
ar
X

iv
:1

00
8.

17
00

v2
 [

cs
.N

A
]

 2
6

A
ug

 2
01

1

A Domain-decomposing parallel sparse linear system

solver

Murat Manguoglu

Computer Engineering, Middle East Technical University, Ankara, Turkey, 06800
(manguoglu@ceng.metu.edu.tr).

Abstract

The solution of large sparse linear systems is often the most time-consuming part
of many science and engineering applications. Computational fluid dynamics,
circuit simulation, power network analysis, and material science are just a few
examples of the application areas in which large sparse linear systems need to be
solved effectively. In this paper we introduce a new parallel hybrid sparse linear
system solver for distributed memory architectures that contains both direct and
iterative components. We show that by using our solver one can alleviate the
drawbacks of direct and iterative solvers, achieving better scalability than with
direct solvers and more robustness than with classical preconditioned iterative
solvers. Comparisons to well-known direct and iterative solvers on a parallel
architecture are provided.

Keywords: sparse linear systems, parallel solvers, direct solvers, iterative
solvers

1. Introduction

Many applications in science and engineering give rise to large sparse linear
systems of equations. Some of these systems arise in the discretization of partial
differential equations (PDEs) modeling various physical phenomena, such as in
computational fluid dynamics ,semiconductor device simulations, and material
science. Large and sparse linear systems also arise in applications that are not
governed by PDEs (e.g. power system networks, circuit simulation, and graph
problems).

Numerical simulation processes often consist of many layers of computational
loops (e.g. see Figure 1). It is a well known fact that the cost of the solution
process is almost always governed by the solution of the linear systems especially
for large-scale problems.

The emergence of multicore architectures and highly scalable platforms mo-
tivates the development of novel algorithms and techniques that emphasize con-
currency and are tolerant of deep memory hierarchies, as opposed to minimizing

1

http://arxiv.org/abs/1008.1700v2

A Domain Decomposing Parallel Sparse Linear System Solver 2

Loop: Time Integration
Loop: Nonlinear Iteration

Loop: Linear Systems
On parallel computing platforms; multicore to petascale
architectures

End ǫ

End η

End ∆t

Figure 1: Target computational loop

raw FLOP counts. While direct solvers are reliable, they are often memory-
intensive for large problems and offer limited scalability. Iterative solvers, on
the other hand, are more efficient but, in the absence of robust preconditioners,
lack reliability.

In this paper we introduce a parallel sparse linear system solver that is
hybrid. We note that we are using the term “hybrid” to emphasize that our
solver is using both direct and iterative techniques. We advocate that using our
solver in hybrid mode one can alleviate the drawbacks of direct and iterative
solvers, i.e. achieving more scalability than a direct solver and more robustness
than a classical preconditioned iterative solver.

The rest of this paper is organized as follows. In Section 2, we discuss
background and related work. In Section 3, we give a description of the new
algorithm and a simple example to demonstrate the details of the implemen-
tation. In Section 4, we present variety of numerical experiments. Finally, we
conclude the paper with discussions in Section 5.

2. Background and related work

Considerable effort has been spent on algebraic parallel sparse linear system
solvers. Sparse linear system solvers are traditionally divided into two groups
(i) direct solvers (ii) iterative solvers. In the first group some examples are
MUMPS [1, 2, 3] , Pardiso [4, 5], and SuperLU [6].

Iterative solvers mainly consist of classical preconditioned Krylov Subspace
methods, and preconditioned Richardson iterations. Unlike direct sparse system
solvers, iterative methods (with classical blackbox preconditioners) are not as
robust. This is true even with the most recent advances in creating LU-based
preconditioners [7, 8, 9]. Approximate inverse preconditioners [10, 11, 12, 13, 14]
are known to be more favorable for parallelism.

The Spike algorithm [15, 16, 17, 18, 19, 20, 21] is a parallel solver for banded
systems, that combines direct and iterative methods, is one of the first examples
of hybrid linear system solvers. More recently in [22, 23, 24], the Spike algo-
rithm was used for solving banded systems involving the preconditioner that is

A Domain Decomposing Parallel Sparse Linear System Solver 3

obtained after reordering the coefficient matrix with weights for sparse linear
systems.

3. Domain decomposing parallel solver

We introduce a new parallel hybrid sparse linear system solver called Domain
Decomposition Parallel Solver (DDPS) which can be used for solving sparse
linear systems of equations: Ax = f . Recently, we have presented an algorithm
that used incomplete lu factorization for the diagonal block and its application
on fluid structure interaction problems [25, 26]. In this paper we introduce
DDPS that uses the direct solver Pardiso within each block and extend the
results to general sparse systems from a variety of application areas.

We are motivated to create DDPS due to the fact that many applications use
domain decomposition to distribute the work among the processors and the lack
of reliability of black box preconditioned Krylov subspace methods and lack of
scalability of direct solvers. METIS [27, 28] is often used to partition the domain
(and hence to partition the matrices). DDPS is similar to the Spike algorithm
but unlike Spike it does not assume banded structure for the coefficient matrix
A. Given a general sparse linear system Ax = f , we partition A ∈ Rn×n into p
block rows A = [A1, A2, ..., Ap]

T . Let

A = D +R, (1)

where D consists of the p block diagonals of A,

D =

A11

A22

. . .

App

(2)

and R consists of the remaining elements (i.e. R = A − D). Let L̃i and Ũi be
an incomplete LU factorizations of Aii where i = 1, 2, ..., p. We define

D̃ =

Ã11

Ã22

. . .

Ãpp

(3)

in which Ãii = L̃iŨi.
The DDPS algorithm is shown in Figure 2. We assume the system Ax = f

is the one after METIS reordering
Stages 1-5 are considered as a preprocessing phase where the right hand side

is not required. After preprocessing we solve the system via a Krylov subspace
method and using a preconditioner. The major operations in a Krylov subspace
method are: (i) matrix vector multiplications, (ii) inner products, and (iii)

A Domain Decomposing Parallel Sparse Linear System Solver 4

Data: Ax = f and a partitioning information
Result: x
1. D +R←− A for the given partitioning information;
2. L̃iŨi ←− Aii (approximate or exact) for i = 1, 2, ..., p ;
3. R̃←− R (by dropping some elements) ;
4. G←− D̃−1R̃ ;
5. identify nonzero columns of G and store their indices in array c ;
6. Solve Ax = f via a Krylov subspace method with a preconditioner
P = D̃ + R̃ and stopping tolerance ǫout)

Figure 2: DDPS algorithm.

solve Pz = y

(D̃−1Pz = D̃−1y ⇒ (I +G)z = g) ;
6.1 g ←− D̃−1y ;
6.2 Ĝ←− (I(c, c) +G(c, c)); ẑ ←− z(c); ĝ ←− g(c) ;
6.3 solve the smaller independent system: Ĝẑ = ĝ (directly or
iteratively with stopping tolerance ǫin) ;
6.4 z(c)←− ẑ ;
6.5 z ←− g −Gz ;

end

Figure 3: Preconditioning operation: Pz = y

preconditioning operations in the form of Pz = y (for some y). Only the details
of the preconditioning operations for DDPS are given in Figure 3.

Each stage, with the exception of solving the reduced system, can be exe-
cuted with perfect parallelism requiring no interprocessor communications. The
solution of the smaller system Ĝẑ = ĝ is the only part of the preconditioning op-
eration that require communication. The size of Ĝ is problem and partitioning
dependent and it is expected to have an influence on the overall scalability of
the algorithm. The size of Ĝ is determined by the number of nonzero columns
in G. We employ several techniques to reduce the size of Ĝ:

• METIS reordering to reduce the total communication volume for given
number of partitions and hence reducing the size of Ĝ by reducing the
number of elements in R. (We note that METIS works on undirected
graphs, therefore we apply METIS on (|A| + |AT |)/2).

• A dropping strategy: Given a tolerance δ ∈ [0, 1], if for any column k in
Ri ||R(:, k)i||∞ ≤ δ ×maxj ||R(:, j)i||∞ (i = 1, 2, .., p) we do not consider

that column when forming Ĝ. Here Ri is the block row partition of R
(i.e. R = [R1, R2, ..., Rp]

T). Another possibility is to drop elements after

A Domain Decomposing Parallel Sparse Linear System Solver 5

computing G. In this paper, however, we only consider the former as the
latter is expected to be computationally expensive.

It is required the diagonal blocks, Aii, are nonsingular. In case they are
singular, however, in addition to METIS applying HSL MC64 reordering and/or
a diagonal perturbation can be considered.

Notice that dropping elements from R in stage 3 to reduce the size of Ĝ re-
sults in an approximation of the solution. Furthermore, we can use approximate
LU-factorization of the diagonal blocks in stage 2 and solve Ĝx̂ = ĝ iteratively
in stage 6.3. Therefore, we place an outer iterative layer where we use the
above algorithm as a solver for systems involving the preconditioner P = D̃+ R̃
where R̃ consists only of the columns that are not dropped. We stop the outer
iterations when the relative residual at the kth iteration ||rk||∞/||r0||∞ ≤ ǫout.

DDPS is a direct solver if (i) nothing is dropped from R, (ii) exact LU
factorization of Aii is computed, and (iii) Ĝẑ = ĝ is solved exactly. In the case
of using DDPS as a direct solver, an outer iterative scheme may not be required
but recommended. In this paper we use the direct solver Pardiso for computing
LU factorization of the diagonal blocks.

The choices we make in stages 2,3, and 6.3, result in a solver that can be
as robust as a direct solver or as scalable as an iterative solver, or anything in
between. Notice that the outer iterative layer also benefits from our partitioning
strategy as METIS reduces the total communication volume in parallel sparse
matrix vector multiplications.

We note that Ĝ consists of dense columns within each partition which we
store as a two dimensional array in memory and as a result matrix vector mul-
tiplications can be done via level 2 BLAS [30, 31] (or level 3 in case of multiple
right hand sides).

In order to illustrate the steps of the basic DDPS algorithm (without any
approximations) we provide the following system, Ax = f , with 9 unknowns,

0.2 1.0 -1 0 0.01 0 0 0 −0.01
0.01 0.3 0 0 0 0 0 0 0
-0.1 0 0.4 0 0.3 0 0 0 0
0 0 0 0.3 0.6 2 0 0 0
0 −0.2 0 0 0.4 0 0 0 1.1
0 0 0 -0.2 0.1 0.5 0 0 0
1.2 0 0 0 0 0 0.4 0.02 3.0

0 0 0 0 0 0 2.0 0.5 0

0 0 0 0 0 0 0 0.1 0.6

x1

x2

x3

x4

x5

x6

x7

x8

x9

=

1
1
1
1
1
1
1
1
1

(4)
Block diagonal matrix D is indicated in red color (or bold in black and white)
for 3 partitions where each partition is of size 3. After premultiplying both sides
with D−1 from left we obtain the modified system, (I + G)x = g (we do not

A Domain Decomposing Parallel Sparse Linear System Solver 6

need to form D−1 explicitly to compute D−1R)

1 0 0 0 -9.12 0 0 0 0.12

0 1 0 0 0.304 0 0 0 0.004

0 0 1 0 −1.53 0 0 0 0.03
0 0.0909 0 1 0 0 0 0 −0.5
0 -0.5 0 0 1 0 0 0 2.75

0 0.1364 0 0 0 1 0 0 −0.75
0.5172 0 0 0 0 0 1 0 0
−2.069 0 0 0 0 0 0 1 0
0.3448 0 0 0 0 0 0 0 1

x1

x2

x3

x4

x5

x6

x7

x8

x9

=

-2

3.4

2
−3.1818

2.5

0.2273
−1.3103
7.2414
0.4598

.

(5)
We note that unknowns 1, 2, 5, and 9 form a smaller independent reduced
system (indicated in blue color or bold in black and white) ,

1 0 -9.12 0.12

0 1 0.304 -0.004

0 -0.5 1 2.75

0.3448 0 0 1

x1

x2

x5

x9

=

-2

3.4

2.5

0.4598

(6)

which has the solution [x1, x2, x5, x9]
T = [−3.2389, 3.4413,−0.1151, 1.5766]T.

Finally, we can retrieve the solution of the system via

x1

x2

x3

x4

x5

x6

x7

x8

x9

=

−2
3.4
2

−3.1818
2.5

0.2273
−1.3103
7.2414
0.4598

−

0 0 −9.12 0.12
0 0 0.304 0.004
0 0 −1.53 0.03
0 0.0909 0 −0.5
0 −0.5 0 2.75
0 0.1364 0 −0.75

0.5172 0 0 0
−2.069 0 0 0
0.3448 0 0 0

x1

x2

x5

x9

(7)

and obtain x = [−3.2389, 3.4413, 1.7766,−2.7063,−0.1151, 0.9405, 0.365, 0.5402, 1.5766]T .

4. Numerical experiments

The set of problems is obtained from the University of Florida Sparse Matrix
Collection [32]. We choose the largest nonsymmetric matrix from each applica-
tion domain. The list of the matrices and their properties are given in Table 1.
For each matrix we generate the corresponding right hand-side using a solution
vector of all ones to ensure that f ∈ span(A). All numerical experiments are
performed on an Intel Xeon (X5560@2.8GHz) cluster with Infiband intercon-
nection and 16GB memory per node. The number of MPI processes is equal
to the number of cores used and is also equal to the number of partitions for
DDPS.

A Domain Decomposing Parallel Sparse Linear System Solver 7

In the following numerical experiments, we use a variation of precondi-
tioned BiCGStab [29] as the outer iterative solver. The smaller reduced sys-
tem Ĝẑ = ĝ is also solved iteratively via BiCGStab without preconditioning.
For the iterative solvers, the outer iterations are terminated when the number
of iterations reaches 1, 000 or the relative residual meets the stopping criterion
(||f − Ax||∞/||f ||∞ ≤ 10−5). Failures of the solvers are indicated by F1 or F2
when the solver runs out of memory or the final relative residual is larger than
10−5, respectively. We limit the maximum number of iterations to 100 and the
stopping tolerance to ǫin = 10−4 for the inner iterations of DDPS solver.

We use ILUPACK with the following parameters, reorderings: weighted
matching and AMD [33], droptol: 10−1 , estimate for the condition numbers
of the factors: 50, and an elbow space of 10 which are recommended by the
user guide for general sparse linear systems. ILUPACK uses GMRES(30) with
a variation of incomplete LU factorization based preconditioner. MUMPS and
Pardiso has been used with their default parameters and using METIS reorder-
ing.

In Table 2 we present the total solve time for MUMPS, Pardiso , DDPS(δ =
0.9) and ILUPACK. For 5 systems (indicated by blue) out of 9, DDPS is faster
than MUMPS (for 16 MPI processors). In addition, DDPS is more robust than
ILUPACK and almost as robust as MUMPS direct solver, using 16 partitions
DDPS fails only in 2 cases while ILUPACK and MUMPS fails in 5 and 1 case, re-
spectively. DDPS never runs out of memory while MUMPS runs out of memory
for one of the problems unless more than 8 partitions are used.

The speedup with respect to Pardiso solver using a single core is given in
Table 3. We note that two problems achieve superlinear speed improvement
due to cache effects.

In Table 4, the number of outer BiCGStab iterations for DDPS is provided as
one increases the number of partitions. With the exception of two cases, namely
hvdc2 and thermomech dk, the number of iterations depends weakly (less than
linear) on the number of partitions (or MPI processes).

The average number of inner BiCGStab iterations is given in Table 5. Since
we make sure the reduced system size is small via various techniques described
earlier, number of iterations are relatively small for all systems with weak de-
pendence on number of processes.

In Table 6 we show the effect of varying the drop tolerance, δ, while the
number of partitions is fixed at 16. A small δ results in a variation of DDPS
that is more like a direct solver. Although this causes the number of iterations
to decrease, it also increases the memory requirement and the solver runs out of
memory. For small δ memory problem appears in two cases, namely rajat31 and
atmosmodl. In 5 cases the number of outer iterations decrease as we decrease
δ. In the remaining two cases the DDPS solver failed even though δ is set to be
a small number.

A Domain Decomposing Parallel Sparse Linear System Solver 8

5. Conclusion

We have introduced a new hybrid sparse linear system solver called DDPS.
We have shown that our new sparse linear system solver is often faster than
direct solvers and more robust than classical preconditioned Krylov subspace
methods. DDPS is flexible as it can be used in a variety of configurations.
Depending on the solver for the diagonal blocks a new variation of the algorithm
will arise. The choice we make for solving the inner reduced system further
increases the number of possibilities. Although we have used METIS to show
the application of the algorithm on general sparse systems, DDPS algorithm
is ideally suited for problems in which the matrices are already distributed via
domain decomposition to minimize interprocessor communication.

Acknowledgments

The author would like to thank Ahmed Sameh, Ananth Grama, David Kuck,
Eric Cox, Faisal Saied, Henry Gabb, Kenji Takizawa, and Tayfun Tezduyar
for the numerous discussions and for their support. This work has been par-
tially supported by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no: RI-261557 and METU BAP-08-
11-2011-128 grant

References

[1] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid
scheduling for the parallel solution of linear systems, Parallel Computing
32 (2) (2006) 136–156.

[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous
multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix
Anal. Appl. 23 (1) (2001) 15–41.

[3] P. R. Amestoy, I. S. Duff, Multifrontal parallel distributed symmetric and
unsymmetric solvers, Comput. Methods Appl. Mech. Eng 184 (2000) 501–
520.

[4] O. Schenk, K. Gärtner, Solving unsymmetric sparse systems of linear equa-
tions with PARDISO, Future Generation Computer Systems 20 (3) (2004)
475 – 487.

[5] O. Schenk, K. Gärtner, On fast factorization pivoting methods for sparse
symmetric indefinite systems, Electronic Transactions on Numerical Anal-
ysis 23 (2006) 158 – 179.

[6] X. S. Li, J. W. Demmel, Superlu-dist: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems, ACM Trans. Math.
Softw. 29 (2) (2003) 110–140.

A Domain Decomposing Parallel Sparse Linear System Solver 9

[7] M. Benzi, D. B. Szyld, A. van Duin, Orderings for incomplete factoriza-
tion preconditioning of nonsymmetric problems, SIAM Journal on Scientific
Computing 20 (5) (1999) 1652–1670.

[8] M. Benzi, J. C. Haws, M. Tůma, Preconditioning highly indefinite and
nonsymmetric matrices, SIAM J. Sci. Comput. 22 (4) (2000) 1333–1353.

[9] M. Bollhöfer, Y. Saad, O. Schenk, ILUPACK Volume 2.1—Preconditioning
Software Package, available at http://ilupack.tubs.de (May 2006).

[10] G. Gravvanis, P. Matskanidis, K. Giannoutakis, E. Lipitakis, Finite element
approximate inverse preconditioning using posix threads on multicore sys-
tems, Proceedings of the International Multiconference on Computer Sci-
ence and Information Technology 5 (2010) 297–302.

[11] G. Gravvanis, High Performance Inverse Preconditioning, Archives of Com-
putational Methods in Engineering 16 (1) (2009) 77–108.

[12] G. Gravvanis, On the solution of boundary value problems by using fast
generalized approximate inverse banded matrix techniques, The Journal of
Supercomputing 25 (2) (2003) 119–129.

[13] G. Gravvanis, Explicit preconditioned generalized domain decomposition
methods, International Journal of Applied Mathematics 4 (1) (2000) 57–
72.

[14] M. Benzi, C. Meyer, M. Tuma, et al., A sparse approximate inverse pre-
conditioner for the conjugate gradient method, SIAM Journal on Scientific
Computing 17 (5) (1996) 1135–1149.

[15] A. H. Sameh, D. J. Kuck, On stable parallel linear system solvers, J. ACM
25 (1) (1978) 81–91.

[16] D. J. K. S. C. Chen, A. H. Sameh, Practical parallel band triangular system
solvers, ACM Transactions on Mathematical Software 4 (3) (1978) 270–277.

[17] D. H. Lawrie, A. H. Sameh, The computation and communication com-
plexity of a parallel banded system solver, ACM Trans. Math. Softw. 10 (2)
(1984) 185–195.

[18] M. W. Berry, A. Sameh, Multiprocessor schemes for solving block tridiag-
onal linear systems, The International Journal of Supercomputer Applica-
tions 1 (3) (1988) 37–57.

[19] J. J. Dongarra, A. H. Sameh, On some parallel banded system solvers,
Parallel Computing 1 (3) (1984) 223–235.

[20] E. Polizzi, A. H. Sameh, A parallel hybrid banded system solver: the spike
algorithm, Parallel Computing 32 (2) (2006) 177–194.

A Domain Decomposing Parallel Sparse Linear System Solver 10

[21] E. Polizzi, A. H. Sameh, Spike: A parallel environment for solving banded
linear systems, Computers & Fluids 36 (1) (2007) 113–120.

[22] M. Manguoglu, M. Koyutürk, A. H. Sameh, A. Grama, Weighted matrix
ordering and parallel banded preconditioners for iterative linear system
solvers, SIAM J. Scientific Computing 32 (3) (2010) 1201–1216.

[23] M. Manguoglu, A. Sameh, O. Schenk, A parallel hybrid sparse linear system
solver, LNCS - Proceedings of EURO-PAR09 5704 (2009) 797–808.

[24] O. Schenk, M. Manguoglu, A. Sameh, M. Christian, M. Sathe, Parallel scal-
able PDE-constrained optimization: antenna identification in hyperthermia
cancer treatment planning, Computer Science Research and Development
23 (2009) 177–183.

[25] M. Manguoglu, K. Takizawa, A. Sameh, T. Tezduyar, Nested and parallel
sparse algorithms for arterial fluid mechanics computations with boundary
layer mesh refinement, International Journal for Numerical Methods in
Fluids 65 (2011) 135–149.

[26] M. Manguoglu, K. Takizawa, A. Sameh, T. Tezduyar, A parallel sparse
algorithm targeting arterial fluid mechanics computations, Computational
Mechanics, doi:10.1007/s00466-011-0619-0 (2011).

[27] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for parti-
tioning irregular graphs, SIAM Journal of Scientific Computing 20 (1998)
359–392.

[28] G. Karypis, V. Kumar, Parallel multilevel k-way partitioning scheme for
irregular graphs, SIAM Journal of Scientific Computing 41 (1999) 278–300.

[29] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, H. V. der Vorst, Templates for the Solu-
tion of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition,
SIAM, Philadelphia, PA, 1994.

[30] C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh, Basic linear
algebra subprograms for fortran usage, ACM Trans. Math. Softw. 5 (1979)
308–323.

[31] J. J. Dongarra, J. Du Croz, S. Hammarling, I. S. Duff, A set of level 3 basic
linear algebra subprograms, ACM Trans. Math. Softw. 16 (1990) 1–17.

[32] T. A. Davis, University of Florida sparse matrix collection, NA Digest
(1997).

[33] P. R. Amestoy, T. A. Davis, I. S. Duff, An approximate minimum degree
ordering algorithm, SIAM J. Matrix Anal. Appl. 17 (4) (1996) 886–905.

A
D
o
m
a
in

D
eco

m
p
o
sin

g
P
a
ra
llel

S
p
a
rse

L
in
ea
r
S
y
stem

S
o
lv
er

1
1

Table 1: Linear systems from the University of Florida Sparse Matrix Collection, n , nnz, and dd stands for matrix size , number of nonzeros, and
the degree of diagonal dominance, respectively

System n nnz dd problem domain

ATMOSMODL 1,489,752 10,319,760 0 computational fluid dynamics
HVDC2 189,860 1,339,638 0 power network
LANGUAGE 399,130 1,216,334 6.2× 10−4 directed weighted graph
OHNE2 181,343 6,869,939 1.4× 10−11 semiconductor device simulation
RAJAT31 4,690,002 20,316,253 0 circuit simulation
THERMOMECH DK 204,316 2,846,228 0.32 thermal
TMT UNSYM 917,825 4,584,801 1 electromagnetic
TORSO3 259,156 4,429,042 9.9× 10−2 2D/3D problem
XENON2 157,464 3,866,688 8.2× 10−2 material science

A
D
o
m
a
in

D
eco

m
p
o
sin

g
P
a
ra
llel

S
p
a
rse

L
in
ea
r
S
y
stem

S
o
lv
er

1
2

Table 2: Total solve times (in seconds) for MUMPS, Pardiso, and DDPS, and ILUPACK

MUMPS Pardiso DDPS ILUPACK
MPI Processes 1 2 4 8 16 1 2 4 8 16 1
ATMOSMODL F1 F1 F1 F1 171.3 1291.0 391.6 781.0 149.1 100.7 13.6
HVDC2 1.5 1.6 1.4 1.5 1.9 2.0 1.4 1.6 6.9 F2 F2

LANGUAGE 504.6 273.9 F2 F2 F2 1191.3 124.7 15.2 6.4 2.0 3.4
OHNE2 42.5 27.3 19.3 13.2 8.5 43.9 21.2 9.4 F2 F2 F2

RAJAT31 78.3 67.6 59.3 54.1 53.7 57.9 258.7 150.5 106.2 45.1 F2

THERMO 2.9 2.3 2.1 2.1 2.8 3.0 2.0 10.5 20.5 11.2 6.8
TMT UNSYM 14.5 12.1 10.3 9.8 9.7 10.8 170.7 140.2 99.0 77.8 F2

TORSO3 40.2 26.3 18.2 12.4 9.6 49.4 20.6 10.0 4.0 2.1 2.2
XENON2 13.5 8.2 6.1 4.5 4.2 14.7 14.9 7.6 3.9 2.9 F2

A Domain Decomposing Parallel Sparse Linear System Solver 13

Table 3: Speedup of DDPS compared to Pardiso

Pardiso DDPS
MPI Processes 1 2 4 8 16
ATMOSMODL 1.0 3.3 1.7 8.7 12.8

HVDC2 1.0 1.4 1.2 0.3 F2

LANGUAGE 1.0 9.6 78.2 185.7 609.4
OHNE2 1.0 2.1 4.8 F2 F2

RAJAT31 1.0 0.2 0.4 0.6 1.3
THERMO 1.0 1.5 0.3 0.2 0.3

TMT UNSYM 1.0 0.1 0.1 0.1 0.1
TORSO3 1.0 2.4 4.9 12.2 23.6
XENON2 1.0 1.0 1.9 3.7 5.1

Table 4: Number of outer BiCGStab iterations for DDPS and ILUPACK
DDPS ILUPACK

MPI Processes 2 4 8 16 1
ATMOSMODL 18 18 21.5 21.5 26

HVDC2 0.5 12.5 260 F2 F2

LANGUAGE 5 7 6 6 4
OHNE2 0.5 0.5 F2 F2 F2

RAJAT31 71.5 86.5 106.5 99 F2

THERMO 84.5 248.5 752.5 856 31
TMT UNSYM 89.5 192 212 294 F2

TORSO3 8.5 10 8.5 8.5 5
XENON2 53 63 67 90.5 F2

Table 5: Average number of inner BiCGStab iterations for DDPS

MPI Processes 2 4 8 16
ATMOSMODL 0.5 3.28 0.5 4.74

HVDC2 0.5 3.12 14.93 F2

LANGUAGE 0.5 0.5 0.92 1
OHNE2 3.5 3.5 F2 F2

RAJAT31 3.54 3.16 7.18 4.95
THERMO 1 1 2.93 3.7

TMT UNSYM 13.2 3.32 12.14 15.32
TORSO3 4.32 2.9 3.35 4.53
XENON2 1 1 1 4.7

A Domain Decomposing Parallel Sparse Linear System Solver 14

Table 6: Number of outer BiCGStab iterations for DDPS for 16 MPI processes

δ 0.99 0.9 0.6 0.3 0.1 1.0E-5
ATMOSMODL 23.5 21.5 19 F1 F1 F1

HVDC2 F2 F2 F2 F2 F2 8
LANGUAGE 7 6 6 4 2.5 1
OHNE2 F2 F2 F2 F2 F2 F2

RAJAT31 99 99 99 F1 F1 F1

THERMOMECH DK 645.5 856 F2 F2 F2 414
TMT UNSYM 294 294 231 F2 F2 F2

TORSO3 8.5 8.5 8.5 6.5 4 1
XENON2 99 90.5 105.5 F2 F2 1

	1 Introduction
	2 Background and related work
	3 Domain decomposing parallel solver
	4 Numerical experiments
	5 Conclusion

