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Generation of the bathymetry of a eutrophic shallow lake

using WorldView-2 imagery

Onur Yuzugullu and Aysegul Aksoy
ABSTRACT
In this study, water depth distribution (bathymetric map) in a eutrophic shallow lake was determined

using a WorldView-2 multispectral satellite image. Lake Eymir in Ankara (Turkey) was the study site.

In order to generate the bathymetric map of the lake, image and data processing, and modelling

were applied. First, the bands that would be used in depth prediction models were determined

through statistical and multicollinearity analyses. Then, data screening was performed based on the

standard deviation of standardized residuals (SD_SR) of depth values determined through preliminary

linear regression models. This analysis indicated the sampling points utilized in depth modelling.

Finally, linear and non-linear regression models were developed to predict the depths in Lake Eymir

based on remotely sensed data. The non-linear regression model performed slightly better compared

to the linear one in predicting the depths in Lake Eymir. Coefficients of determination (R2) up to 0.90

were achieved. In general, the bathymetric map was in agreement with observations except at re-

suspension areas. Yet, regression models were successful in defining the shallow depths at shore, as

well as at the inlet and outlet of the lake. Moreover, deeper locations were successfully identified.
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INTRODUCTION
Water depth is important for several physical and biological

processes in a lake (Leira & Cantonati ). Together with

water volume, water depth impacts natural assimilation

capacity, pollution dilution factor, water temperature and

retention time. Light penetration and growth of algal species

(especially attached algae) may depend on the depth

of water. Furthermore, water depth influences mixing of

water layers, sedimentation of solids and re-suspension of

bottom sediments. Therefore, obtaining the spatial distri-

bution of water depths or bathymetric information may be

critical in assessing the impact of pollutants on lake water

quality.

Sonar/radar systems have been frequently used in deri-

vation of the bathymetric maps of lakes (Tureli & Norman

; Morgan et al. ). However, these systems may

require extensive fieldwork and financial means, especially

for large water bodies. In order to ease these difficulties,

remotely sensed images (hyperspectral, multispectral,
aerial and radar) can be used in obtaining bathymetric infor-

mation. In the literature, such applications have mainly

focussed on coastal waters and estuaries (Philpot ; Grei-

danus et al. ; Robbins ; Hennings ; Sandidge &

Holyer ; Roberts ; Calkoen et al. ; Lafon et al.

; Dierssen et al. ; Stumpf et al. ; Jordan & Fon-

stad ; Mobley et al. ; Lyzenga et al. ; McIntyre

et al. ; Bachmann et al. , ; Kao et al. ; Lee

; Marchisio et al. ). However, the use of multispec-

tral images in determination of the bathymetry of lakes is

not common. This is due to the fact that complex relation-

ships dominate between radiance and lake characteristics

in lakes compared to Case 1 waters, as well as coastal

waters and estuaries. Complexities arise from high chloro-

phyll-a concentrations, suspended solids, organic matters

and bottom reflection in most lakes. The existence of few

sensors on most multispectral satellites may result in insuffi-

ciency in distinguishing between the impacts of these factors
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on radiance values. However, the launch of new satellites,

such as WorldView-2, may provide new means and

additional sensors that may aid in depth determination in

lakes as well.

The WorldView-2 satellite was launched in the fourth

quarter of 2009. It has eight spectral bands covering the elec-

tromagnetic spectrum range of 400–1,040 nm (Table 1)

(Digital Globe ). With its 0.46 m panchromatic and

1.84 m multispectral resolution, studies which require high

spatial resolution can be conducted (Lee et al. ). The satel-

lite has a radiometric resolution of 11-bits and a temporal

resolution of 3.7 days at 20W or less. It allows images to be cap-

tured in an area of 65.6 km × 110 km at the nadir. Its coastal

blue band that senses the 400–450 nm of the spectrum is

characterized by its relatively shorter wavelength and higher

energy. It can penetrate to deeper parts of water bodies. It

has been reported that depths down to 30 m can be identified

by coastal blue and blue bands (Digital Globe ).

WorldView-2 imagery has been used in recent studies

for bathymetry determinations in coastal waters and estu-

aries (Glass et al. ; Marchisio et al. ; Lee et al.

; McCarthy et al. ; Parthish et al. ). Lee et al.

() reported that green and yellow bands were more effec-

tive in depth determination in the range of 2.5–20 m in

coastal waters. Marchisio et al. () showed the efficacy

of coastal blue and blue bands in revealing depths up to

7 m. To our knowledge, there is no study on bathymetry gen-

eration for shallow eutrophic lakes using the WorldView-2

imagery.

In this study, a WorldView-2 image was used to deter-

mine the bathymetry and, therefore, the spatial distribution

of water depths in eutrophic Lake Eymir in Ankara,

Turkey. The relationships between measured depths and

radiance values at different bands were investigated.
Table 1 | Spectral bands of WorldView-2 sensors

Band
Wavelength
range (nm) Band

Wavelength
range (nm)

Coastal Blue (Band 1) 400–450 Red (Band 5) 630–690

Blue (Band 2) 450–510 Red Edge
(Band 6)

705–745

Green (Band 3) 510–580 NIR-1 (Band 7) 770–895

Yellow (Band 4) 585–625 NIR-2 (Band 8) 860–1,040
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Linear and non-linear regression models were developed

to derive the spatial distribution of depths. The depths

obtained with these models were compared to the actual

bathymetric map of the lake.
MATERIALS AND METHODS

Study area

Lake Eymir is a shallow natural lake located at 39.28 N and

32.30 E. It is located 20 km south of Ankara (Figure 1) at an

altitude of 969 m (Beklioglu et al. ). The surface area of

the lake is around 1.25 km2. It has a shoreline of 11 km and

a catchment area of 971 km2. In 1990, the area surrounding

the lake and 245 km2 of its catchment area was declared as a

‘Special Environmental Protection Area’ by Decree of the

Cabinet of Ministers due to its ecological significance (Yuzu-

gullu ).

The average water depth in the lake changes depending

on the balance between inflows and outflow. Lake Eymir is

mainly fed by Lake Mogan in the south (98% of the total

inflow), the Kislakci Stream in the east and groundwater

sources. The excess water of the lake drains into Imrahor

Creek in the east (Yenilmez et al. ). The average water

depth is 4 m. Annual water level fluctuations in the lake

vary by 0.5–1.0 m, depending on the net inflow and evapor-

ation (Yagbasan & Yazicigil ). In April 2011, the

average depth in the lake reached 4.5 m (Yuzugullu ).

The lake has been suffering from the effects of eutrophi-

cation. It has been turbid and rich in algal species for a long

time. In studies performed in different time periods,

eutrophic conditions were reported (Diker ; Tan ;

Ozen ). It was shown that water balance, and therefore

the depth of water, had a significant impact on the water

quality of the lake (Beklioglu et al. ). Therefore, bathy-

metry and water depths provide substantial information in

the assessment of water quality changes in the lake.
METHODOLOGY

The methodology followed in the development of depth (or

bathymetry) models based on remotely sensed data is



Figure 1 | Locations of Lake Eymir and sampling points.

Figure 2 | Flowchart of the methodology.
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depicted in Figure 2. Following the acquisition of the image

on 28 July 2010, a field work was realized on 2 August 2010.

Depth measurements were conducted at 59 points (depicted

in Figure 1). In the time gap between the image and field

work dates, there was no precipitation or significant

change in temperature or other conditions which would

alter water depths. As a result, it was assumed that the

depths and water quality parameters were representative

of the conditions on the date the image was taken. Sampling

locations for ground truth data were selected arbitrarily to

cover the whole lake area. The geographical coordinates

of the points were determined using a Garmin GPS receiver

with ±1.5 m positional accuracy on average.

Image processing was conducted using ENVI 4.7. The

image had geographic projection and ED 50 Datum.

The lake area was cropped and isolated. Therefore, only

the lake area was taken as the region of interest. The dark

pixel subtraction method was used in order to eliminate

atmospheric effects in the ortho-rectified satellite image

(Chavez ). In order to obtain the radiance values, first,

image histograms were generated for the corresponding

spectral bands. Then, zero values in the histograms were

removed. Finally, the minimum and the maximum values

in the histograms were determined to aid in the conversion
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of digital numbers to radiance values using the method pro-

vided by Beisl et al. (). Histogram values were matched

to digital numbers in the range of 0–255. By generating

band-specific linear equations, digital numbers were con-

verted to radiance values.

In order to test the suitability of data in regression model

development and to improve the model prediction perform-

ance, a screening procedure was applied to select the

independent variables of depth models. The initial stage of

the procedure was to remove the sampling points at

locations with high turbidity. This was applied to minimize

the negative impact of re-suspended sediments in depth

determination. Since Lake Eymir is a shallow lake, local

re-suspension can occur due to various factors such as

groundwater inflow, wind effect, turbulence due to velocity

variations as a result of cross-sectional and flow direction

changes. As depicted in Figure 1, the shape of Lake Eymir

makes it prone to these impacts. On the sampling date, the

lake was mostly clear with an average total suspended

solids concentration of 1.92 mg/L and an average chloro-

phyll-a concentration of 3.49 μg/L, respectively (Yuzugullu

). However, at some locations turbidity was observed

due to re-suspension of bottom sediments. These locations

were identified on the image by locating the zones that exhi-

bit high radiance due to suspended solids. The sampling

points were placed over the image and the ones that were

over the re-suspension areas were removed from the data

set. As a result, 11 sampling points were removed from

further analysis. These points can be seen in Figure 1 (one

is hidden due to overlap).

The water depth (the dependent variable of the models)

and the radiances at eight spectral bands (the independent

variables of the models) were analysed for validity of nor-

mality. For this purpose, Q–Q plots were prepared

assuming normal, log-normal and exponential distributions.

These plots were used to determine the form (as is, logarith-

mic transformation, or exponential transformation) of the

independent variables that would be used in regression

model development. The distribution type of a variable

was selected based on the slope information in the corre-

sponding Q–Q plot. If the slope was close to 1, the

corresponding distribution type was selected for the given

variable. Following the determination of independent vari-

able distribution forms, multicollinearity analysis was
s://iwaponline.com/jh/article-pdf/16/1/50/387212/50.pdf
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performed in an iterative procedure to identify highly corre-

lated independent variables. At this stage, correlation matrix

was used to remove an independent variable that had the

highest correlation with another. Then, a new correlation

matrix was generated for the remaining variables. This

cycle was repeated until multicollinearity was eliminated

between independent variables. Correlation coefficient (r)

was used as the criterion for variable elimination. It was

assumed that multicollinearity existed between variables if

the absolute r value was greater than 0.6. The remaining

variables proceeding multicollinearity analysis were con-

sidered in regression model development in prediction of

the water depths or bathymetry of Lake Eymir.

Performances in bathymetry determinations using multi-

spectral images are variable for Case 1 and Case 2 waters. In

Case 1 waters (i.e., open ocean) chlorophyll is the main opti-

cally active constituent. These waters generally lack

suspended particles. On the other hand, there is a complex

relationship between reflectance and water quality par-

ameters in Case 2 waters (i.e., coastal, estuary or inland

waters such as lakes). This complexity is mainly due to the

co-presence of chlorophyll, suspended particles and

coloured dissolved organic matter in high concentrations

(Kishino et al. ; Sudheer et al. ). Since depth deter-

mination in Case 2 waters or turbid lakes using multispectral

images can be problematic, data elimination may be

required to improve the prediction capability of the bathy-

metry models. Stevens () showed that regression

model prediction performance can be improved by eliminat-

ing outlier data based on standardized residuals (SR) of a

regression model. In this approach, first a regression

model is developed using the data set. Then, outlier obser-

vation points are determined and a new model is

developed using the remaining observation points. In this

study, a similar approach was used to eliminate the outlier

observations. First, an initial regression model was devel-

oped. Then, the standard deviation of SR (SD_SR) was

calculated. At this stage, different multipliers (n) of SD_SR

were evaluated (n¼ 1.5, 1.4,…, 0.5). Then, observation

data with an SR greater than n × SD_SR were eliminated.

For each case (n × SD_SR), a linear regression model was

created. Then, these models were assessed based on basic

statistics (minimum, maximum, mean and standard devi-

ation) for the dependent variable (depth), and F-test
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for predictions. The model with a small F-value and basic

statistics similar to the original observation data (48

observation points) was chosen as the best model. For the

observation data for Lake Eymir, n¼ 0.7 resulted in

the best filter in establishment of the data set for model

development. However, this filter (0.7 × SD_SR) resulted in

elimination of 23 additional sampling points. As a result,

bathymetry model developments were realized using the

25 sampling points depicted in Figure 1, which corre-

sponded to a sampling density of 20 samples per square

kilometre of the lake. Thirty-two per cent of these points

(eight sampling points) were used in the model development

stage. The remaining 68% (17) were employed for model

validation. Allocation of the locations of the sampling

points for model development and model validation was

performed arbitrarily while care was taken to have as even

a spatial distribution as possible.

Following data screening, linear and non-linear

regression models were developed to predict the bathymetry

of the lake. The general forms of the linear and non-linear

regression models are given in Equations (1) and (2),

respectively:

di ¼ aþ
XJ

j¼1

kjxij (1)

di ¼
XJ

j¼1

kjx
mj
ij (2)

where, di is the water depth at location i, a is the intercept, kj
is the regression coefficient for band j, xij is the radiance at

location i at band j, and mj is the exponent for band j. The

a represents the offset for the depth of 0 m (Loomis )

for the linear regression model. This parameter is used to

handle the average error that would be produced by over-

and under-predictions at different depths as a result of the

impact of heterogeneous bottom cover (macrophytes, sand,

gravel, etc.) and variable water quality (suspended solids,

chlorophyll, etc.) on reflectance values (Loomis ) for

the linear model. In the above equations, a, kj and mj

values are set by XLStat software by minimizing the root

mean square error (RMSE) and maximizing the Pearson
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coefficient of determination (R2) values between observed

and predicted water depths at given locations.
RESULTS AND DISCUSSION

The Q–Q plots indicated that the radiance data in most of

the spectral bands had normal distributions, except in

Band 5 and Band 2. In these bands, log-normal distributions

prevailed. Based on this information, the log transform-

ations (base 10) of the data in Bands 5 and 2 were used in

multicollinearity and correlation analysis. The correlation

matrix indicated that Band 1 (coastal blue) was highly corre-

lated with Bands 2, 3 and 4 (r> 0.75). Moreover, at 95%

confidence level, r values for the relationships between

Band 1 and Band 6, and Band 1 and Band 7 were higher

than 0.6, which was the lower limit for multicollinearity

elimination. Multicollinearity analysis indicated that only

the data in Band 1, Band 8 and the logarithmic transform

of the data in Band 5 were independent from each other

and could be used as explanatory variables in regression

model development. Puetz et al. () and Maheswari

() showed the usefulness of inclusion of Bands 1 and 8

in depth determinations in coastal waters as well.

Band 1 senses the radiation in the 400–450 nm wave-

length interval. This band supports bathymetric studies by

sensing the deeper parts of a water body compared to

other sensors (Puetz et al. ). Band 5, on the other

hand, acquires radiance data in the range of 630–690 nm.

The light in this region of the electromagnetic spectrum

is mainly absorbed by chlorophyll-a (Thiemann & Kauf-

mann ). As mentioned before, analysis of the data in

this band revealed a log-normal distribution. This was in

line with the distribution of measured chlorophyll-a con-

centrations in Lake Eymir. The radiance in Band 8 (xi8)

was another explanatory variable that was used in bathy-

metry model development for Lake Eymir. In various

studies, the relationship between suspended particles and

radiance in near-infrared band has been shown (Doxaran

et al. ). In this study, the impact of suspended particles

in depth determination was considered through inclusion

of Band 8. An initial analysis of the distribution of sus-

pended particle concentrations in Lake Eymir indicated a
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normal distribution similar to that for the distribution of

radiance values in Band 8. It must also be noted that it is

possible to observe frequent algal blooms over the lake sur-

face in patches. Moreover, macrophytes may cover the

bottom, especially at shallower depths closer to shore.

Therefore, reflectance in Band 8 can be impacted by

these as well.

Preceding the determination of independent explana-

tory variables (that have no multicollinearity), data

screening was performed. As mentioned earlier, the

sampling points over re-suspension areas were removed

from the data set in order to avoid the interference these

areas would produce in depth predictions. Then, the

remaining 48 sampling points were taken into consider-

ation. The minimum, average and maximum water depths

at these points were 2.50, 4.57 and 5.75 m, respectively.

These values were 2.50, 4.56 and 5.75 m, respectively, for

the full observation data set (59 observation points).

Further data elimination was conducted based on SD_SR.

This approach was used to improve the prediction capa-

bility of depth models. Application of remote sensing

technology to Case 2 waters to make water quality predic-

tions may be problematic compared to Case 1 waters due

to the presence of water constituents that may significantly

impact radiance values (Swardika ). It is very probable

that local algal blooms, bottom sediments, suspended par-

ticles, and even waves can impact radiance values.

Another difficulty is the heterogeneous distribution of

these interferences which may lead to extreme values. By

regarding extreme values as outliers, the impact of such

interferences in model prediction performance may be

improved at least at other locations in the lake that are

less prone to such effects. As seen in Figure 1, removed

sampling points form clusters in certain locations. It is

possible that these locations were subject to the interfer-

ences mentioned. The minimum, average and maximum

depths for 25 observation points used in the model devel-

opment were 2.80, 4.70 and 5.70 m, respectively.

Therefore, it can be said that deeper locations were con-

sidered as ground truth data for modelling purposes. It

may be the case that deeper locations impacted less from

bottom sediment re-suspension or bottom reflection.

The linear and non-linear regression models generated

to determine the depths at different locations using remotely
s://iwaponline.com/jh/article-pdf/16/1/50/387212/50.pdf
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sensed data are given below in Equations (3) and (4),

respectively:

di ¼ �2:433þ 193:000xi1 � 1:313 log xi5 � 108:886xi8 (3)

di ¼ 1140:027x1:628i1 � 0:128 log x5:000i5 � 419:672x1:378i8 (4)

R2, adjusted R2, RMSE and F-value with respect to the

calibration data set were 0.87, 0.78, 0.370 and 6.78 × 10�4,

respectively, for the linear regression model at 95% confi-

dence level. For the same data set, R2, adjusted R2, RMSE

and F-value were 0.90, 0.83, 0.379 and 3.04 × 10�4, respect-

ively, when the non-linear regression model was used.

Performances of these models were also tested against the

validation data. R2, adjusted R2, RMSE and F-value were

0.805, 0.760, 0.488 and 1.07 × 10�6, respectively, when the

linear regression model was applied. The corresponding

values for the non-linear model were 0.855, 0.822, 0.365

and 1.11 × 10�7, respectively, at 95% confidence level. In

both models, the radiance values in Band 1 had the highest

coefficient (kj in Equations (1) and (2)) compared to other

bands, keeping in mind that the radiance in Band 5 (xi5)

was in logarithmic scale. This situation emphasized the

importance of Band 1 in bathymetry determination. A simi-

lar observation was valid in the correlation matrix as well.

Compared to other bands, depth had the highest r (0.351)

for Band 1 radiance at 95% confidence level when 48

sampling points were considered. The coefficients for

Bands 5 and 8 were negative which were indicative of the

interference due to absorption based on the presence of sus-

pended solids and algal species. It must also be noted that

another model based on the ratio method proposed by

Stumpf et al. () was tested. The ratio of ln(xi5)/ln(xi1)

was used. This ratio had the highest correlation with depth

(R2¼ 0.51) compared to other combinations. The model

obtained for this ratio, di¼ 15.652*(ln xi5/ln xi1)� 11.886,

resulted in no better performance. R2 and RMSE were

0.46 and 0.529 at 95% confidence level.

Measured versus predicted depths are depicted in

Figure 3. As can be seen, both models were successful in pre-

dicting low and high depths in Lake Eymir. However, the

statistical analysis given before stated that the non-linear

model was slightly better in depth predictions. For the



Figure 3 | Predicted versus measured depths for linear and non-linear depth models.
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validation data set, the average error was calculated as 0.30

and 0.2 m for the linear and non-linear regression models,

respectively. The average depth for the validation data set

(observations) was 4.73 m. The predicted average depths

were 4.65 and 4.71 m for the linear and non-linear regression

models, respectively. These correspond to 2 and 0.5% error in

the predicted average depths, respectively. Therefore, models

developed using screened ground truth data were successful

in predicting the average depth. When the models were

applied to predict the depths at 48 sampling points, the aver-

age error in depth predictions was 0.61 m in the linear
Figure 4 | The bathymetric map of Lake Eymir generated by the linear regression depth mode
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regression model and 0.55 m in the non-linear regression

model. The errors in the calculated average depths were 13

and 12%, respectively, for the linear and non-linear models.

The bathymetric maps of Eymir Lake that are generated

using Equations (3) and (4) are depicted in Figures 4 and 5,

respectively. Both models simulated the shallow depths at

shores with success. The increasing depths from the shore-

line can be clearly seen for both models. Tureli & Norman

() studied the bathymetry of the lake using sonar tech-

nology. According to that study, the lake bottom had a

bowl-type structure with steep slopes at shores. As a result,

sharp increases were observed in depths progressing away

from the shore to the inner regions of the lake. The mid-

region of the lake was the deepest location with an average

depth of 5.5 m in 1985. They also stated that the lake

became relatively shallow at the southern and eastern

parts, which correspond to the inlet and outlet of the lake,

respectively. The findings of Tureli & Norman () are

consistent with the results of this study. As Lake Eymir

has a valley-type structure, a sharp increase is expected in

depth in short distances away from the shore. This is cap-

tured by the depth models (Figures 4 and 5). Moreover,

the southern and eastern parts of the lake are shallower

than the other parts. The deeper regions of the lake are

shown by darker shades in Figures 4 and 5. In general, the
l.



Figure 5 | The bathymetric map of Lake Eymir generated by the non-linear regression depth model.
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distributions of relatively lower and higher depths were in

line with the observations. However, the depths at re-sus-

pension areas were in error. This could be seen especially

at the southern part of the lake closer to the inlet. At these

locations mixed values were observed. Overall, although

both models predicted the depths well, the non-linear

model was better in predicting the shallower depths at

shores. However, the non-linear model was more sensitive

to the impact of re-suspension areas.
CONCLUSIONS

The results of this study showed that WorldView-2 image

can be used to predict the depths in a eutrophic lake.

Bands 1, 5 and 8 of the WorldView-2 satellite were adequate

to determine the depth distribution. Among these bands,

Band 1 (coastal blue band) made the highest contribution

in determination of the depths in the eutrophic lake.

The presence of turbidity due to re-suspension areas

caused interference in predicting the depths. However, elim-

inating these areas in the depth model development helped

to make good depth estimates at locations where the impact

of turbidity was less. More study is required to deal with this

issue and improve the prediction capability of the models at
s://iwaponline.com/jh/article-pdf/16/1/50/387212/50.pdf
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these locations as well. For the existing situation, regression

models were successful in defining the shallow depths at

shore and close to the inlet and outlet of the lake. Moreover,

deeper locations were successfully identified.

Bathymetry determination using WorldView-2 can aid

in water quality studies. Use of remotely sensed data may

provide an alternative in determination of the distribution

of depths and examination of the water quality in lakes

with respect to these depths. Scale advantage supplied by

remote sensing over traditional bathymetry generation

methods may make it preferable for large lakes. However,

more research is needed to investigate the effects of spatially

and temporarily heterogeneous bottom characteristics (i.e.,

variable coverage by macrophytes, different bottom

materials) on reflectance values in determination of depths

in a eutrophic lake.
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