k − 1
we have

aS′
i
=
γi
2

− |bn+i−1| − ψi

bS′
i
= max(βn+i−1, βn+i)− |bn+i−1| −

γi
2
.

Proof. To compute the number of above and below components in S′
i we observe

that each path component other than a below component in S′
i intersects γi twice,

that is γi = 2(aS′
i
+ |bn+i−1|+ ψi). Therefore we get,

aS′
i
=
γi
2

− |bn+i−1| − ψi.

6



To compute the number of below components, we note that the sum of all path
components in S′

i is given by β = max(βn+i−1, βn+i). Then bS′
i
is β minus the

number of above, straight core components and twice the number loop components
in S′

i (each loop component intersects β twice). We get

bS′
i
= max(βn+i−1, βn+i)− aS′

i
− 2|bn+i−1| − ψi

= max(βn+i−1, βn+i)− |bn+i−1| −
γi
2

Another way of expressing aS′
i
and bS′

i
is given in item P4. in Properties 2.12.

Remark 2.6. Observe that the loop components in ∆0 are always left and the
number of them is given by β1

2 . Similarly, the loop components in ∆′
k are always

right and the number of core and non-core loop components in ∆′
k are given by ck

and λk =
βn+k−1

2 − ck.

Lemma 2.7 and Lemma 2.8 are obvious from Figure 2 and Figure 3.

Lemma 2.7. There are equalities for each Si:

• When there are left loop components (bi < 0),

α2i + α2i−1 = βi+1

α2i + α2i−1 − βi = 2|bi|,

• When there are right loop components (bi > 0),

α2i + α2i−1 = βi

α2i + α2i−1 − βi+1 = 2|bi|,

• When there are no loop components (bi = 0),

α2i + α2i−1 = βi = βi+1.

Lemma 2.8. There are equalities for each S′
i:

• When there are left loop components (bn+i−1 < 0),

aS′
i
+ bS′

i
+ ψi + 2|bn+i−1| = βn+i

aS′
i
+ bS′

i
+ ψi = βn+i−1

7



• When there are right loop components (bn+i−1 > 0)

aS′
i
+ bS′

i
+ ψi + 2|bn+i−1| = βn+i−1.

aS′
i
+ bS′

i
+ ψi = βn+i

• When there are no loop components bn+i−1 = 0

aS′
i
+ bS′

i
+ ψi = βn+i = βn+i−1.

Example 2.9. Let τ(L) = (4, 2, 2, 6; 2, 6, 8, 4; 8; 1, 1) be the triangle coordinates
of an integral lamination L ∈ L2,3. We shall show how we draw L from its given
triangle coordinates. First, we compute the loop components in the two end regions
∆0 and ∆′

2 using Remark 2.6. Since β1 = 2 there is one loop component in ∆0.
Similarly, since β4 = 4 and c2 = 1, we get λ2 =

β4
2 − c2 = 1.

Next, we compute loop components in S1, S2 and S′
1. Since bi = βi−βi+1

2
for each 1 ≤ i ≤ 3 we have b1 = −2, b2 = −1. Hence there are two left loop
components in S1, and one left component in S2. Similarly since b3 = 2 there are
2 right loop components in S′

1, and by Lemma 2.4, λ1 = max(|b3| − c1, 0) = 1
(hence ψ1 = 0) and λc1 = min(|b3|, c1) = 1. Using Lemma 2.3 and Lemma 2.5 we
compute the number of above and below components. We get aS1

= α1−|b1| = 2,
bS1

= α2 − |b1| = 0, aS2
= α3 − |b2| = 1, bS2

= α4 − |b2| = 5, and

aS′
1
=
γ1
2

− |b3| − ψ1 = 2

bS′
1
= max(β3, β4)− |b3| −

γ1
2

= 2.

Connecting the path components in each ∆0, ∆
′
2, S1, S2 and S′

1 we draw the
integral lamination as shown in Figure 4.
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Figure 4: τ(L) = (4, 2, 2, 6; 2, 6, 8, 4; 8; 1, 1)
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Lemma 2.10. The triangle coordinate function τ : Lk,n → (Z3n+2k−4
≥0 × Z

k) \ {0}
is injective.

Proof. We can determine the number of loop, above and below components in each
Si by Remark 2.2 and Lemma 2.3; core and non-core loop, straight core, above
and below components in each S′

i by Lemma 2.4 and Lemma 2.5 as illustrated in
Example 2.9. The components in each Si and S

′
i are glued together in a unique

way up to isotopy, and hence L is constructed uniquely.

Remark 2.11. The triangle coordinate function τ : Lk,n → (Z3n+2k−4
≥0 ×Z

k) \ {0}
is not surjective: an integral lamination must satisfy the triangle inequality in each
Si and S

′
i, and some additional conditions such as the equalities in Lemma 2.7 and

Lemma 2.8.

Next, we give a list of properties an integral lamination L ∈ Lk,n satisfies in
terms of its triangle coordinates as in [9], and then construct a new coordinate
system from the triangle coordinates which describes integral laminations in a
unique way. In particular, we shall generalize the Dynnikov coordinate system
[1–3, 5, 9–11] for Nk,n.

Properties 2.12. Let L be a taut representative of L ∈ Lk,n.

P1. Every component of L intersects each βi an even number of times. Recall
from Remark 2.2 that the number of loop components is given by |bi| where

bi =
βi−βi+1

2 .

P2. Set xi = |α2i−α2i−1| and ti = |aS′
i
−bS′

i
|. Then xi and ti gives the difference

between the number of above and below components in Si and S
′
i respectively.

Setmi = min {α2i − |bi|, α2i−1 − |bi|}; 1 ≤ i ≤ n−1 and ni = min
{

aS′
i
, bS′

i

}

;

1 ≤ i ≤ k−1. See Figure 5. Note that xi is even since L intersects α2i∪α2i−1

an even number of times. Clearly, this may not hold for ti since when ψi is
odd the sum of above and below components (and hence their difference) is
odd. See Lemma 2.8.

P3. Set 2ai = α2i − α2i−1 (|ai| = xi/2). Then, by Lemma 2.7 we get

• If bi ≥ 0, then βi = α2i + α2i−1 and hence

α2i = ai +
βi
2

and α2i−1 = −ai +
βi
2
.

• If bi ≤ 0, then βi+1 = α2i + α2i−1 and hence

α2i = ai +
βi+1

2
and α2i−1 = −ai +

βi+1

2
.

9
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Figure 5: mi and ni denote the smaller of above and below components in
Si and S ′

i repectively

That is,

αi =

{

(−1)ia⌈i/2⌉ +
β⌈i/2⌉

2 if b⌈i/2⌉ ≥ 0,

(−1)ia⌈i/2⌉ +
β1+⌈i/2⌉

2 if b⌈i/2⌉ ≤ 0.

where ⌈i/2⌉ denotes the smallest integer that is not less than i/2.

P4. Since ti = aS′
i
− bS′

i
for 1 ≤ i ≤ k − 1, from Lemma 2.8 we get

• If bn+i−1 ≥ 0 then aS′
i
+ bS′

i
+ ψi + 2bn+i−1 = βn+i−1, and

aS′
i
=
ti − ψi + βn+i−1 − 2bn+i−1

2
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• If bn+i−1 ≤ 0 then aS′
i
+ bS′

i
+ ψi − 2bn+i−1 = βn+i, and

aS′
i
=
ti − ψi + βn+i + 2bn+i−1

2

And hence

aS′
i
=
ti − ψi +max(βn+i, βn+i−1)− 2|bn+i−1|

2

Similarly we compute

bS′
i
=

−ti − ψi +max(βn+i, βn+i−1)− 2|bn+i−1|

2

P5. It is easy to observe from Figure 5 that

βi = 2 [|ai|+max(bi, 0) +mi] for 1 ≤ i ≤ n− 1

βn+i = |ti|+ 2max(bn+i−1, 0) + ψi + 2ni for 1 ≤ i ≤ k − 1.

Therefore, since bi =
βi−βi+1

2 ; 1 ≤ i ≤ n + k − 2 we can compute β1 using
one of the two equations below:

β1 = 2



|ai|+max(bi, 0) +mi +
i−1
∑

j=1

bj



 for 1 ≤ i ≤ n− 1,

β1 = |ti|+ 2max(bn+i−1, 0) + ψi + 2ni + 2

n+i−2
∑

j=1

bj for 1 ≤ i ≤ k − 1.
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Figure 6: L∗ is a simple closed curve on the right but it is not on the left.
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P6. Some integral laminations contain R-components: an R-component of L
has geometric intersection numbers i(R,αj) = 1 for each 1 ≤ j ≤ 2n − 2,
i(R, βj) = 2 for each 1 ≤ j ≤ n+k−1 and i(R, γj) = 2 for each 1 ≤ j ≤ k−1,
which has its end points on the k-th crosscap (denoted red in Figure 6). Set
L∗ = L \ R. Note that L∗ is a component of L which isn’t necessarily a
simple closed curve (the two possible cases are depicted in Figure 6). Let
α∗
i , β

∗
i and γ∗i denote the number of intersections of L∗ with the arcs αi, βi

and γi respectively. Define a∗i , b
∗
i , t

∗
i and λ∗i , λ

∗
ci, a

∗
S′ , b∗S′ and ψ∗

i similarly as
above. We therefore have

β∗1 = 2



|a∗i |+max(b∗i , 0) +m∗
i +

i−1
∑

j=1

b∗j



 for 1 ≤ i ≤ n− 1,

β∗1 = |t∗i |+ 2max(b∗n+i−1, 0) + ψ∗
i + 2n∗i + 2

n+i−2
∑

j=1

b∗j for 1 ≤ i ≤ k − 1.

where m∗
i = min

{

α∗
2i − |b∗i |, α

∗
2i−1 − |b∗i |

}

; 1 ≤ i ≤ n−1 and n∗i = min
{

a∗S′
i
, b∗S′

i

}

;

1 ≤ i ≤ k−1. Furthermore, there is some m∗
i = 0, or some n∗i = 0 since oth-

erwise L∗ would have above and below components in each Si and S
′
i which

would yield curves parallel to ∂Nk,n, or L∗ would contain R-components
which is impossible by definition. Write a∗i = ai, b

∗
i = bi, t

∗
i = ti since delet-

ing R-components doesn’t change the a, b, t values. Set

Xi = 2



|ai|+max(bi, 0) +

i−1
∑

j=1

bj



 for 1 ≤ i ≤ n− 1,

Yi = |ti|+ 2max(bn+i−1, 0) + ψi + 2

n+i−2
∑

j=1

bj for 1 ≤ i ≤ k − 1.

Then one of the three following cases hold for L∗:

I. If m∗
i > 0 for all 1 ≤ i ≤ n − 1, then there is some j with 1 ≤ j ≤ k − 1

such that n∗j = 0. Therefore, β∗1 > Xi and β
∗
1 = Yj.

II. If n∗i > 0 for all 1 ≤ i ≤ k − 1, then there is some j with 1 ≤ j ≤ n − 1
such that m∗

j = 0. Therefore, β∗1 > Yi and β
∗
1 = Xj.

12



III. There is some i with 1 ≤ i ≤ n − 1 such that m∗
i = 0 and some j with

1 ≤ j ≤ k − 1 such that n∗j = 0. Therefore, β∗1 = Xi = Yj .

We therefore have

β∗i = max(X,Y )− 2
i−1
∑

j=1

bj

where

X = 2 max
1≤r≤n−1







|ar|+max(br, 0) +

r−1
∑

j=1

bj







and

Y = max
1≤s≤k−1







|ts|+ 2max(bn+s−1, 0) + ψs + 2
n+s−2
∑

j=1

bj







.

P7. If L doesn’t have an R-component, that is if L∗ = L then 2ck ≤ β∗n+k−1 =
βn+k−1 since βn+k−1 = 2ck + 2λk. If L has an R-component then 2ck >
β∗n+k−1 and λk = 0. See Figure 6. Hence the number of R-components of L
is given by

R = max(0, 2ck − β∗n+k−1)/2.

For example, the integral laminations in Figure 6 (from left to right) has
c1 = 2, β∗5 = 2, and hence R = 1; and c1 = 1, β∗5 = 0, and hence R = 1.
Then L is constructed by identifying the two end points of an R component
with the pieces of L∗ on the k-th crosscap. Since R-components intersect
each βi twice we get

βi = β∗i + 2R; 1 ≤ i ≤ n+ k − 1.

Then

βi = max(X,Y )− 2

i−1
∑

j=1

bj + 2R

Also, from item P3. we have
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αi =

{

(−1)ia⌈i/2⌉ +
β⌈i/2⌉

2 if b⌈i/2⌉ ≥ 0,

(−1)ia⌈i/2⌉ +
β1+⌈i/2⌉

2 if b⌈i/2⌉ ≤ 0,

Finally, it is easy to observe from Figure 3 that

γi = 2(aS′
i
+ |bn+i−1|+ ψi)

Making use of the properties above, we shall define the generalized Dynnikov
coordinate system which coordinatizes Lk,n bijectively and with the least number
of coordinates.

Definition 2.13. The generalized Dynnikov coordinate function

ρ : Lk,n → (Z2(n+k−2) × Z
k) \ {0}

is defined by

ρ(L) = (a; b; t; c) := (a1, . . . , an−1; b1, . . . , bn+k−2; t1, . . . , tk−1; c1, . . . , ck)

where

ai =
α2i − α2i−1

2
for 1 ≤ i ≤ n− 1,

bi =
βi − βi+1

2
for 1 ≤ i ≤ n+ k − 2,

ti = aS′
i
− bS′

i
for 1 ≤ i ≤ k − 1,

where aS′
i
and bS′

i
are as given in Lemma 2.5.

Theorem 2.14 gives the inverse of ρ : Lk,n → (Z2(n+k−2) × Z
k) \ {0}.

Theorem 2.14. Let (a; b; t; c) ∈ (Z2(n+k−2) × Z
k) \ {0}. Set

X = 2 max
1≤r≤n−1







|ar|+max(br, 0) +
r−1
∑

j=1

bj







Y = max
1≤s≤k−1







|ts|+ 2max(bn+s−1, 0) + ψs + 2

n+s−2
∑

j=1

bj







.
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Then (a; b; t; c) is the Dynnikov coordinate of exactly one element L ∈ Lk,n which
has

βi = max(X,Y )− 2

i−1
∑

j=1

bj + 2R, (2)

αi =

{

(−1)ia⌈i/2⌉ +
β⌈i/2⌉

2 if b⌈i/2⌉ ≥ 0,

(−1)ia⌈i/2⌉ +
β1+⌈i/2⌉

2 if b⌈i/2⌉ ≤ 0,
(3)

γi = 2(aS′
i
+ |bn+i−1|+ ψi) (4)

where aS′
i
is defined as in item P4. in Properties 2.12.

Proof. Given L ∈ Lk,n with τ(L) = (α, β, γ, c) and ρ(L) = (a, b, t, c), Properties
2.12 show that α, β and γ must be given by (2), (3) and (4) respectively, and
hence L is unique by Lemma 2.10. Therefore ρ is injective. By Properties 2.12
we can draw non-intersecting path components in each Si (1 ≤ i ≤ n − 1), S′

i

(1 ≤ i ≤ k − 1), ∆0 and ∆′
k which intersect each element of Ak,n the number

of times given by (α, β, γ, c). Gluing together these path components gives a
disjoint union of simple closed curves in Nk,n. There are no curves that bound a
puncture or parallel to the boundary by construction, and hence (α, β, γ, c) where
α, β and γ are defined by (2), (3) and (4) respectively, correspond to some L with
ρ(L) = (a, b, t, c). Therefore, ρ is surjective.

Example 2.15. Let ρ(L) = (a1; b1, b2; t1; c1, c2) = (−1; 2, 0; 1; 1, 0) be the gener-
alized Dynnikov coordinates of an integral lamination L on N2,2. We shall use
Theorem 2.14 to compute the triangle coordinates of L from which we determine
the number of path components in S1 and S′

1, and hence draw L as illustrated in
Example 2.9. By Lemma 2.4, ψ1 = max(c+1 − |b2|, 0) = 1 so we have

X = 2(|a1|+max(b1, 0)) = 6 and Y = |t1|+ 2max(b2, 0) + ψ1 + 2b1 = 6.

Therefore

β1 = max(6, 6) = 6, β2 = max(6, 6) − 2b1 = 2, β3 = max(6, 6) − 2(b1 + b2) = 2,

α1 = −a1 +
β1
2

= 4, α2 = a1 +
β1
2

= 2.

Since 0 = 2c2 < β∗3 = 2, there are no R-components by item P8. of Properties
2.12. Since β1 = 6 there are 3 loop components in ∆0, and since β3 = 2 and
c2 = 0, there is one non-core loop component in ∆′

2 that is λ2 = 1. By Remarks
2.2, b1 = 2 and b2 = 0, and hence there are 2 right loop components in S1 and no
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loop components in S′
1. By Lemma 2.3 we compute that aS1

= α1 − |b1| = 2 and
bS1

= α2 − |b1| = 0. Finally by item P4. of Properties 2.12,

aS′
1
=
t1 − ψ1 +max(β2, β3)− 2|b2|

2
= 1

bS′
1
=

−t1 − ψ1 +max(β2, β3)− 2|b2|

2
= 0

Gluing together the path components in S1 and S′
1 we construct the integral lam-

ination depicted in Figure 7.
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Figure 7: ρ(L) = (−1; 2, 0; 1; 1, 0)

Remark 2.16. Generalized Dynnikov coordinates for integral laminations can
be extended in a natural way to generalized Dynnikov coordinates of measured
foliations [5]: the transverse measure on the foliation [4, 7, 8] assigns to each
element in Ak,n a non-negative real number, and hence each measured foliation is
described by an element of (R3n+2k−4

≥0 × R
k) \ {0}, the associated measures of the

arcs and curves of Ak,n. Therefore, the Generalized Dynnikov coordinate system
for measured foliations is defined similarly (see Definition 2.13), and provides a
one-to-one correspondence between the set of measured foliations (up to isotopy
and Whitehead equivalence) on Nk,n and (R2(n+k−2) × R

k) \ {0}.
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