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ABSTRACT

BASICS OF MODEL THEORY

Tagdelen, iskender
M.Sc., Department of Philosophy

Supervisor: Prof. Dr. Teo Griinberg

August 2000, 75 pages

This thesis is based on mainly the first two chapters of Chang and
Keisler’s monumental work ‘ModelTheory.” As a preperation to this mate-
rial, a section on a general disscussion of formal languages and formal systems
is added. In this section several basic notions of formal languages and sys-
tems as well as some set theoretic notions such as, legitimate strings of a
language, deducibility of one string from another, axiomatic system, finite-
ness, countability and uncountability are defined with a few examples. The
main result of this section is that, the set of finite strings over a countable
afphabet is countable.

After this general introduction, the language and system of proposi-
tional logic is introduced. This is followed by the section on the model theory
for propositional logic. In this section, symbols and legitimate strings of the

language of propositional logic are interpreted by means of the definition of
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the model. Then, model theoretic properties, some relations between model
theoretic and proof theoretic properties of propositional logic and relations
between models of the language of propositional logic are established.

In section 2.4, a more sophisticated formal language and formal system,
the language anci system of quantificational logic, is introduced, syntactic
properties of terms and formulas of quantificational logic and proof theoretic
properties of quantificational logic are given. In the last section of chapter
2, the basic model theory for quantificational logic is given.

Chapter 3 is devoted to the completeness theorem for quantificational
logic: if T is a set of sentences of the language of quantificational logic, if T
is consistent then T has a model. The proof does not only show the existence

of a model of T. but also shows the way of constructing a model of 7.

Keywords: Logic, formal language, formal system, theory, model. model

theory, completeness theorem
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0z
MODEL TEORISININ TEMELLERI

Tagdelen, Iskender

Yiksek Lisans, Felsefe Bolimii

Tez Yoneticisi: Prof. Dr. Teo Griinberg

Agustos 2000, 75 sayfa

Bu tez baglica olarak Chang ve Keisler’in anitsal eseri ‘Model The-
ory’ nin ilk iki bolimi tizerine temellenmistir. Bu malzemeye hazirlik
olarak. formel diller ve formel sistemler ile ilgili genel bir tartigma kismu
eklenmigtir. Bu kisinda, bir dildeki diizgiin diziler, bir dizinin bir bagka
diziden ¢ikarilabilirligi, aksiyomatik sistem gibi formel dillere ve sistemlere
ait temel nosyonlarin yanisira sonluluk, sayilabilirlik ve sayilamazlik gibi set
teorisine dair baz1 nosyonlar da birkag 6rnekle birlikte tanimlanmigtir.

Bu genel giristen sonra, oOnermeler mantifimin dili ve sistemi
ta,mtllmaktadlr. Daha sonra gelen kisim onermeler mantig1 igin model
teorisi lizerinedir. Bu kisimda, 6nermeler mantiginin dilinin sembolleri ve
diizgiin dizileri model tanimu araciligiyla yorumlanmigtir. Daha sonra, model

teorisine dair ozellikler ile 6nermeler mantiginin model teorisiyle ve ispat

teorisiyle ilgili ozellikleri arasindaki baz iligkiler ve 6nermeler mantiginin
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dilinin modelleri arasindaki iligkiler kurulmustur.

Kisim 2.4’te daha karmagik bir formel dil ve formel sistem olan niceleme
mantiginin dili ve sistemi tanitilmis, terimlerin sentaktik 6zellikleri, niceleme
mantiginin formiilleri ve niceleme mantiginin ispat teorisiyle ilgili 6zellikleri
verilmigtir. 2. ;b61ﬁmi'1n son kisminda niceleme mantig: igin temel model
teorisi verilmistir.

Bolim 3, niceleme mantig: i¢in olan eksiksizlik teoremine ayrilmmsgtir:
Eger T niceleme mantiginin dilinin bir ciimleler kiimesi ise, o zaman eger 7'
tutarh ise, 7’nin bir modeli vardir. Bu ispat yalnizca T’nin bir modelinin
varoldugunu gostermez, ayni zamanda 7T’nin bir modelini kurma yolunu da

gosterir.

Anahtar Kelimeler: Mantik, formel dil, formel sistem, theory, model, model

teorisi, eksiksizlik teoremi
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CHAPTER 1

INTRODUCTION

There are several ways to study mathematical structures in a general
setting. Universal Algebra studies algebraic structures independently of the
domain of a given algebraic structure. Thus, the basic notion of Universal
Algebra is that of ‘algebras’ and not specific algebras. Algebras then become
examples and means of justification for the general claims of Universal Alge-
bra. In Ca‘cegory Theory. a type of mathematical structures and morphisms
among the members of the given type constitutes the object of the study.

Model Theory, the first results of which constitutes the subject of this
study, is another way of studying mathematical structures in general. First,
a ‘language’ which is defined end structures in which symbols of the given
language gets a meaning is called a model of the language. Model Theory is
the study of the relationships between a language and its models.

The aim of this work is to give the most basic results of this rapidly
growing field of mathematics s much as accessible to everyone with little
knowledge in logic and set theory. With this thesis I aimed at making a
modest contribution to its being a subject of a graduate logic course in a

department of philosophy of a Turkish University. To this end, this work
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requires much to be added. I tried to take a few steps for my part as much as
a thesis format allows its being a contribution in that direction. To achieve
this aim to add ‘an appendix on set theory and logic is a,mong.my plans.
Moreover, the number of examples is not sufficient to provide a concrete
basis for the the‘ory and to provide a justification of the claim that model
theory is really a strong tool of doing and understanding mathematics.

First two chapters of the Chang and Keisler’s monumental work ‘Model
Theory’ is the basis of the results and many of the proofs of this thesis. When
a result or proof is taken from another author. this is indicated by the name
of the author in parentheses, The same material is used for a serious course
on Model Theory at the graduate level. I followed their plan to introduce
the ideas with minor changes and my work must be seen as an attempt to
contribute to a reading of Chang and Keisler. I tried to complete parts of
proofs that has been left to the reader. or give proofs for the propositions
stated without proofs. Moreover, exercises in the book are such that results
in many of them with proof can safely be integrated into the main text of the
b;)ok without disturbing the unity. Moreover, some of the important notions
of Model Theory is defined in the exercises. I tried to make use of this fact
several times.

I would like to choose a different manner of presentation of some notions

in the part on the Propositional Logic. Chang and Keisler deviates from the



tradition in that they intermixed proof theoretic and semantic notions. For
example, the sign ‘I’ is used for tautologies and tautologyhood is introduced
as a syntactic notion while ‘+’ is commonly used for theoremhood. However,
I have choosen to follow their presentation and notation and just to warn
the reader about ;chis point. To give a list of syntactic and semantic notions
is, then necessary. Theoremhood, consistency and deducibility are syntac-
tic notions while validity, satisfiability and being a consequence of a set of
sentences are semantic notions.

[ hope that the section on the formal languages will be useful. Before
introducing the formal languages and formal systems of propositional logic
and quantificational logic, a general discussion of formal languages and for-
mal systems gives us the chance to see the motivation behind the way of
construction of specific formal languages and systems. Main result of this
section is that, the set of finite strings over a countable alphabet is countable.
This result is extremely useful since the languages we will actually encounter
will be languages with countable alphabets and we will mainly deal with
ﬁl;ite expressions of these languages. Moreover, knowledge of the fact that
the set of expressions under consideration is countable proves to be used in
proofs and model theoretic constructions.

Moreover, I have given formal definitions of free and bound variables

and substitution in the first chapter. This was necessary since the notion



of satisfaction in a model is one of the main concepts in model theory and
understanding and usage of this concept requires a sound knowledge of these

notions.



CHAPTER 2

BASICS

2.1 Formal Languages and Formal Systems

Definition 2.1.1. A formal language is a structure F consisting of a set
A of symbols which is called the alphabet of F and a list of prescriptions F
determining whether a sequence of symbols from A is an acceptable sequence

or not such thqt:

o Elements of A are not symbols of anything, all that matters is that they

are just distinct members of A.

o Our list of prescriptions on sequences of elements of A must determine

the set of acceptable sequences independently of any interpretation.

Hereafter we denote arbitrary formal languages by £, L/, L" .... When
the alphabet of the language in question is A, A* denotes the set of all finite

strings of symbols of A.

Definition 2.1.2. The length of a string { € A is the number of symbols,

counting repetitions, occurring in (.



Definition 2.1.3. The string of length zero is denoted by o and is called the

empty string.

This definition will not be used in this work and we will use only
nonempty stringg of symbols of the languages that we will actually work
with. However, we include it since it is an important feature of formal lan-
guages that they may allow empty string. .

The size or cardinality of the alphabet is essential to the study of the
formal language. Here is a list of definitions concerning the cardinality of a

set:

Definition 2.1.4. A set is said to be finite iff it can be put into one to

one correspondance with a natural number.

Definition 2.1.5. A set is said to be countable if f it is not finite and there
is a surjective map of the set N of natural number onto it. A set is said to

be uncountable if f it is not countable and not finite.

Definition 2.1.6. A set is said to be at most countable iff it is either

finite or countable.

Example 2.1.1. Let £ be such that A; = {0.1} and every finite sequence
of 1’s and 0’s is an acceptable sequence. It is easy to say that L is a formal

language once you have some working knowledge of finiteness.



Note that neither 0 nor 1 as members of A; has its usual meaning,
they are just distinct symbols of A. If you have any doubt, please reread the

definition of the alphabet of a formal system.

Example 2.1.2._ Let £ be such that; A = {A.B,...X,Y,Z,a,b,...2,y.z}
and our rule is such that; any finite sequence of symbols from A which is a
meaningful word in English is a legitimate expression.

Clearly £ is not a formal language since this time we are forced to
interprete symbols of the alphabet (as letters of the English alphabet) in

order to decide whether an expression is a legitimate one or not.

Definition 2.1.7. A formal system is a structure consisting of a formal
language L together with a set of rules on the set of legitimate expressions of
L which determines whether a legitimate expresion of L immediately follows

from another one without regard to any interpretation.

Remark 2.1.1. We may restate the definition as follows: Since we defined
the rules of formal systems as relations, in fact as binary relations, such a
rule must give a yes or no answer to the question: Is “(X,Y) € R?” where
X and Y are legitimate expressions of £ and R is a transformation rule of £

stated as a relation.

Remark 2.1.2. Note that a formal system is an extension of a formal lan-

guage; we take a formal language and we define a set of relations on the

LC YOKSEKGGRETIM KyRy
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set A* to obtain a formal language. Expansion of a formal language in this
way is not unique. In fact, if cardinality of A* is 5, the number of possible
formal systems definable on L with one rule is 27%7. However, with a for-
mal language of suitably large cardinality, this number gets very large if we
introduce more than one rule of transformation. Complexity increases with
the possibility of defining rules of transformation with more than one argu-
ments. Such a rule of transformation takes, for example, a couple (X,Y") of

legitimate L-expressions and sends them to another one (or, to one of them).

Example 2.1.3. Let our language L be the language of example 2.1.1 and

let our rules of transformation be:

(i). X is an immediate consequence of Y iff X can be obtained from Y by

adding a finite number of 1's to the end of Y.

(i1). Z is the immediate consequence of X and Y i f f Z is obtained by adding

all symbols of Y to the end X.

Thus, by (i)., X is an immediate consequence of X; we obtain X by adding a
finite number, 0, of 1’s to X. By (ii). 011101001 is the immediate consequence

of 01 and 1101001, of 0111 and 01001 ...

Formal systems enable us to work with a formal language without any
reference to the meanings of the symbols of that formal language. The above

definition of immediate consequence is the first step in that direction. Using



the notion of immediate consequence and going further we obtain another

important notion;

Definition 2.1.8. We say that a string X is deducible from another string
Y in a formal system F, in symbols Xt-3Y if f there is a finite sequence of
strings of & Xo, Xi,..., X, such that Xo = X, X,, =Y and each string X;

where 0 < ¢ < n is an immediate consequence of a string preceeding it.

For simplicity we assumed in this definition that all rules of transforma-
tions of the formal system under consideration are binary relations that is, a
rule that takes one string and yields another string from that one. However,
the reader is invited to enlarge the definition to the general case; take an
n-ary transformation rule i.e., a rule that takes n strings and yield another.

A special type of formal systems is an aziomatic system. An ax-
iomatic system is a formal system with a set of initial legitimate expressions
of its formal language. Elements of this set of initial strings are called the
azioms of the formal system. In the case of axiomatic systems we modify
definition 2.1.8 as; X is deducible from Y iff there is a finite sequence of
legitimate expressions Xp, X1,..., X, such that X = X. X,, =Y and each
string X; where 0 < ¢ < n is either an axiom, or an immediate consequence
of a string preceeding it.

We said that the cardinality of the alphabet of a formal language plays

an essential role in the study of formal languages and formal systems. We



give and prove a result to be used in this direction.

Definition 2.1.9. We will call two strings in a formal language equivalent
if they have the same length and their corresponding elements are the same

symbols from the alphabet.

Lemma 2.1.1. If A is an at most countable alphabet, then the set A* of

strings over A is countable.

Proof. Without proof we will use the following result; a set S is at most
countable ¢ f f there is an injective map « : S — N. To prove the lemma it
suffices to show that A4* is at most countable since it is easy to see that it
is not finite. Using the mentioned result, if we can define an injective map
o : A* —» N the proof is complete.

Let us denote the nth prime number by p, If A is finite we may write
A = {ag,a1,0a3,...,a,}. If it is countable, A = {ag,ay,as,...} In any case

the map a : A* — N defined by

. a(O) = 17 a(aio .. 'air) = P0i°+1 “L prir-l'l.

This map « is injective and A* is at most countable. To see that o is injective,
choose a string (aj, .. .a;,) different from (a;,...a;, ) and see that they take
different values under a. For a string to be different from (a;, . .. a;,) we have

the following possibilities

10



- (). (aj, ...a;,) have the same length as (a;, ... a; ). In that case agaip we

have two possibilities:

e It has the same symbols as (a;, ... a;,) but the order of symbols is

different.

o It has at least one symbol different from(a;, . . . a;, ).

(ii). (aj, . ..a;,) and (aj ...a; ) have different lengths. Then the length of

(@i, - . .a;, ) is either greater or less than the length of (aj, ... q;,).

Using these cases, the reader may easily verify that o yields different
values for different strings thus showing that « is an injection. O

Thus, if we have an at most countable language, the set of expressions,
moreover, the set of legitimate expressions is countable. The importance
of this result lies in the fact that, we may list elements of a countable set
and then base very useful constructions on that counting since counting is
firstly an ordering and ordering enables us ‘to choose the next.” The reader
is i’nvited to a quick reading of the statement and proof of lemma 2.3.4 if he

desires an example at this moment.

11



2.2 A System of Propositional Logic

After examples of section 2.1, we are now ready to present a special
formal system; system of propositional logic P. The alphabet A(P) of the

language of P, consists of:

(). A set {po,p1,-..};

(ii). A unary sentential connective —;
(iii). A binary sentential connective A;
(iv). Symbols of grouping (. ).

Symbols of (i). are called propositional variables; — is called the nega-
tion; A is called and; (, ) are called the left parenthesis and the right paren-

thesis respectively.

Definition 2.2.1. Legitimate expressions of P constitute the smallest set

Prop(P) such that:
(i). Propositional variables are in Prop(P);
(ii). If » €Prop(P) then —¢ € Prop(P);

(iii). If ¢ €Prop(P) and ¥ €Prop(P) then (¢ A 9) € Prop(P).

12
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Remark 2.2.1. To guarantee that Prop(P) is the smallest such set, we may,
instead of saying that it is such a set, add the following clause to the definition

of Prop(P):
(iv). A string is in Prop(P) if f it can be generated by one of (i).-(iii).

We call the elements of Prop(P) P-sentences or simply sentences.
We may construct the set Prop(P) by recursion on the length of strings

belonging to A*(P) as follows
(). A string of length 1 is in Prop(P) iff it is a propositional variable;

(ii). A string a of length > 1 is in Prop(P) iff there is a member < in
Prop(P) such that a = -5 or there are members ¢ and 9 in Prop(P)

such that a = (¢ A )

Just another way of constructing Prop(P) as a set just as we want is

this; we say that a set S is inductive on the language of P, L(P), iff
(i). Every propositional variable of L(P) is in S;

(i1). The string —a € S whenever a € S;

(iii). The string (e A B) € S whenever both a € S and 8 € S.

Thus, we see that

Prop(P) = m{S : S is inductive on L(P)}

13



Particularly important is the inductive definition of Prop(P) based
on 2.2.1. Many important properties of P-sentences can be proved to hold
for every P-sentence based on the definition 2.2.1 of Prop(P). Let P be a

property. To prove that every P sentence has the property P, we show that
(i). Every propositional variable has the property P;

(ii). If o has the property P, then —a has the property P;

(iii). If a and B both have the property P, so does (a A 3).

We call this method of proof as proof by induction on the complexity of
formulas.

We depend on the structure of P also for defining a function f of the
sentences of P as follows: First we define f for every propositional variable,
second, we define f(—¢) as a function of f(p), and third. we define f(x A9)
as a function of f(¢) and f(¥#). Then, it is guaranteed that, the function f is
defined for all sentences of P. This method of definition is called definition
by recursion on the complezity of sentences. After a few examples we will be

ready to give the idea of recursive definition in a general setting.

Example 2.2.1. The number of parentheses p(¢) of a sentence is:
(i). 0 if ¢ is a propositional variable;

(ii). p(9) if i = —;

14



(ii)). p(¥) +p(s) +2if p = (I A<).

Thus we may calculate the number of parentheses of a sentence once we

calculate this for its subformulas.

Example 2.2.2." The rank of a sentence r(y) is defined as follows
(1). r(¢) = 0if ¢ is a propositional variable;

(ii). r(¢) = r(9) if ¢ = ~Y;

(i1). r(p) = maz{r(9),r()} +1if o = (FA).

Informally, the rank of a sentence is the number of pairs of parentheses

to be erased to reach at the level of propositional variables.To illustrate this,

take the sentence

((=po A (o A p1)) A (=pe A —1po)) (2.1)
Erasing the outermost parentheses we obtain
(=po A (o A p1)) (2.2)
and
(—pe A —1po) (2.3)

15



Now, to find rank of 2.2, by erasing its outermost parentheses we further

divide it into

-po (2.4)

and

(po A 1) (2.3)

Rank of 2.1 is, by 2.2.2-(iii)., the maximum of ranks of 2.2 and 2.3 plus

1. To calculate this value, we find the rank of 2.3 which is the maximum of

the ranks of 2.4 and 2.5 plus 1. Thus, r(((=po A (po A p1)) A (mpe A —po))) is
maz{maz{0,maz{0,0} + 1} + 1,maz{0,0} + 1} +1 =3

We will employ three more symbols as abbreviations for composite func-

tions of = and A. These are called the disjunction, the conditional and

the biconditional respectively.

2.2.1.
(pVYI) =4 —(=pA-d) (2.6)
(o =9) =¢ (-pV9I) (2.7)
(ped) = (¢—=2I)AWD — ) (2.8)

Here we shall also adopt common rules of dropping parentheses. Thus

we’ll drop the outermost parentheses. Since we keep our definition of sen-

16



tence unchanged and regard abbreviated sentences not sentences in the offi-
cial sense but just their informal counterparts, the definition of rank is not
affected. Moreover, we will accept that, — binds more strongly than A and
V, these two binding more strongly than — and <. For example, instead
of (¢ AF) — (—u,o A ¢)) we will write o A9 — - A ¢ and instead of

(¢ = (e V1)) & (@ AD)) we will write (p = V)< pAD.

2.3 Model Theory for Propositional Logic

Formal systems are extensions of formal languages; we impose a set
of transformation rules on the set of legitimate expressions of the language.
Proof theory is the study of formal systems with particular attention to their
properties related to their transformation rules.

Another way of working with formal languages arises from a naive ques-
tion: what are these symbols for? When we answer that question we are said
to interpret the formal language. A formal language plus an interpretation
of-it is called a structure (for the formal definition of this notion see 2.4).
Model theory is the study of structures with particular attention to the in-
terpretation inherent in the structure.

Symbols of the language of propositional logic which are to be inter-

preted are propositional variables. Other symbols do not need any inter-

17



pretation other than they usually have (this is why they are called logical
constants). The reader is assumed to know the standard interpretation. Let
L(P) denote the language of propositional logic. An interpretation of L(P)
consists of assigning meanings to members of propositional variables. As
their name indica.‘tes, they are thought to stand for propositions — sentences
which are either true or false. Since we are only interested in their truth
functional properties, we do not have to know what particular proposition a
propositional variable stands for. In that sense, a propositional variable that
is interpreted as a true proposition, stands for every true proposition. Thus,
instead of assigning a particular true proposition to a propositional variable,
we simply assign the truth value “true” to that variable. The same remarks
hold for “false”. Thus we may as well do with only two propositions; one

true and one false.

Definition 2.3.1. An assignment is a function from the set of proposi-
tonal variables to the set {t,f}. We will denote assignments by
<a>,<ay>,<a;>.... The value p.,5» of a sentence ¢ under an

assignment < a > is defined inductively as follows;

(1)- Pica> =< a>(pi);

18



-(ii).

t if P<a> = f
—|So<a.> =
f if Q0<a> = t
(iii).
t i pea> = Vo> =1
(‘P AD)cas> =

f otherwise

Using this definition, it is easy to see that every sentence has a unique
value under an assignment. Note that, although an assignment is defined as
a total function from the set of propositional variables, we do not take care
of the value of every propositional variable under that assignment in order
to find the value of a given sentence. Just considering values of propositional
variables occuring in that sentence suffices. We define the truth table of a
sentence ¢ as the listing of possible assignments to its propositional variables
together with the values that ¢ takes under these assignments. We may

immediately give the following definition.

Definition 2.3.2. A sentence ¢ is a tautology, in symbols & ¢, if it takes
the value t under any assignment or, (in the view of the preceding remark)

equivalently, under any assignment to its propositional variables.

We will now define immediate consequence, deducibility and related

notions for the formal system of propositional logic. We pointed out in sec-

19



tion 2.1 that, using these definitions we may work within a formal system
without any reference to meanings of symbols and expressions of the under-
lying formal language. For the system of propositional logic P we give only

one rule of transformation:
¥ is the immediate consequence of ¢ and (¢ — )

We call this rule of transformation of P as Modus Ponens. As we pointed
out earlier, we may also define it as a ternary (3-ary) relation that is, as a

set;
MP ={< z,y,2 >: z, y, z are sentences, z = ¢, y = (¢ = 9), z = J}

Definition 2.3.3. Let £ be a set of sentences. We say that ¢ is deducible
from X, in symbols ¥ F ¢, 1ff there is a finite sequence of sentences
00y P1y-- -, Pn Such that @, = @ and each p;, where i < n, is such that,
p; is either a tautology or an element of ¥ or there are sentences ¢; @i
where 7,k < 1 from which p; follows by the rule of Modus Ponens. We call
such a sequence as the deduction of ¢ from . ¢ is deducible from 9, in
symbols, 9 F ¢ if {9} F . Particularly important are sentences ¢ such that
{}F ¢. If ¢ is such a sentence, we will call it as a theorem of P and write
Fop. Note that b does not refer to any transformation rule while o does.
Thus, being a tautology is guaranteed against rules of transformation as long

as we accept the standard definition of being true under an assignment.
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Definition 2.3.4. Let ¥ be a set of sentences. We say that ¥ is inconsis-
tent if for every sentence o, ¥ I . ¥ is consistent if it is not inconsistent

i.e., if there is at least one sentence U such that it is not the case that ¥ + 9.

Definition 2.3.5. A set of sentences ¥ is said to be mazimally consistent
if ¥ is the only consistent set containing Y. That is, if ¥ C T then I' is

inconsistent.
We are now ready to introduce model theoretic properties of £L(P).

Definition 2.3.6. By a model of L(P) we understand a subset of the set of

propositional variables of L(P).

Remark 2.3.1. Another standart way of interpretation of £L(P) is to define
a function from the set of propositional variables to the set {¢, f}. There is no

essential difference between these two, since given one way of interpretation,

we may easily define the other. Let our model be A. We may define the .

corresponding interpretation function f by

t if peAd
F(p) =

f otherwise.

Remark 2.3.2. The number of models of £L(P) is 21V (£(P)I by the defi-
nition 2.3.6. where Var(L(P)) denotes the set of propositional variables of

L(P))-
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Above description of model theory can be restated as follows: model
theory studies the relation between formal languages on the one hand and
their interpretation, structures on the other. Since the interpretation of the
language of propositional logic £(P) is quite standard, instead of giving a
structure as an in;cerpreta,tion of it, we will be just contented with choosing a
subset of the set of propositional variables as models of £L(P). The following

definition gives us the relation between £(P) and its models;

Definition 2.3.7. Let A be a model of L(P), and let ¢ be a L(P)-sentence,

we define the relation o is true in A or A is @ model of ¢, in symbols
AlEe
by the following inductive definition;

2.3.1. " ' .

i |

| {

1
74

W
Al

N W

(i). If o is a propositional variable p;, A =@ if f p; € 4;
(ii). If o = =9, A |= @ ¢f f it is not the case that A & ¥;

(fii). Ho=(0Ac), Agiff AE9and A Ec.

Here is a basic list of model theoretical properties of sentences related

to definition 2.3.7:

Definition 2.3.8. A sentence ¢ is called valid, in symbols =, iff Ao

for every model A of P.

22



Definition 2.3.9. A sentence ¢ is called satisfiable if f it has at least one

model.

Definition 2.3.10. A set of sentences X is satisfiable if f there is a model

A such that A |= ¢ for every p € X.

Definition 2.3.11. A sentence ¢ is called a consequence of another sen-

tence 9. in symbols 9 |= ¢, if f every model of ¥ is a model of .

Definition 2.3.12. A sentence ¢ is a consequence of a set of formulas ¥

iff every model of ¥ is also a model of .

Definition 2.3.13. Two sentences ¢ and ¥ are said to be semantically

equivalent i f f they have ezactly the same models.
Definition 2.3.14. X =9 iff A = ¢ for every model A of X.
Definition 2.83.15. AE X iff A= ¢ for every p € X.

We will now state a result which is used to establish many others as the
reader will see immediately. We will not give a proof of this proof theoretical

result. For the proof, the reader may refer to Hunter.

Theorem 2.3.2 (Deduction Theorem). If ¥ U {¢} F 9. then

YF(gc—9)
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Proposition 2.3.3.
(). If X is consistent and I' = {¢ : ¥ F ¢}, then I’ is consistent.
(ii). If ¥ is maximal consistent and ¥ F ¢ then ¢ € X.

(iii). ¥ is inconsistent s ff X F (¢ A —¢p) for any sentence .

Proof. (i). Assume that I is inconsistent. Then for every sentence d, I' I ¥ in

particular I' - ¢ and I’ - —¢ for some sentence ¢. Then there are deductions;

(1) Yoy P11y PP,
(2) 9067 ‘Pll""aﬂo;n_'(tpa
in .

Now. each ¢; and ¢ is an element of I'. Thus, by definition of T,
each p; and each ¢} is deducible from X. That is. there are deductions;
(3) PiogPirs - -+ s PipPiy
(4) PioPisr+- 25, P
for every ¢; and . Substituting these deductions in deductions of ¢ and
-y, we obtain deductions of ¢ and — this time in ¥. Note that, since the
sentence ¢ is chosen arbitrarily, the same result holds for every sentence.
Thus, £ F (¢ A=) for any sentence . By this result and (iii)., we conclude
that ¥ is inconsistent which is a contradiction.

(). Assume that ¢ ¢ X, then ¥ U {¢} is inconsistent. Thus, every

sentence is deducible from ¥. In particular; ¥ U {>} F ¢ and LU {¢}
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=ip. Then, by Deduction Theorem, ¥ F (¢ — ¢) and £ F (¢ — —¢p). Thus,
I ((p = ) Alp = 7p)) and, since (((¢ = @) A (¢ = —¢)) = —p) is a
tautology, by Modus Ponens, we have; ¥ F ¢ leading to a contradiction.
(iif) It is obvious that if ¥ is inconsistent, then ¥ F o A = since
every sentence is ‘deducible from an inconsistent set ¥.. We prove the other
direction; Let X be such that, ¥ F (¢ A =) for some arbitrary sentence .
Then, since ({(¢ A ) — 9) is a tautology, ¥ I 9 for any sentence ¥ making

Y, inconsistent. O

Lemma 2.3.4 (Lindenbaum’s Theorem). Every consistent set of sen-

tences Y. is a subset of a mazximally consistent set [ of sentences.

proof. Using the fact that the set of L(P))-sentences is countable, let us ar-
range all the £L(P))-sentences in a list, ©o, ©1,...,%a,. ... We shall construct

a chain of consistent sets of sentences as follows;

(). Zo=3

. T, U{pn} if X.U{pn} is consistent
(il) Z:n+1, =
Xn if X, U{pn} is inconsistent.

(iii). Yo = Ugcq X where o is a limit ordinal.

Note that;

Y=%CY CE C

N
N
M
R

N
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Let I' = | Xo. We will first show that I is consistent. Assume that it is
not. Then, by proposition 2.3.3 there is a deduction of the sentence (p; A —p;)
from I'. That is, there is a finite sequence v, ¥, . . . , ¥, where ¥, = (p;A—p;).
Let ©i,,%i,,.-.,%i,, be the list of sentences from I' that are used in this
deduction. We ;nay choose ¥, such that o;,,%;,...,¢¥;, € X4 Then,
Yo b (pi A =p;) making X, inconsistent but each ¥ in I were consistent.

It remains to show that I' is maximally consistent. Suppose that there
is a consistent set of sentences A such that A contains I': T' C A. Let
Yo € A. Since A is consistent and ¥, CT' C A, ¥, U {p.} is consistent
hence ¥,41 is consistent. Since ¢, € ¥ C T, ¢, € I'. Thus A C T showing

that I' is the only consistent set of sentences containing I'. O

Lemma 2.3.5. Let ' be a mazimally consistent set of sentences of P. Then:

(i). For each sentence ¢, exactly one of » or - is an element of I':

(ii). For each pair of sentences ¢ and V. (p AJ) € ' iff both ¢ € T and

Jel.

Proof. (i). It is clear that both can not be elements of I'. Thus, assume that
¢ ¢ T and - ¢ I'. Then both ' U {¢} and I' U {—¢} are inconsistent by

maximality of I'. Then, I' F ~¢ and ' I p». Since, if I' U {¢} is inconsistent,

TU{p}F pand TU{p}t ¢



Then, since (¢ — @) is a tautology,

I'F(p—¢)

and, by Deduction Theorem,

I'F (e —y)

Thus,

I'E(p = @) A(p— o)

Since, ((¢ = ©) A (¢ = =) = —p) is a tautology,

'k —p

Similarly, one can obtain;

'y

from the assumption that I' U {—¢} is inconsistent.

Thus, I' F (¢ A =) making I' inconsistent. But, since I' is maximally

consistent, a fortiori it is consistent. Thus, the assumption that ¢ ¢ I' and

¢ ¢ T leads to a contradiction.

(). (pAD9)ETiff TH (pAD)iff TFpand TFdiff pel and

Y erl.

Proposition 2.3.6 (Completeness Theorem). A sentence is a tautology

if and only if it is valid. In symbols - ¢ if and only if = »
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proof. Let ¢ be a sentence. For every model A an assignment for ¢ can
be found such that p;.,» = ¢ if and only if p; € A: call the assignment

corresponding to A as a. Then it is easily proved by induction that,
(1) AE ¢ ifand only if ¢, =1

Thus, if ¢ is valid, then it is true under any assignment since every assignment
can be obtained from a model and ¢ is true in all models. Similarly, if ¢ is
true under every assignment, then it must be valid since for every model, we
have a corresponding assignment for ¢ under which ¢ is true and by (1), ¢
is true in every model. |

The reader must note the importance of the proof of the following
theorem for further reference; the idea used in the proof of the if part is

applied in the proof of the completeness theorem for Quantificational Logic.

Theorem 2.3.7 (Extended Completeness Theorem). ¥ is consistent

if f ¥ is satisfiable.

proof. Assuming that ¥ is satisfiable, we will show that it is consistent. Since
% is satisfiable, it has a model. Let A = ¥ and let ¢, be deducible from
Y. Then there is a sequence @g, @1, ...,¥, which is a deduction of ¢, from
Y. We will prove by induction on the place m of sentences occuring in the

deduction that each m < n holds in A.
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(). If ¢m is a tautology, by completeness theorem it will trivially hold in

4;
(ii). If ¢om € X it will hold in A by definition 2.3.15;

(it1). If n, is inferred from two previous elements of the sequence ¢; and
(p; = @m) such that A |= ¢; and A |= (¢; - ©m) then it is easy to

see that A = .

We have shown that ¢,, holds in A for every m < n in particular for n. Thus
every ¢ deducible from ¥ holds in every model of ¥. Since (¢ A —¢) does not
hold in A, (¢ A =) is not deducible from 4. Since we have found a sentence
not deducible from ¥, ¥ is consistent.

We will now prove the other direction. Assume that ¥ is consistent.
By Lindenbaum Theorem, there is a maximally consistent set ' such that
Y. CT. Our strategy is to construct a model for I'. Since ¥ C I' this model
will also be a model of ¥ and this shows that ¥ is satisfiable.

Let A= {p:p € I'}. We want to show that A = ¢ for all ¢ in I'. The

result follows by induction. Let ¢ € T':

(i). If ¢ is a propositional variable, the result follows by the definition of

A.

(ii). Let ¢ = = and let =9 € I'. By 2.3.5-1, 9 ¢ I'. By induction hypothesis,

it is not the case that A = 9. Thus A .



(iii). Let ¢ = (9 A) and let (9 Ac) € . By Lemma 2.3.5i, ¥ € T and
¢ € . By induction hypothesis, A = ¥ and 4 = ¢. By definition of

satisfaction, A |= (9 A¢).
Thus A =T and, since X CT, A = L. O

Definition 2.3.16. A set of sentences ¥ is finitely satisfiable iff every

finite subset of ¥ is satisfiable.

The following theorem proves to be very useful in model theory, it gives

us a very simple means to see whether a set of sentences has a model or not.

Corollary 2.3.1 (Compactness Theorem). A set of sentences ¥ is sat-

isfiable 1 f f it is finitely satisfiable.

Proof. Assume that ¥ is finitely satisfiable but it is not satisfiable. Then, by
the Extended Completeness Theorem, it is inconsistent. By proposition 2.3.3
Y F (pi A =p;). Thus, since a deduction is defined as a finite sequence, there
is a finite X9 C ¥ such that ¥o F (p; A -p;). Thus X; is not satisfiable.

However, then ¥ is not finitely satisfiable contrary to our assumption. O

Remark 2.3.3. We note that another formulation of corollary 2.3.1 is use-
ful: a set of sentences ¥ is satisfiable i f f every finite subset of X is satisfiable.
Thus, in order to prove that T is satisfiable, (or, in the light of the Extended
Completeness Theorem, to prove that ¥ is consistent), it suffices to show that

an arbitrary finite subset of ¥ is satisfiable (or consistent).
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Corollary 2.3.2.

(). Slgiff DFg.
(ii). If & k= ¢, there is a finite subset Yo C X such that ¥ |= ¢.

Proof. (i) Assume that ¥ = ¢ and it is not the case that X I ¢ then,
¥ U {~¢} is not satisfiable. Then, by the Extended Completeness Theo-
tem, ¥ U {~¢} is inconsistent. Thus, ZU {-¢} F ¢ and LU {-¢} F —¢.
Then, by Deduction Theorem. £ F (=g — ¢) and X F (-¢ — —¢). Since
(=g = @) A (= = =) = ) is a tautology, we may infer that X F ¢
contrary to our assumption.

That if ¥ ¢ then ¥ |= > can be proved by the induction on the place
of ; in the proof of ¢ from T as in the proof of the Extended Completeness
Theorem.

(ii). Assume that & |= p. Then ¥ U {-¢} is not satisfiable. Then,
¥ U {~¢} is inconsistent. Then £ U {-p} F ¢ and X U {=p} I —p. Thus
Y+ (- — @) and T F (= = —¢). By the same reasoning, we have & F .
Sg) there is a finite subset Xo of X such that X i ¢. Thus, by (i)., we obtain

the result that a finite subset T of ¥ is a model of ¢. O
Definition 2.3.17. A set I' of sentences is called a theory.

Definition 2.3.18. A theory is closed if every consequence of I' is an ele-

ment of I i.e., {¢ : [ |= ¢} CT. Note that T C {¢ : T |= ¢} trivially holds.
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‘The set of consequences of I, T' = {¢ : T |= ¢} is called the closure of T.

Thus we may say that T is closed if f I =T.

Definition 2.3.19. A set of sentences A is called a set of azioms for a

theory T if f they have ezactly the same set of consequences. That is,
A={p:Ak¢}={p:Te}=T
by the aziom of extensionality this holds if and only f A= iff I' = .

Definition 2.3.20. A theory is said to be finitely axiomatizable iff it

has a finite set of azioms.

In mathematics we encounter both finitely axiomatizable and non-finitely
axiomatizable theories and there is no reason to regard non-finitely axioma-
tizable theories as defective. As examples form group theory , the theory of
groups, abelian groups and abelian groups with every element of order < n
are finitely axiomatizable while the theory of divisible groups and torsion-
free groups are not (see, Barwise). Now we state a result concerning a basic

riodel theoretic relation between a theory and a set of axioms for that theory.

Proposition 2.3.8. A is a set of azioms for U iff A and I have eractly

the same models.

Proof. We will first show that, if A is a set of axioms for ' then A =X iff

A ET for every model A. Assume that A is a model of A but not a model



of I'. Then there is a sentence ¢ € I' such that A }& ¢. So A = ~p. Since
¢ €I, T |= ¢ but then A |= ¢. However A = ¢ since A is a model of A.
This is a contradiction with the fact that A = —. Similarly the assumption
that A’ is a model of ' but not a model of A leads to a contradiction.

Now assume that A and T have exactly the same models. We will show
that they have the same set of consequences. Assume that there is a sentence
@ such that A = ¢ but not ' = . Then there is a model A of I' such that
it is not the case that A |= ¢. Then A |= —p. Since A is also a model of A,
A [= ¢ leading to a contradiction. Similarly if I' = ¢ then A k= . Thus, A

is a set of axioms for I'. d

A group of results in model theory are related to syntactic properties of
sentences. Looking at syntactic properties of sentences in a theory, we may

say something about its models.

Definition 2.3.21. A sentence ¢ is called a conditional sentence if it is

of the form o1 A ... A @, such that, for each ¢; one of the following holds:
(1) wi = ps;
(i1). i =, Vopj, V...V =y

(iif). @i =-pjy V=ps V... Vp;, Vi

Definition 2.3.22. A theory ¥ is said to be preserved under finite in-

tersections if f Al X and B = X implies ANB = X. ¥ is said to be
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preserved under arbitrary intersections if f for every nonempty set of

models {A; : A; =X}, e Ai E X

In view of the following lemma, we will drop the property ‘finite’ or

‘arbitrary’ and just say that ¥ is preserved under intersections.

Lemma 2.3.9. X is preserved under finite intersections iff ¥ is preserved

under arbitrary intersections.

Proposition 2.3.10.

(i). A theory I is preserved under intersections ¢ff it has a set of condi-

tional axioms.

(ii). A sentence ¢ is preserved under intersections ¢f f ¢ is equivalent to a

conditional sentence.

proof. We will prove only the fact that every conditional sentence is preserved
under intersections which is the basis of the proof of the (i). For the remaining
part of the proof, the reader may refer to Chang and Keisler. We will establish

this fact by induction.

(). ¢ = pj. Let {A; : i € I'} be such that, each A; = p;. Then p; € A; for

each i € I. Thus p; € ({4;: 7€ I}. Thus, [{Ai: i€ I} E ¢;

(ii). ¢ = =p;; Vpj, V...V ap;,. And let {4; : i € I} be a set of models

of ¢. Then for each A; we may say that, at least one of p;,’s is not
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in A;. Thus, clearly, (J{A;:7 € I} can not have all the p; s since

({A::: €1} C A, for every ¢ € I. Thus, ([{4::1 € [} E ¢;

(ii}). ¢ = —pj; Vp;, V...V —p;, V pr and let A; be a set of models of ¢.
Then, each A; is such that, either it lacks one of p;,’s or it has p;. If
all A;’s have p, [1{Ai:7 € I} also has it and ({A4;:1 € I} = . If at
least one A; does not have p;, then that A; does not have at least one
of pj,’s. Thus, by the same reasoning as in (a), ({4 : ¢ € I} does not

have all p;,’s, and ({4 : 1 € I} = o.

In order to complete the induction we will show that, if ¢ and v are
preserved under intersection, then so is (¢ A ¥). Assume that {4;:1 € I} is
a set of models for (p A ¥). Then {A4; : i € I} is a set of models for - and
for ¥. By our assumption, ({4;:¢ € I} |E p and ({4::1 € I} = 9. Thus,

N{Ai:ie I} (pAD) =

Definition 2.3.28. A theory ! is said to be completeif f for every sentence
@, ezactly one of T |= ¢ or I | —¢ holds. Complete theories have striking

model theoretic properties as the following proposition shows:

Definition 2.3.24. Two models A and B are equivalent if and only if

exactly the same sentences hold in A and B.

Proposition 2.3.11. Let X be a set of sentences. The following statements

are equivalent:
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* (i). The set of consequences of ¥ is maximally consistent.
(ii). X is a complete theory.
(iii). ¥ has exactly one model up to equivalence.

(iv). There is a model A such that forall p, L =@ iff A | .

Proof. (i).=>(ii). Assume that £ = {¢ : ¥ |= ¢} is maximally consistent.
Then, for every sentence ¢, exactly one of ¢, = belongs to £. That means,
for every sentence ¢, exactly one of ¢, - is a consequence of ¥. Thus ¥ is
complete.

(ii).=(iii). Assume that ¥ is complete and A and B are both models
of ¥. Without loss of generality, assume that p; € A but p; ¢ B. Since X is
complete, exactly one of £ |= p; and X |= —p; holds. If ¥ | p;, since 4 E £,
A k= p;. Thus p; € B contrary to our assumption. If ¥ | —p;, then A = —p;.
Thus p; ¢ A. This also leads to a contradiction. Similarly one can show that,
p; € B and p; ¢ A is not possible. Thus, any two models of ¥ are equivalent.

The existence of at least one model of ¥ trivially follows but the reader
must not omit to see it. Since ¥ is complete, it is consistent; otherwise any
sentence would be deducible and thus be a consequence of X.

(iii).=(iv). Assume that the model of ¥ is A. We will show that ¥ = ¢

iff A= ¢. f ¥ = ¢ then since A is a model of £, A |= ¢ obviously. Let
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A = . Then since A is the only model of X, ¢ holds in every model of ¥
trivially but this means that ¥ = ¢.

(iv).=>(i). Let there be a model A such that, ¥ ¢ if and only if
AEyandletE={p:Z ¢} Thusp € Ziff S =g iff A= . We
will show that & ‘is maximally consistent. Since p € L iff A =, A is also
a model of £. Then ¥ is satisfiable and consistent (another way to see it is
that, since T is consistent and T is the set of consequences of ¥, ¥ must also
be consistent). Let ¥ C A where A is a consistent set of sentences. Assume
that ¢ € A but ¢ ¢ E. Then it is not the case that A = . Then 4 = —.
This shows that —~¢ € £. Thus = € A (since £ C A). Then A must be

inconsistent. O

2.4 Languages and Theories

Propositional logic is suprisingly powerful for several applications and
it reveals many interesting model theoretic properties. It is not, however,
strong enough to express many mathematical ideas. In this chapter we will
introduce a new language, describe its models and state interrelations among

these models.

Definition 2.4.1 (First order language). A first order language consists

of two sets of symbols;
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*(i). Logical symbols of a first order language consists of;

(2) a set of variables {vo,v1,...,Vn,...};
(b) truth functional connectives — and A;
(c) parentheses (, );

(d) equality symbol =

(e) quantifier V.
ii). Non-logical symbols of a first order language consists of;
g

(a) Vn > 1, a (possibly empty) set of n-ary relation symbols

{Po,Pl,...,Pn,...}I

(b) Vn>1, a (possibly empty) set of n-ary function symbols

{Fo,Fl,...,Fn,...};

(¢) A (possibly empty) set of individual constant symbols

{co, €15+ -1Cny-- .}

Hereafter, we will reserve symbols £, L', L, . .. for first order languages,
and not for arbitary formal languages. Since we accept that, logical symbols
are common to all first order languages and their interpretation is quite
standard, we will not list them among the symbols of a first order language.

However, the reader must keep in mind that, they are always in the picture
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-though not in the front view. Thus, we will define a first order language as;
L= {P(),Pl,....Pn,...,Fo,Fl,...,Fm,...,CO,Cl,...,Cs,...}

Since almost all structures studied in mathematics have finite set of functions

and relations, we usually describe a first order language as;
L= {Po,Pl....,Pn,Fo,Fl,...,Fm,CO,Cl,...,cs,...}

Let £ be a first order language, we sometimes want to keep working
with all symbols of £ and add some new symbols. When £’ is obtained
from L by the addition of new symbols, we say that £’ is an expansion of
L, in symbols, £ C L'. or L is a reduction of £'. When £’ is obtained
by the addition of new constant symbols to £, we say that £’ is a simple
expansion of £. This phenomenon is not rare in mathematics. Sometimes
we need to add a new constant symbol to a language in order to describe a
structure better. For example. a description of a group requires an explicit
mention of the identity element of the group. Moreover, in some other cases,
afldition is made to obtain an extended mathematical structure for example,
if we add a constant symbol which is to be interpreted as the identity to
the language of ring theory, we may obtain a language to study rings with
identity. ‘

We will now give our rules of formation to obtain a formal system

for a first order theory. Here. as we shall see in other syntactic and model
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theoretic considerations, complexity arises with respect to formal system of
propositional logic. First of all we will need two syntactic categories while in

propositional logic there were only one; sentences.

Definition 2.4.2 (term). Inductively £-terms are defined as follows;

(1). Variables and constant symbols are L-terms;

(it). If ¢1,¢5....,t, are terms and F;" is an n-ary function symbol, then

F;™{(t).t3,...,t,) is an L — term.

(iii). A sequence of £-symbols is a term i f f that it is a term can be verified

on the basis of finite number of applications of (i). and (ii).

Remark 2.4.1. A set theoretic definition for £-terms can be given as follows;

The set of L-terms is the smallest set X such that;

(i). Every variable and constant symbol is in X

(ii). If t1,%2...,¢, are all in X, and F,’ is an n-ary function symbol, then

© F™(t1,t2...,t,) is also in X.

Definition 2.4.3 (formula). L-formulas are defined inductively as fol-

lows;

(i). If t; and ¢, are L-terms, ¢; = t3 is an L-formula:
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<(ii). If P is an n-ary relation symbol and t;,%,,...,¢, are L-terms, then

P(t1.1,...,t,) is an L-formula;
(iii). If ¢ is an L-formula, then so is —;
(iv). If ¢ and ¥ are L-formulas, then so is (¢ A 9);
(v). If ¢ is an L-formula and v; is a variable, then Vv;p is an L-formula;

(vi). An L-expression is an L-formula i f f that it is a formula can be shown

by a finite number of applications of (i).-(v).

We call formulas obtained by (i). and (ii). atomic formulas. As an

abbreviation in addition to the those of section 2.2, we have;
(Jvp) = "Vup

3 is called the ‘existential quantifier’.

An anologous set theoretic definition can be given for £L-formulas. How-
ever, any property meaningfully assertible of £L-terms or L-formulas can be
shown to hold for every L-term or L-formula on the basis of an induction
principle based on the inductive definition of L-terms and L-formulas. Let
P be such a property of L-terms or £L-formulas and let us symbolize ' P holds
for t” and "P holds for ¢’ as p(t) and P(y) respectively. Then. P holds for

every L-term if it can be shown that:
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- (i). P(t) where ¢ is a variable or ¢ is a constant symbol;
(if). P(Fi*(t1,t2,...,t,)) wherever P(t1), P(t2), ..., P(t,).
Similarly, P holds for every L-formula if it can be shown that;
(i). P(yp) for ev:ery atomic L-formula;
(ii). P(—p) whenever P(yp);
(iii). P((p A 9)) whenever P(p) and P(d);
(iv). P(Vvsp) whenever P(¢p).

Example 2.4.1. We will show that every £-formula have the same number
of left parentheses as right parentheses. Let us write P(,2) if ¢ has the same

number of left as right parentheses. Then,
(). For o =t; =, and ¢ = P(t1,13,...,t,) is an L that P(y) is clear;
(ii). If ¢ = —=(¥) we have P(p) since = adds no extra parentheses;

(iit). If ¢ = (¥ A <) and if ¢ and & are such that ¢ has the same number n
of left and right parentheses and 9 has m left and right parentheses ¥
then the reader may easily see that, with A the number of left paren-
theses adds up to m+n+1 which holds also for the number of right

parentheses;
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(iv). If ¢ = Yu;(p) by the same reasoning as in (iii). we have P(yp).

As in the case of propositional logic, we will first give the formal sys-
tem of quantificational logic and state and prove some of its proof theoretical
properties and then we will define its models, give truth definition of a legit-
imate expression of the language £ in a model, relations between £ models
and so on. First, we need some syntactic notions. Recall that a formula is

defined as a special string or say a sequence of symbols from the alphabet of

L.

Definition 2.4.4 (J. Malitz).

(i). Let S = s, $1,-..,5, be a sequence of symbols from the alphabet of £
and 0 <7 < 7 < n then the ¢,j — subsequence of S is s;,Sit1....,5;.
A sequence S’ is a subsequence of S iff S’ is an 7, 7 — subsequence of

S for some 0 <1 <5< n.

(i1). If S is a formula then a formula ¢ is an i, j-subformula of S iff
¢ is an 1,j — subsequence of S. ¢ is a subformula of S iff  is an

i,7 — subformula of S for some 0 <:<j < n.

(iii). The symbol s occurs at 7 in S iff s is the i —th term of the sequence

S.

(iv). The variable v is bound at k in ¢ ¢f f v occurs at & in ¢ and for some
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1 <k <j,thei,j— subformula of ¢ is of the form Vvd or dvd. v is

bound in ¢ if f v occurs bound at & in ¢ for some k.

(v). The variable v occurs free at k in ¢ ¢ff v occurs at &k in ¢ but it
does not occur bound at k in . v is free in ¢ iff v occurs free at k

in ¢ for some k.
(vi). A formula ¢ is a sentence ¢ ff no variable occurs free in .
Definition 2.4.5 (J. Malitz).
(1). The variable v is free at k for the term ¢ in the formula ¢ ¢f f

(a) v occurs free at k in ¢

(b) If u is a variable of ¢ then, if ¥ is the result of replacing v at the

k-th place by u, u must be free at k& in 9.

(ii). The variable v is free for the term ¢ in ¢ i f f whenever v occurs free

at k in ¢, v is free for ¢ at k in ¢.

From now on we will use the notation t(vy,...,v,) to show that the set
of variables of ¢ form a subset of {v,...,v,} and ¢(vg....,v,) to show that
the set of free variables of ¢ form a subset of {vg,....v,}. A formula with

no free variables is called a sentence.

Remark 2.4.2. We may give the definition of free variable by means of an

inductive definition. Let Var(t) and Var(yp) denote the set of variables of
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the term ¢ and the formula ¢ respectively. Similarly, Free(y) denotes the

set of free variables of the formula . Then:

(i). Free(t; =t2) = Var(t;) U Var(t2);

(ii). Free(P(ti,t2,...,tn) =Free(t;) U Free(t) U...U Free(t,):
(iii). Free(—¢) = Free(y);
(iv). Free((¢ A9)) = Free(p) U Free(d);

(v). Free(Vvyp) = Free(p) — {v}.

Definition 2.4.6. Let s and t be terms and v be a variable of s. We define
Substitution of the term t for the variable v in s. in symbols st/v],

is defined inductively as follows:

u ifuzv
(i). ult/v] =

t fu=vw

(ii). c[t/v] =¢

s

(if)). Fi"(ty,ta,. .., ta)[t/v] = F(ta]t/ ) ta]t /0], - .., taft/2])

Definition 2.4.7. Let ¢ be a formula. t a term and v a variable. Then,

substitution of the term t for the variable v in ¢ is defined as follows;

(i). P(ty,ta,... ta)[t/v] = P(&[t/0], ot /0], .. Ealt/v])



(i), (t1 = t)[t/v] = (ta[t/v] = ta]t/v])
(ii). ~elt/v] = ~{lt/v]}
(iv). (¢ AD)[t/v] = (p[t/v] AI[t/0])

‘ Vuy if v is not free for ¢ in Vuy
(v). Vuglt/o] =
Vu{pl[t/v]} ifvis free for ¢ in Vuy

As an axiomatic system L consists of the following in addition to the

language of quantificational language described above:
(i). Axioms;

(a) Sentential axioms; Let ¢ be a tautology of propositional logic
and let ¥ be a formula of quantificational logic obtained from
¢ by uniform and simultaneous substitution of £ formulas for
propositional variables of . Then ¥ is an axiom. To give an
example; —=(p A —p) is a tautology. Substituting P(z) for p we

obtain an £ formula =(P(z) A =P(z)).
(b) Quantificational Axioms;

i. Let ¢ and v be formulas and v be a variable which is not free
in ¢. Then.

Yo(p — 9) = (¢ — Yvd)

is an axiom.
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ii. Let ¢ be a formula and let ¢ be a term free for a variable v in
. If the formula 9 is obtained from ¢ by freely substituting
t for v in ¢ then,

Vo(p — J)
Is an axiom.

(c) Identity Axioms; Let = and y be variables, ¢(vo, v1,...,v,) a term

and ¢(vg, v1,...,V,) a formula. Then the following are axioms;

=y
T=Y —>t(V0-e e e s Vicl, Ty Uity v 5 Un) = E(V0se oy Vin1, Yy Citly e+« 3 Un)
T=Y = (P(V05-cnsVinly Ty Vigds-vsUn) —> @(Vgsn v Vic1y Ty Vig1s e+, Un))

(ii). Transformation Rules;
(a) Rule of Modus Ponens;

v is the immediate consequence of ¢ and (¢ — ).

(b) Rule of generalization;

from ¢ we may infer V.

Since we have given our axioms and transformation rules, we are ready
to give proof theoretic definitions for £. The notions of consistency, incon-

sistency and maximal consistency are the same as in the chapter 2.
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Definition 2.4.8. A formula ¢ of L is said to be deducible from a set of
L-formulas X, in symbols £ & @, iff there is a finite sequence of L-formulas

00, P1, -+ -y Pn Such that ¢, = ¢ and for each ¢; one of the following holds;

(i). ¢; is an axiom;

(ii). ¢; is an element of 3;

(iii). There is an element ¢; j < i of the sequence such that ¢; follows from

@; by the rule of generalization:

(iv). There are ¢; and ¢, where j.k < ¢ such that ¢; follows from «; and

@k by the rule of Modus Ponens.

Definition 2.4.9. o -9 iff {o} F V.

Definition 2.4.10. ¢ is a theorem of quantificational logic, in symbols - ¢,

ff{}re.

Definition 2.4.11. The length of a proof is the number of elements of

the- sequence forming the proof.

Note that being a theorem of quantificational logic depends on the set
of axioms and the set of rules of transformation chosen. -That is, it depends
upon the given formal system of quantificational logic. Similar note applies

to other proof theoretical notions such as consistency, inconsistency which are



defined exactly as in the case of propositional logic. Since we accept a fixed
system of quantificational logic, we omit the subscript of I sign. However, it

is necessary when several systems are under consideration.

Proposition 2.4.1.
(i). X is consistent ¢f f every finite subset of X is consistent.
(ii). ¥ U {¢} is inconsistent iff ¥ I ~¢ where ¢ is a sentence.
(iii). Let X be maximally consistent and ¢ and 9 be sentences, then;
LYheiffpeX
sEXiff np el

(pAd)eXiffpeXandd e X

proof.

(i). That if ¥ is consistent then every finite subset of X is consistent trivially
holds. Assume that every finite subset of ¥ is consistent and X is not
consistent. Then ¥ + ¢ and X F = for any formula ¢. By definition
of proof in ,C, both deductions are finite sequences. Let ¥ be the finite
subset of ¥ whose members are used in the deduction of ¢ and let ¥;
be the finite subset of ¥ such that ¥; F =¢. Then Lo U X; F (p A ).
But ¥ U X; which is a finite subset of ¥ is not consistent. This is a

contradiction.
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(ii). Assume that X U {¢} is inconsistent. If ¥ is inconsistent, then X -

trivially holds. Hence, assume that ¥ is consistent. We have two cases;
(a) £ U {-¢} is consistent. Then,
LU {~¢} F = since = € ¥ U {-¢}.
YU {-¢}F ¢ since ¥ U {—} is inconsistent.
then ¥ F —p.
(b) XU {~¢} is inconsistent. Then,
YU {-¢} I ¢ since & U {=p} is inconsistent.
YU {-p} I —p since wp € X U {—p}.
then ¥ F —p.

Assume that £ F =¢. Then % U {p} F =p. Moreover, & U {¢} F <.

Thus, ¥ U {¢} is inconsistent.

(iii). Assume that X is maximally consistent, X F ¢ but ¢ ¢ 3. Then, by the
maximality of X, XU {} is inconsistent. Then XU {p} F = but also
EU{~y} F =p. Therefore, £ I —p. This contradicts the consistency

of X. That if ¢ € ¥ then ¥ F ¢ holds trivially.

Assume that ¢ ¢ X. Then X U {¢} is inconsistent by the maximality
of X. Thus X U {¢} F - but ZU {~¢} I = also. Then = F - and

by (a), —p € X.
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Conversely, if - € X then ¢ ¢ ¥ since otherwise X can not be consis-

tent.

(iv). (pAD) EXiff Sk (pAD)iff SFpand S F 9 iff ¢ €T and

9 € T by (a).

2.5 Model Theory of First Order Languages

The language of propositional logic is simple so are the models of propo-
sitional logic, truth definition of a sentence of propositional logic and prop-
erties of its models. In the case of quantificational logic and first order
theories based on the language of quantificational logic, we have languages
and structures complicated enough to do mathematics. To give meaning to
symbols and legitimate expressions (terms, formulas and sentences). estab-
lishing properties of models of these languages and establishing properties of
these models and relations between them requires much more effort.

In the language of ‘a, first order theory, we have relation, function and
constant svmbols. To see whether a sentence of propositional logic is true or
false in a model, we have a simple definition since simple sentences (propo-
sitional variables) can be seen to be true or false at once. Truth or falsity

of compound sentences then follows by means of truth or falsity of smaller
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parts in that model.

We will follow the same procedure to give a truth definition for formulas
and sentences of first order theories. However, establishing truth or falsity of
simple parts in a model is not that simple. While propositional sentences have
only propositionz;l variables to be interpreted whose possible interpretation
consists of either truth or falsity, first order formulas may include relation
and function symbols whose possible interpretation may be any relation or

function. The following definition is due to Tarski:

Definition 2.5.1. Let L be a first order language
{Pono,Plnl,...,Fomo.Flml....,Co,Cl,...}

where n; and m; codes the arity of the relation or function symbol P; or F;
respectively. A model for the language £ is a pair A =< A,% > such that
A is a set, the domain of A, and % is the interpretation function such

that:

(i). For each n-ary relation symbol P of L. P% is an n-ary relation on A.

(ii). For each n-ary function symbol F of £. F* is an n-ary function from

A" into A.

(iii). For each constant symbol ¢ of £. c® is an element of A.

S
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Givgn a first order language £ the number of models of £ may be very
large. Even when we have a fixed domain A, depending on the number of
relation and function symbols, we have many possible interpretation func-
tions. One of the main concerns of model theory is to find out interesting
relations between models of a given language and finding out ways of estab-
lishing these relations. Our notation gives an appropriate notation so that
models of a given language will be comparable.

Let L = {Py,P,....,P,Fo,F,...,Fn,co.¢15...,Cs5...} and let
< A,% > and < B,® > be models of £. Then P, and P®, F;* and F/®, ¢;*
and ¢ are called the corresponding relations, functions and con-
stants in 2 and B respectively.

We said that for a first order language we have two syntactic categories;
term and formula. We will now attach meaning to terms and formulas of a

first order language L. Recall that. t(vo, ...,v,) says that variables of ¢ form

a subset of {vp, ..., v,} and the notation ¢(vy,...,v,) says that free variables
of o form a subset of {vg,...,v,}. We will enlarge the notation for formulas
and let ¢(vg,...,v,) denote the assertion that all variables, free or bound,

of ¢ are among vg,...,V, so that our truth definition applies not only to

sentences but also to formulas.

Definition 2.5.2. The value of a term t, t(vo,...,v,) at [zo,..., ]

denoted by t[zo, ..., x,] is defined inductively as follows;
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<(i). If t = v;, then t[zo,...,z,] = z;;
(ii). If ¢t = ¢;, then t[zg,...,z.] = %
(iii). If t = F;™(%o,...,tm) then
t[zo, ..., Za] = Fi2(to[Zoy- -, Znls- -+ tm[Tos - -+, Zn)])
Definition 2.5.3. The relation ¢(vo,...,vs) is satisfied by the sequence of

elements xg,..., 2, of A in the model U, where all variables of ¢ are among

Vo, - .-, Un, in symbols A = plzg, ..., z,],is defined inductively as follows;
(). o =t =tathen U = plzo, ..., zs] 0f f ti[zo,. ... 20| = ta[T0, ..., Tal;

(). If ¢ = P™{te...stm) then A | @lre....,z,] iff

Piﬁ(to[:co, ce s Tnlse ey tm[Toy - - -, Th]);

(iii). If ¢ = =9 then A | [zo,...,z,] iff it is not the case that A |

Izo, ..., Ta;

(iv). If ¢ = (J Ag) then A = plzo,..., 20 iff A E I zo,...,7,] and
A Eslzo, ..., z0;
(v). If ¢ = Vvjo where ¢ < n then A = p[zo,...,2z,] iff for every z € A

A l= (/9[3707' s i1, T, Tigly- - '7$n]-

Proposition 2.5.1. Let t(vo,...,vn) be a term and ¢(vo,...,v,) be a for-

mula. Let [zy,...,Zp], [Yo,---,Y,) be two sequences of elements of the domain

EL,@, WKSEKOCRETIM KOROLD
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A of a model A of L such that n < p and n < q and z; = y; whenever v; is

a variable of t or a free variable of p. Then,

(1). tlzoy. -+ xp) = t[Yos-- - Yq

(ii)‘ 2 I= 90['7:07-‘-'7'1:

o] if f A= @Yo, - - -,y

proof. For the first part of the proof, we use an induction on the complexity

of terms;

(1). If ¢ = v;, t[zo. - .

(li). Ift= C;. t[.’l?o, o0

S Tp] =T = Yi = t[Yo,- - -, Ygl;

~vxp] = ciﬁ = t[y07--°7y4];

(ifi). If ¢ = Filtoy. ... tm),
t[wo,...,$p] = F‘im(to[mo,...,l'p],...,tm[xo,...,mp])
= F}ﬁ(t[yo,...,yq],...,tm[yo,...,yq])

= t[yo: - - - , Yq

Similarly we use induction on the complexity of formulas for the proof of the

second part of the proposition;
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). Ho=t =t

.| 'Z-‘Z,Q[xo,...,il,'p]

tl[l‘o, e ,Ip] = tz[wo, ey .’Bp]

which is equivalent, by the first part, to;

tl[y07 s ‘.‘yq] = t2[y07 .. °7yII]
iff

A= Yo, - - -1 Yq)
(ii). If @ = P(to,...,tm)

2 IZ (,0[1'0, S .,.’l‘p]
Pﬁ(to[mo, s Zplye e tm[Tose oy Tp))
PX(talyor- -l -+ mlyor - 3])

A Eelyo, ... Y
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(id). If o = -0

2 k= plzo, . . -

. It is not the case that 2 = J[zo, ..

It is not the case that A = ?yo, .. .

A }2 "I’Lg[yo,...

A = ¢lyo, - - -

(iv). o = (J Ag)

A = ¢[zo, . .-

A & d[zo,...,7,] and A = ¢[zo, . ..

A = [yo, - - yg] and A k= <yo, . - -

2= elyo, . .-

(1)
~1

; yq]




(v). ¥ =Vvd wherei<n

A = plzo, ..., zp)

uff

for everyz € A2 = d[zo,.. ., Tic1, T, Tit1y- - -, Tp)
off

for every y € A l= 19[3/07- s Yi-L Y Yty .- '7y¢1]

Qllztp[yo,...,yq]

O
This proposition allows us to redefine the notion of satisfaction of a
formula by a sequence in a model. We may only look at the free variables
of the formula. Sequences which are equivalent as to the free variables of
the formula will be considered essentially the same. What if our formula has
no free variable, that is. if it is a sentence? In that case, since trivially all
sequences are equivalent as to the free variables of the sentence, it suffices
to have at least one sequence satisfying the sentence. Therefore, we may say
that, given a sentence, either all sequences satisfy it or there is no sequence
satisfying it.
Definition 2.5.4. A sentence ¢ holds in a model U, in symbols A = o,

if f there is at least one sequence of elements (or, equivalently every sequence
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.of elements) from the domain of the model satisfying it. ¢ is called valid,

in symbols = ¢ if f in every model, for every sequence of elements from the

domain of the model, the formula is satisfied by that sequence.

Proposition 2.5.2. Let p(vo,...,v,) be a formula and t;(vo, ..

. 7vn)’

0 < ¢ < n, be terms such that no variable of these terms occurs bound in

@ and let p(to,...,t,) be the formula obtained from ¢ by replacing v; by t;.

Then, for any sequence [zq, ..., Ty,

A E oty .- tn)[oy-- -y 2n] iff A= plto[zo, ..., 205 .., ta[To, . ..

Proof. If o(vg, ..., vs) = 8(vo,...,0n) = t(vo,...,v,) then

A = p(to,. . ta)[To, - - 2a] if f

Ql':S(to,...,tn) Et(io,.-.,tn)[xo,---,l"n] sz

S[to[l’o, ey :cn], ceny tn[wo, ey $n]] = t[to[dfo, aen ,.’Dn], ey tn[.’L‘o, N

A= (s = t)[to[zoy- -+, Zn)s - - - s tulZoy - - -5 Tn]]

If(,D:P(UO’--'vvn)7

A= Plto, ..., tp)[o, ..., xa) if f

P¥[to[zo,- -y Znly e« vy talToy . <y Tn)] i f f

D; § ':: ga[to[.’],'o, sy l'n], ey tn[-'th ey l’n]]
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If o = —B(vo, - - -, Vn),
A k= @(to,- - »tn)[Z0s- <> Tn] if S
it is not the case that A = 9(to, .-, tn)[To, .- -+ Ta] 1S f
it is not the case that 2 = B[to[To, - -+ Tals- - - tnlTos - o Tall 1 f
A = ~B[to[Toy . -+ Taly- - s talT0s - Tall if F
A = olto[zos - - - Tl - - -+ talT0s - - Zall i f

If o = (9 A),
Qll:(p(to,...,tn)[l'o,...’a:n] lff

A = H(to, - -+ tn)[T0s - - - Tn] and 2 E ¢(toy----ta)lTo- -5 Ta] LS f
A k= Mto[zo, - - -, Tl - - 5 tnlTos - ,x,]] and
A |==g[to[xo,...,xn],...,tn[xo,...,;rn]] iff
A = o[tolzo, - - - I PO 4 . Zal
If o = Vv where v Zv;for0<1<n since none of the variables of ¢; occurs

bound in ¢,

2 ‘=‘P(t07--~atn)[‘rqv"'7$“] iff
A = Vod(to,. .., tn)[Tos - -+, Tal 1S f
Q£l=ﬂ(to,...,tn)[ﬂfo,--.,-’vn] fo

A i== ﬂ[to[ﬂ?o, PN ,CL’n], e ,tn[SEo, e .lL‘n]]
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Note that in the last part of the proof we used the fact that the quan-
tifier V in Vod(vg,...,v,) is redundant since v is not equal to any of the
variables v; : 0 < 7 < n. The reader is invited to see this point himself by
using the definition of satisfaction.

Giving the definition of model and the notion of satisfaction in a model

we will now state a few important relations between models.

Definition 2.5.5. Let £ be a first order language, L' a subset of L and U
is a model of L. Then the model B with the same domain as A such that B

interprets only L' symbols and exactly same as 2 is called the L' -reduction

of .

Definition 2.5.6. Let £ be a language and U and B are L models. We say

that A is a submodel of B if

(i). AC B;

(ii). For every n-ary relation symbol P of £, P% = P® | A"
(iit). For every n-ary function symbol F of £, F% = F® | A™;
8

(iv). For each constant symbol ¢ of £, ¢* = ¢

Definition 2.5.7. Let £ be a language, A and B are L models and
f:A— B is a mapping. We say that f is a homomorphism between

A and B if
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- (i). For every n-ary relation symbol P of £, and for every sequence of

elements zy,...,z, of A, P*(z1,...,2,) = PB(f(z1),..., f(za));

(ii). For every n-ary function symbol F of £ and for every sequence of

elements z,,...,7, of A, f(FXzy,...,2,)) = F2(f(z1),..., f(za));
(iii). For each constant ¢ in 2, f(c%) = c®.

If a homomorphism f from 2 to B is such that there is a homomor-
phism g from B to 2 and the composition of f and g, g o f, is the identity
mapping on 2 and f o g is the identity mapping on ‘B, then f is said to be
an isomorphism between 2 and *B. If there is an isomorphism between 2
and B then 2 is said to be isomorphic to B,in symbols A = B. Using
the notation of definition 2.5.7 we may define the notion of isomorphism as

follows.
2.5.3.

Let f be a mapping as defined in definition 2.5.7. We say that f is an

isomorphism if and only if:

(i). For every n-ary relation symbol P of £, and for every sequence of

elements zi,....2, of A, P¥(zy1,....2,) if f PB(f(z1),..., f(zn));

(ii). For every n-ary function symbol F of £ and for every sequence of

elements 1, ..., 2, of A, f(F*(z1,...,2,)) = FB(f(x1),..., f(z.));
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(iii). For each constant ¢ in 2, f(c?) = ¢®.

Definition 2.5.8. Let L be a language and A and B be L-models. We say

that A and B are elementarily equivalent, in symbols A =B if;
‘Ao iff B | o for every sentence o

The following proposition gives the basic relationship between the no-

tions of isomorphism and elementary equivalence.
Proposition 2.5.4. If A = B then A = ‘B.

The idea behind this proposition is as follows: if there is an isomorphism
f between 2 and B then since f is a bijection between A and B, each
element a of A corresponds to an element f(a) of B. Moreover, if (ay,....a,)
is a sequence of elements from A and (f(a1),..., f(a,)) is the sequence of
corresponding elements of B, then (a4, ...,a,) satisfies a sentence o in A if
and only if (f(a1),..., f(a,)) satisfies o in B since behaviour of elements
of models 2 and B are the same under the relations and functions of L.
The proof of the proposition follows this line of reasoning. Let f be an
isomorphism between 2 and 2. Then, for example, the following statements

are equal:

AkEc=d



F(™) = f(c®)

2 = %

BEc=d
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CHAPTER 3

COMPLETENESS THEOREM

Let T be a consistent set of sentences in a language £. As in the case of
propositional logic, we will show that T is satisfiable, that is, it has a model.
Since the only information about T is that T is consistent and consistency
is a syntactic notion, we have only syntactic tools to construct a model of
T. In order to construct a model, we have to choose an appropriate set as
the domain, and interpret relation, function and constant symbols of the
language £ of T' in a suitable way. If we use the terms of the language £
directly, we face a difficulty: let t; and ¢ be £ terms. If T is such that 7' F
f(t1) = f(t2) while f(¢1) # f(¢2) in our model, then our model constructed
with its domain all £-terms, would not be a model of 7. If we take care of
the behaviour of the terms in formulas deducible from T, no such difficulty

arises.

Definition 3.0.9. Let T be a set of sentences in a language £ and C a set
of constants of L. C is a set of witnesses for T if whenever ¢ is a formula

of L with at most one free variable =, then there exists c € C such that:

T = 3Jzp = ¢(c)



The following proof of the fact that a consistent first order theory in the
language L has at least one model is due to Henkin. The proof is constructive;
we really construct a model for the consistent theory T.

We use two facts in the proof;

(i). If C is a set of witnesses for a set of sentences T', and if 7" is an extension

of T, i.e.,, T C T', then C is also a set of witnesses for 7".
(ii). If A is a model of an extension 7" of T, then 2 is also a model of T'.

The outline of the proof is as follows: we may expand £, the language of T,
to a language £’ such that we may find an extension 77 of T in £’ and such
that 7" has a set of witnesses. Then. we may assume that 7" is a maximally
consistent set of sentences in L’ since, by Lindenbaum’s theorem, we may
always enlarge 7" to a maximally consistent set. We will use the fact that
T’ is maximally consistent and that T’ has witnesses to find a model of 7’
and use the fact that 7T’ is a satisfiable extension of 7" to show that T has a

model.

Proposition 3.0.5. Let T be a consistent set of L-sentences. Let L be
a simple expansion of L obtained by the addition of a set of new constant
symbols C, where |C| = ||L]|, to £ ie., L = LU C. Then there is an
extension T of T in L such that T is a consistent set of sentences in L and

C is a set of witnesses in L for T.
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proof. Let ||£]| = a and

C={cg:B< a.cg fe,iff<y<a}

and let £ = LU C. We wish to enlarge T to a consistent set 7 in £ such
that C is a set of witnesses for T. Note that, ||£|| = o and thus we may list
all L-formulas with at most one variable as a sequence g; 8 < a. Using this

fact, we enlarge T by defining an increasing sequence of sets
Ir'=Tyclhc...cTz..., p<a
and a sequence of constants dg; 8 < a such that;
(i). Each Tjs;8 < a is consistent in £;

(ii). Assume that T3 has been defined, then
T U {Jzpps — ppldg)} if 25 is the free variable of g

Tp4r =
Ts U {Jvops — ¢p(ds)} if ¢p has no free variable

(iii). Ty = Upe, T if 7 is a limit ordinal.

We let T = Up<a Tp- 1t is obvious that T is consistent. Moreover, C is a
set of witnesses for T. Since let ¢ be an L-formula with at most z free in it.

Then ¢ = g and = = z for some 3 < a. By the above construction of T}’s,

Tp41 F Jx30p — @p(dp)

T F 3zpp3 — ¢a(dp) O
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Thus we have shown, as we promised, that a consistent set of sentences
can always be extented to a consistent set with witnesses in the simply ex-
panded language. Now. we will show that, we may construct a model for

such a set in the expanded language.

Proposition 3.0.6. Let T be a consistent set, with the set of witnesses C,
in the language L. Then there is a model A of T such that every element of

the domain of 2 is an interpretation of a constant ¢ € C.

proof. We may assume that T is maximally consistent. Since by Linden-
baum’s theorem a consistent set T can always be extended to a maximal
consistent set and any model of this maximal consistent set is also a model
of T. Define an equivalence relation ~ on the set C as ¢~ d bz'ff c=deT.

Since 7' is maximaly consistent, we have

ifc~dandd~ethenc~e
ife~dthend~c
Wé will define the domain of U as;
A={¢é:ceC}
where ¢ = {d € C : ¢ ~ d} is the equivalence class of ¢ under ~. Now, we

will give an interpretation of relatio}l, function and constant symbols of £ in

2.
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- (i). Let P be an n-ary relation symbol of £. Then,

PY&y,...,&) iff Pley,...,c,) €T

(ii). Let F be an n-ary function symbol of £. Then,

Fﬁ(él,...én)=éz'ff Fley,...,en)=c€T

(iii). Let ¢ be a constant symbol of £. Then ¢® = d where ¢ ~ d.

Using the fact that T is maximally consistent and C is a set of witnesses
for T', we may easily show that the interpretation of relation, function and
constant symbols of £ in 2 is well defined. We will now show that 2 is a
model of T. We will do this by induction on the complexity of sentences
in T. We first note that. since C is a set of witnesses for T', every term
t is equivalent to a constant ¢;. For every closed term, i.e., term with no

variables, t and for every ¢ € C, the following are equivalent;

AEd=c

[
i
O

d~c
d=ceT

The following are also equivalent;

Ql|=F(t1,...,tn)EC
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A Feyy..-re,) =c

o

F2(&,...,8,) =

Fleyyo..he,)=ceT

Thus for every closed term ¢ and for every c € C
AEt=cifft=ceT.

It is also easy to show that U |=t; = ¢, iff t; = t, € T for every pair of

closed terms ¢; and ¢;. Since,
T+ Ekvtl =

since Jxt; =z is a theorem of quantificational logic and T is maximally

consistent. Since T has a set of witnesses C, and by the above remark,
Tt Hl'(tl = .’17) —= 1 = Ct,

T"tlECtl

Thus we reduce the problem to the ¢ = ¢ case.
For the second case of atomic sentences, we have the following equiva-

lent assertions;
A= P(ty,...,t)
P&y -0 8,)

P(ctl,...,ctn) ET
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For compound sentences the result easily follows;

AE -
it is not the case that A = ¢
it is not the case that o € T

ﬂ@ET

Ak (pAY)
A= pand A =0
p€TanddeT

(NI eT

Let 2 | Jzg then there is é € A such that A |= [¢]. Then there
is ¢ € C such that 2 = ¢(c). Thus, by inductive assumption. ¢(c) € T.
Since »(¢) = Jzy is a theorem of quantificational logic, and 7' is maximally
consistent, Jzp € T.

Let 3z € T. Since C is a set of witnesses for T, there is ¢ € C such
that

dzp = p(c)eT

Thus (c) € T since T is maximally consistent. Then, by inductive assump-

tion, A |= p(c). Thus, A = [¢] and then we have A |= Iz O
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From the previous two results, we may infer the desired result that a
consistent set of sentences has a model. Note that, the reduction of the model

2 to L will give a model of T since T' does not include new constants.

=3
(8]



CHAPTER 4

CONCLUSION

Model Theory is one of the most rapidly growing areas of mathematics.
In recent years, model theorists witnessed a sudden diversification of this
field. The importance of model theory is twofold: it enables us to comprehend
the nature of mathematical truth and the nature of mathematical structures.
Model theory has also proved to be a strong tool with many applications
starting from its applications to theoretical computer science.

I believe that, this thesis provides a brief account of basic notions of
model theory. First, a general disscussion on formal languages and formal
systems was given in order to give the motivation behind the way of con-
struction of specific formal languages and systems which were introduced
immediately after this general presentation. The content of the following
sections were Chang and Keisler’s book ‘Model Theory.” In addition to pre-
sentation of what is in that book, I gave full proofs of partly or completely
unproven results. The formal definitions of free variable, bound variable and
substitution of a term for a variable were defined in order to contribute to
the understanding of the concept of satisfaction, which is one of the basic

notions of model theory.
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In the last chapter of the thesis the completeness theorem for quantifi-
cational logic was given. In the proof, a model for a consistent theory was
constructed. The method of constructing a model in the way described in
the proof is called ‘model construction by means of constants.” This is by no
means the only way of constructing a model. The method of ultraproducts,
the method of elementary chains and the method of using Skolem functions
are the other methods widely used in model theory. Chang and Keisler’s
book is a good exposition of these and further classical notions of model

theory. I hope that, this work is a contribution to the reading of that book.
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